Search results for: social networks sites (SNSs)
12162 Exploring the Cultural Significance of Mural Paintings in the Tombs of Gilan, Iran: Evaluation of Drawn Figures
Authors: Zeinab Mirabulqasemi, Gholamali Hatam
Abstract:
This article discusses the significance of mural paintings in Iranian culture, particularly within the context of religious tombs known as Imamzadehs. These tombs, dedicated to Shiite imams and other revered religious figures, serve as important religious and communal spaces. The tradition of tomb construction evolved from early Islamic practices, gradually transforming burial sites into places of worship. In the Gilan region of Iran, these tombs hold a revered status, serving as focal points for religious observances and social gatherings. The murals adorning these tombs often depict religious motifs, with a particular emphasis on events like the Day of Judgment and the martyrdom of the Imams, notably the saga of Ashura. These paintings also reflect the community's social perspectives and historical allegiances. Various architectural styles are employed in constructing these tombs, including Islamic, traditional, local, and aesthetic architecture. However, the region's climate poses challenges to the preservation of these structures and their murals. Despite these challenges, efforts are made to document and preserve these artworks to ensure their accessibility for future generations. This research also studies tomb paintings by adopting a multifaceted approach, including library research, image analysis, and field research. Finally, it examines the portrayal of significant figures such as the Shiite imams, prophets, and Imamzadehs within these murals, highlighting their thematic significance and cultural importance.Keywords: cultural ritual, Shiite imams, mural, belief foundations, religious paintings
Procedia PDF Downloads 5512161 To Live on the Margins: A Closer Look at the Social and Economic Situation of Illegal Afghan Migrants in Iran
Authors: Abdullah Mohammadi
Abstract:
Years of prolong war in Afghanistan has led to one of the largest refugee and migrant populations in the contemporary world. During this continuous unrest which began in 1970s (by military coup, Marxist revolution and the subsequent invasion of USSR), over one-third of the population migrated to neighboring countries, especially Pakistan and Iran. After the Soviet Army withdrawal in 1989, a new wave of conflicts emerged between rival Afghan groups and this led to new refugees. Taliban period, also, created its own refugees. During all these years, I.R. of Iran has been one of the main destinations of Afghan refugees and migrants. At first, due to the political situation after Islamic Revolution, Iran government didn’t restrict the entry of Afghan refugees. Those who came first in Iran received ID cards and had access to education and healthcare services. But in 1990s, due to economic and social concerns, Iran’s policy towards Afghan refugees and migrants changed. The government has tried to identify and register Afghans in Iran and limit their access to some services and jobs. Unfortunately, there are few studies on Afghan refugees and migrants’ situation in Iran and we have a dim and vague picture of them. Of the few studies done on this group, none of them focus on the illegal Afghan migrants’ situation in Iran. Here, we tried to study the social and economic aspects of illegal Afghan migrants’ living in Iran. In doing so, we interviewed 24 illegal Afghan migrants in Iran. The method applied for analyzing the data is thematic analysis. For the interviews, we chose family heads (17 men and 7 women). According to the findings, illegal Afghan migrants’ socio-economic situation in Iran is very undesirable. Its main cause is the marginalization of this group which is resulted from government policies towards Afghan migrants. Most of the illegal Afghan migrants work in unskilled and inferior jobs and live in rent houses on the margins of cities and villages. None of them could buy a house or vehicle due to law. Based on their income, they form one of the lowest, unprivileged groups in the society. Socially, they face many problems in their everyday life: social insecurity, harassment and violence, misuse of their situation by police and people, lack of education opportunity, etc. In general, we may conclude that illegal Afghan migrant have little adaptation with Iran’s society. They face severe limitations compared to legal migrants and refugees and have no opportunity for upward social mobility. However, they have managed some strategies to face these difficulties including: seeking financial and emotional helps from family and friendship networks, sending one of the family members to third country (mostly to European countries), establishing self-administered schools for children (schools which are illegal and run by Afghan educated youth).Keywords: illegal Afghan migrants, marginalization, social insecurity, upward social mobility
Procedia PDF Downloads 31712160 Amorphous Aluminophosphates: An Insight to the Changes in Structural Properties and Catalytic Activity by the Incorporation of Transition Metals
Authors: A. Hamza, H. Kathyayini, N. Nagaraju
Abstract:
Aluminophosphates, both amorphous and crystalline materials find applications as adsorbents, ceramics, and pigments and as catalysts/catalyst supports in organic fine chemical synthesis. Most of the applications are varied depending on the type of metal incorporated, particle size, surface area, porosity and morphology of aluminophosphate. The porous and surface properties of these materials are normally fine-tuned by adopting various preparation methodologies. Numerous crystalline microporous and mesoporous aluminophosphates and metal-aluminophosphates have been reported in literature, in which the synthesis has been carried out by using structure directing organic molecules/surfactants. In present work, amorphous aluminophosphate (AlP) and metal-aluminophosphates MAlP (M = Cu, Zn, Cr, Fe, Ce and Zr) and their mixed forms M-1M2AlP are prepared under a typical precipitation condition, i.e. at low temperature in order to keep the Von-Weirmann relative super saturation of the precipitating medium and obtain small size precipitate particles. These materials are prepared without using any surfactants. All materials are thoroughly characterised for surface and bulk properties by N2 adsorption-desorption technique, XRD, FT-IR, TG and SEM. The materials are also analysed for the amount and the strength of their surface acid sites, by NH3-TPD and CO2-TPD techniques respectively. All the materials prepared in the work are investigated for their catalytic activity in following applications in the synthesis of industrially important Jasminaldehyde via, aldol condensation of n-heptanal and benzaldehyde, in the synthesis of biologically important chalcones by Claisen-shmidth condensation of benzaldehyde and substituted chalcones. The effect of the amount of the catalysts, duration of the reaction, temperature of the reaction, molar ratio of the reactants has been studied. The porosity of pure aluminophosphate is found to be changed significantly by the incorporation of transition metals during preparation of aluminophosphate. The pore size increased from microporous to mesoporous and finally to macroporous by following order of metals Cu = Zn < Cr < Ce < Fe = Zr. The change in surface area and porosity of double metal-aluminophosphates depended on the concentration of both the metals. The acidity of aluminophosphate is either increased or decreased which depended on the type and valence of metals loaded. A good number of basic sites are created in metal-aluminophosphates irrespective of the metals used. A maximum catalytic activity for synthesis of both jasminaldehyde and chalcone is obtained by FeAlP as catalysts; these materials are characterized by decreased strength and concentration of acidic sites with optimum level basic sites.Keywords: amorphous metal-aluminophosphates, surface properties, acidic-basic properties, Aldol, Claisen-Shmidth condensation, jasminaldehyde, chalcone
Procedia PDF Downloads 30412159 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis
Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic
Abstract:
What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.Keywords: political tendency, prediction, sentiment analysis, Twitter
Procedia PDF Downloads 23812158 Assessing the Impact of Social Media on Tourism Industry: Setting Proposition for State Government of India
Authors: Utkrash Sarkar, Vineet Tiwari, Shailendra Singh
Abstract:
The development of social media has brought about a tremendous change in the marketing scenario for every industry. It has become a new hybrid element of the promotional mix in the marketing segment. This paper tries to show some light on the fact that in today’s scenario social media is a platform that everyone should take in consideration for any type of marketing campaign. In this paper, we have formulated a questionnaire, and through it, we have tried to gather information from the respondents that how social media is influencing their decision when they choose their travel destinations for tourism purpose, does it help in creating any awareness about places which they don’t have an idea? As a result, guiding the state government and providing them with a marketing strategy that how they can use social media in a better manner so that they could help increase their revenue and can make people aware about the places of the state which the target audience can plan to go for their next vacation.Keywords: social media, marketing, information, decision making
Procedia PDF Downloads 18312157 Musical Instrument Recognition in Polyphonic Audio Through Convolutional Neural Networks and Spectrograms
Authors: Rujia Chen, Akbar Ghobakhlou, Ajit Narayanan
Abstract:
This study investigates the task of identifying musical instruments in polyphonic compositions using Convolutional Neural Networks (CNNs) from spectrogram inputs, focusing on binary classification. The model showed promising results, with an accuracy of 97% on solo instrument recognition. When applied to polyphonic combinations of 1 to 10 instruments, the overall accuracy was 64%, reflecting the increasing challenge with larger ensembles. These findings contribute to the field of Music Information Retrieval (MIR) by highlighting the potential and limitations of current approaches in handling complex musical arrangements. Future work aims to include a broader range of musical sounds, including electronic and synthetic sounds, to improve the model's robustness and applicability in real-time MIR systems.Keywords: binary classifier, CNN, spectrogram, instrument
Procedia PDF Downloads 7812156 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading
Authors: Michał Rogala, Jakub Gajewski
Abstract:
As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure
Procedia PDF Downloads 14612155 Comparative Analysis of Single Versus Multi-IRS Assisted Multi-User Wireless Communication System
Authors: Ayalew Tadese Kibret, Belayneh Sisay Alemu, Amare Kassaw Yimer
Abstract:
Intelligent reflecting surfaces (IRSs) are considered to be a key enabling technology for sixth-generation (6G) wireless networks. IRSs are electromagnetic (EM) surfaces that are fabricated and have integrated electronics, electronically controlled processes, and particularly wireless communication features. IRSs operate without the need for complex signal processing and the encoding and decoding steps that improve the signal quality at the receiver. Improving vital performance parameters such as energy efficiency (EE) and spectral efficiency (SE) have frequently been the primary goals of research in order to meet the increasing requirements for advanced services in the future 6G communications. In this research, we conduct a comparative analysis on single and multi-IRS wireless communication networks using energy and spectrum efficiency. The energy efficiency versus user distance, energy efficiency versus signal to noise ratio, and spectral efficiency versus user distance are the basis for our result with 1, 2, 4, and 6 IRSs. According to the results of our simulation, in terms of energy and spectral efficiency, six IRS perform better than four, two, and single IRS. Overall, our results suggest that multi-IRS-assisted wireless communication systems outperform single IRS systems in terms of communication performance.Keywords: sixth-generation (6G), wireless networks, intelligent reflecting surfaces, energy efficiency, spectral efficiency
Procedia PDF Downloads 2512154 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception
Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu
Abstract:
Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish
Procedia PDF Downloads 14612153 Children's Literature and the Study of the Sociological Approach
Authors: Sulmaz Mozaffari, Zahra Mozaffari, Saman Mozaffari
Abstract:
Man has always tried to find the Ideal place for life and he has experienced a lot of problems. So many internal and external limits has been on his way. Today man is threatened by so many crisis because of his specific look to the world. Literature as a universal science has not ignored this problem either. Children's literature has tried to present the social, cultural, religious and economical problems in tales and novels. This research tries to analyse social and cultural problems related to 10th century children from social point of criticism.Keywords: social criticism, crisis, children's literature, tale
Procedia PDF Downloads 48012152 Optimization Method of Dispersed Generation in Electrical Distribution Systems
Authors: Mahmoud Samkan
Abstract:
Dispersed Generation (DG) is a promising solution to many power system problems such as voltage regulation and power loss. This paper proposes a heuristic two-step method to optimize the location and size of DG for reducing active power losses and, therefore, improve the voltage profile in radial distribution networks. In addition to a DG placed at the system load gravity center, this method consists in assigning a DG to each lateral of the network. After having determined the central DG placement, the location and size of each lateral DG are predetermined in the first step. The results are then refined in the second step. This method is tested for 33-bus system for 100% DG penetration. The results obtained are compared with those of other methods found in the literature.Keywords: optimal location, optimal size, dispersed generation (DG), radial distribution networks, reducing losses
Procedia PDF Downloads 44312151 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution
Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang
Abstract:
Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution
Procedia PDF Downloads 15812150 Smart Web Services in the Web of Things
Authors: Sekkal Nawel
Abstract:
The Web of Things (WoT), integration of smart technologies from the Internet or network to Web architecture or application, is becoming more complex, larger, and dynamic. The WoT is associated with various elements such as sensors, devices, networks, protocols, data, functionalities, and architectures to perform services for stakeholders. These services operate in the context of the interaction of stakeholders and the WoT elements. Such context is becoming a key information source from which data are of various nature and uncertain, thus leading to complex situations. In this paper, we take interest in the development of intelligent Web services. The key ingredients of this “intelligent” notion are the context diversity, the necessity of a semantic representation to manage complex situations and the capacity to reason with uncertain data. In this perspective, we introduce a multi-layered architecture based on a generic intelligent Web service model dealing with various contexts, which proactively predict future situations and reactively respond to real-time situations in order to support decision-making. For semantic context data representation, we use PR-OWL, which is a probabilistic ontology based on Multi-Entity Bayesian Networks (MEBN). PR-OWL is flexible enough to represent complex, dynamic, and uncertain contexts, the key requirements of the development for the intelligent Web services. A case study was carried out using the proposed architecture for intelligent plant watering to show the role of proactive and reactive contextual reasoning in terms of WoT.Keywords: smart web service, the web of things, context reasoning, proactive, reactive, multi-entity bayesian networks, PR-OWL
Procedia PDF Downloads 7112149 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks
Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han
Abstract:
In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN
Procedia PDF Downloads 53212148 NGO Social Entrepreneurship and Innovation Abroad: The Effects on Local Social Economies
Authors: Renee Nank
Abstract:
Nongovernmental organizations that operate in other countries are, under American law, permitted to apply for and receive special tax status even when their programs and services are situated in other countries. NGO's are lauded as incubators for innovation as they typically tackle difficult problems that public and private organizations are unable or uninterested in addressing. Little research has been undertaken that explores both the extent of these organizations in number and reach, their impact on addressing local issues they seek to resolve, and their effect on local social economies - namely job creation. This study explores the landscape of these NGOs that are afforded tax benefits in the U.S., but operate in other countries, the degree to which they are entrepreneurial and innovate, and their effect on local social economies. This applies this lens to particular cases by exploring in greater depth several American NGO's operating in Mexico.Keywords: civil society, nongovernmental organizations, social entrepreneurship, social economy, NGO innovation
Procedia PDF Downloads 35312147 Exploring the Influence of Climate Change on Food Behavior in Medieval France: A Multi-Method Analysis of Human-Animal Interactions
Authors: Unsain Dianne, Roussel Audrey, Goude Gwenaëlle, Magniez Pierre, Storå Jan
Abstract:
This paper aims to investigate the changes in husbandry practices and meat consumption during the transition from the Medieval Climate Anomaly to the Little Ice Age in the South of France. More precisely, we will investigate breeding strategies, animal size and health status, carcass exploitation strategies, and the impact of socioeconomic status on human-environment interactions. For that purpose, we will analyze faunal remains from ten sites equally distributed between the two periods. Those include consumers from different socio-economic backgrounds (peasants, city dwellers, soldiers, lords, and the Popes). The research will employ different methods used in zooarchaeology: comparative anatomy, biometry, pathologies analyses, traceology, and utility indices, as well as experimental archaeology, to reconstruct and understand the changes in animal breeding and consumption practices. Their analysis will allow the determination of modifications in the animal production chain, with the composition of the flocks (species, size), their management (age, sex, health status), culinary practices (strategies for the exploitation of carcasses, cooking, tastes) or the importance of trade (butchers, sales of processed animal products). The focus will also be on the social extraction of consumers. The aim will be to determine whether climate change has had a greater impact on the most modest groups (such as peasants), whether the consequences have been global and have also affected the highest levels of society, or whether the social and economic factors have been sufficient to balance out the climatic hazards, leading to no significant changes. This study will contribute to our understanding of the impact of climate change on breeding and consumption strategies in medieval society from a historical and social point of view. It combines various research methods to provide a comprehensive analysis of the changes in human-animal interactions during different climatic periods.Keywords: archaeology, animal economy, cooking, husbandry practices, climate change, France
Procedia PDF Downloads 5812146 The Social Model of Disability and Disability Rights: Defending a Conceptual Alignment between the Social Model’s Concept of Disability and the Nature of Rights and Duties
Authors: Adi Goldiner
Abstract:
Historically, the social model of disability has played a pivotal role in bringing rights discourse into the disability debate. Against this backdrop, the paper explores the conceptual alignment between the social model’s account of disability and the nature of rights. Specifically, the paper examines the possibility that the social model conceptualizes disability in a way that aligns with the nature of rights and thus motivates the invocation of disability rights. Methodologically, the paper juxtaposes the literature on the social model of disability, primarily the work of the Union of the Physically Impaired Against Segregation in the UK and related scholarship, with theories of moral rights. By focusing on the interplay between the social model of disability and rights, the paper provides a conceptual explanation for the rise of disability rights. In addition, the paper sheds light on the nature of rights, their function and limitations, in the context of disability rights. The paper concludes that the social model’s conceptualization of disability is hospitable to rights, because it opens up the possibility that there are duties that correlate with disability rights. Under the social model, disability is a condition that can be eliminated by the removal of social, structural, and attitudinal barriers. Accordingly, the social model dispels the idea that the actions of others towards disabled people will have a marginal impact on their interests in not being disabled. Equally important, the social model refutes the idea that in order to significantly serve people's interest in not being disabled, it is necessary to cure bodily impairments, which is not always possible. As rights correlate with duties that are possible to comply with, as well as those that significantly serve the interests of the right holders, the social model’s conceptualization of disability invites the reframing of problems related to disability in terms of infringements of disability rights. A possible objection to the paper’s argument is raised, according to which the social model is at odds with the invocation of disability rights because disability rights are ineffective in realizing the social model's goal of improving the lives of disabled by eliminating disability. The paper responds to this objection by drawing a distinction between ‘moral rights,’ which, conceptually, are not subject to criticism of ineffectiveness, and ‘legal rights’ which are.Keywords: disability rights, duties, moral rights, social model
Procedia PDF Downloads 40412145 Potential of Visualization and Information Modeling on Productivity Improvement and Cost Saving: A Case Study of a Multi-Residential Construction Project
Authors: Sara Rankohi, Lloyd Waugh
Abstract:
Construction sites are information saturated. Digitalization is hitting construction sites to meet the incredible demand of knowledge sharing and information documentations. From flying drones, 3D Lasers scanners, pocket mobile applications, to augmented reality glasses and smart helmet, visualization technologies help real-time information imposed straight onto construction professional’s field of vision. Although these technologies are very applicable and can have the direct impact on project cost and productivity, experience shows that only a minority of construction professionals quickly adapt themselves to benefit from them in practice. The majority of construction managers still tend to apply traditional construction management methods. This paper investigates a) current applications of visualization technologies in construction projects management, b) the direct effect of these technologies on productivity improvement and cost saving of a multi-residential building project via a case study on Mac Taggart Senior Care project located in Edmonton, Alberta. The research shows the imaged based technologies have a direct impact on improving project productivity and cost savings.Keywords: image-based technologies, project management, cost, productivity improvement
Procedia PDF Downloads 36112144 Wind Power Potential in Selected Algerian Sahara Regions
Authors: M. Dahbi, M. Sellam, A. Benatiallah, A. Harrouz
Abstract:
The wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Algeria The main purpose of this paper is to compared and discuss the wind power potential in three sites located in sahara of Algeria (south west of Algeria) and to perform an investigation on the wind power potential of desert of Algeria. In this comparative, wind speed frequency distributions data obtained from the web site SODA.com are used to calculate the average wind speed and the available wind power. The Weibull density function has been used to estimate the monthly power wind density and to determine the characteristics of monthly parameters of Weibull for these three sites. The annual energy produced by the BWC XL.1 1KW wind machine is obtained and compared. The analysis shows that in the south west of Algeria, at 10 m height, the available wind power was found to vary between 136.59 W/m2 and 231.04 W/m2. The highest potential wind power was found at Adrar, with 21h per day and the mean wind speed is above 6 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 512 KWh and 1643.2 kWh. However, the wind resource appears to be suitable for power production on the sahara and it could provide a viable substitute to diesel oil for irrigation pumps and rural electricity generation.Keywords: Weibull distribution, parameters of Wiebull, wind energy, wind turbine, operating hours
Procedia PDF Downloads 49512143 Higher Education Leadership and Creating Sites of Institutional Belonging: A Global Case Study
Authors: Lisa M. Coleman
Abstract:
The focus on disability, LGBTQ+, and internationalization has certainly been the subject of much research and programmatic across higher education. Many universities have entered into global partnerships with varying success and challenges across the various areas, including laws and policies. Attentiveness to the specific nuances of global inclusion, diversity, equity, belonging, and access (GIDBEA) and the leadership to support these efforts is crucial to the development of longstanding success across the programs. There have been a number of shifts related to diversification across student and alumni bodies. These shifts include but are not limited to how people identify gender, race, and sexuality (and the intersections across such identities), as well as trends across emerging and diverse disability communities. NYU is the most international campus in the United States, with the most campuses and sites outside of its county of origin and the most international students and exchange programs than any other university. As a result, the ongoing work related to GIDEBA is at the center of much of the leadership, administrative, and research efforts. Climate assessment work across NYU’s diverse global campus landscape will serve as the foundation to exemplify best practices related to data collection and dissemination, community and stakeholder engagement, and effective implementation of innovative strategies to close gap areas as identified. The data (quantitative and qualitative) and related research findings represent data collected from close to 22,000 stakeholders across the NYU campuses. The case study centers on specific methodological considerations, data integrity, stakeholder engagement from across student-faculty, staff, and alumni constituencies, and tactics to advance specific GIDBEA initiatives related to navigating shifting landscapes. Design thinking, incubation, and co-creation strategies have been employed to expand, leverage, actualize, and implement GIDBEA strategies that are – concrete, measurable, differentiated, and specific to global sites and regions and emerging trends.Keywords: disability, LGBTQ+, DEI, research, case studies
Procedia PDF Downloads 10512142 Social Media and Counseling: Opportunities, Risks and Ethical Considerations
Authors: Kyriaki G. Giota, George Kleftaras
Abstract:
The purpose of this article is to briefly review the opportunities that social media presents to counselors and psychologists. Particular attention was given to understanding some of the more important common risks inherent in social media and the potential ethical dilemmas which may arise for counselors and psychologists who embrace them in their practice. Key considerations of issues pertinent to an online presence such as multiple relationships, visibility and privacy, maintaining ethical principles and professional boundaries are being discussed.Keywords: social media, counseling, risks, ethics
Procedia PDF Downloads 42512141 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems
Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber
Abstract:
Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement
Procedia PDF Downloads 15012140 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 13912139 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing
Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed
Abstract:
It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC
Procedia PDF Downloads 19012138 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms
Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani
Abstract:
This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.Keywords: tunnel fire, flame length, ANN, genetic algorithm
Procedia PDF Downloads 64312137 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks
Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee
Abstract:
Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)
Procedia PDF Downloads 10912136 A Study on the Relationship between Transaction Fairness, Social Capital, Supply Chain Integration and Sustainability: Focusing on Manufacturing Companies of South Korea
Authors: Sung-Min Park, Chan Kwon Park, Chae-Bogk Kim
Abstract:
The purpose of this study is to analyze the relationship between transaction fairness, social capital, supply chain integration and sustainability. Based on the previous studies, measurement items were determined by using SPSS 22 and exploratory factor analysis was performed, and again, using AMOS 21 for confirmatory factor analysis and path analysis was performed by using study items that satisfy reliability, validity, and appropriateness of measurement model. It has shown that transaction fairness has a (+) significant effect on social capital, social capital on supply chain integration, supply chain integration on economic sustainability and social sustainability, and has a (+), but not significant effect on environmental sustainability. It has shown that supply chain integration has been proven to play a role as a parameter between social capital and economic and social sustainability, but not as a parameter between environmental sustainability. Through this study, it is suggested that clearly examining the relationship between fairness of trade, social capital, supply chain integration and sustainability, maintaining fairness of the transaction make formation of social capital, and further integration of supply chain, and achieve sustainability of entire supply chain.Keywords: transaction fairness, social capital, supply chain integration, sustainability
Procedia PDF Downloads 44112135 Working with Children and Young People as a much Neglected Area of Education within the Social Studies Curriculum in Poland
Authors: Marta Czechowska-Bieluga
Abstract:
Social work education in Poland focuses mostly on developing competencies that address the needs of individuals and families affected by a variety of life's problems. As a result of the ageing of the Polish population, much attention is equally devoted to adults, including the elderly. However, social work with children and young people is the area of education which should be given more consideration. Social work students are mostly trained to cater to the needs of families and the competencies aimed to respond to the needs of children and young people do not receive enough attention and are only offered as elective classes. This paper strives to review the social work programmes offered by the selected higher education institutions in Poland in terms of social work training aimed at helping children and young people to address their life problems. The analysis conducted in this study indicates that university education for social work focuses on training professionals who will provide assistance only to adults. Due to changes in the social and political situation, including, in particular, changes in social policy implemented for the needy, it is necessary to extend this area of education to include the specificity of the support for children and young people; especially, in the light of the appearance of new support professions within the area of social work. For example, family assistants, whose task is to support parents in performing their roles as guardians and educators, also assist children. Therefore, it becomes necessary to equip social work professionals with competencies which include issues related to the quality of life of underage people living in families. Social work curricula should be extended to include the issues of child and young person development and the patterns governing this phase of life.Keywords: social work education, social work programmes, social worker, university
Procedia PDF Downloads 28912134 The Impact of Corporate Social Responsibilities on Employees’ Green Behavior: The Moderating Role of Organizational Trust
Authors: Zubair Ahmad
Abstract:
Drawing from social exchange theory, this study proposes to explore the association between corporate social responsibility as external CSR and Internal CSR with employees' green behavior. Furthermore, the author also analyzed the moderating role of organizational trust among the aforementioned associations. The target respondents for this descriptive study were employees working hotel industry of Pakistan. An online questionnaire link was sent to hotel managers and is requested to share the questionnaire link with employees. The respondents for this study were selected through the convenience sampling technique. The collected data from participants is analyzed through AMOS and SPSS. The findings show that both internal corporate social responsibility and external corporate social responsibility exert a positive and significant influence on employees' green behavior. Thus it is concluded that the key driver behind the green behavior of hotel employees is the social setting of their workplace. Findings also revealed that organizational trust plays a positive role in enhancing the green behavior of hotel employees. This study extends the literature on corporate social responsibility by exploring the boundary role of organizational trust between internal and external corporate social responsibility and employees' green behavior in hotels. Moreover, CSR activities should be performed for attaining a competitive edge and maintaining a balance between progress and sustainability of the environment.Keywords: corporate social responsibility, internal corporate social responsibility, external corporate social responsibility, social exchange theory, employee green behavior, organizational trust
Procedia PDF Downloads 10712133 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.Keywords: EEG, functional connectivity, graph theory, TFCMI
Procedia PDF Downloads 431