Search results for: processing individual
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7770

Search results for: processing individual

6420 NanoFrazor Lithography for advanced 2D and 3D Nanodevices

Authors: Zhengming Wu

Abstract:

NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam.

Keywords: nanofabrication, grayscale lithography, 2D materials device, nano-optics, photonics, spintronic circuits

Procedia PDF Downloads 72
6419 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 188
6418 The Lived Experience of Risk and Protective Contexts of Blind Successful University Students in Sidist Kilo Campus

Authors: Zelalem Markos Borko

Abstract:

The quality of life of people with blindness is significantly influenced by the level of resilience they possess. A qualitative approach of the descriptive phenomenological design was employed to address basic study objectives. The researcher purposely selected three blind graduate students from Sidist Kilo Campus and conducted a semi-structured interview to gather data. Data were analyzed by using thematic coding techniques. The present study found that personal characteristics such as commitment, living hope, motivation, positive self-esteem, self-confidence, and communication have shaped resiliency for successful university students with visual disabilities. The finding showed that the school environment is the place in which blind students had developed/experienced social, psychological, and economical competency and hope for their academic and entire life success. Furthermore, the finding showed that blind students had experienced individual, family, school, and community-related risks in the success track. Therefore, governmental and non-governmental organizations should provide training for students with visual impairments that focus on the individual traits that shape resilience for academic success, such as commitment, living hope, motivation, positive self-esteem, self-confidence, and communication and also community-oriented training should be to break the social stigma and discriminations for the individuals with the visual impairment.

Keywords: blind students, risk and protective factors, lived experience, success

Procedia PDF Downloads 81
6417 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid

Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang

Abstract:

Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.

Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal

Procedia PDF Downloads 77
6416 The Impact of CSR Satisfaction on Employee Commitment

Authors: Silke Bustamante, Andrea Pelzeter, Andreas Deckmann, Rudi Ehlscheidt, Franziska Freudenberger

Abstract:

Many companies increasingly seek to enhance their attractiveness as an employer to bind their employees. At the same time, corporate responsibility for social and ecological issues seems to become a more important part of an attractive employer brand. It enables the company to match the values and expectations of its members, to signal fairness towards them and to increase its brand potential for positive psychological identification on the employees’ side. In the last decade, several empirical studies have focused this relationship, confirming a positive effect of employees’ CSR perception and their affective organizational commitment. The current paper aims to take a slightly different view by analyzing the impact of another factor on commitment: the weighted employee’s satisfaction with the employer CSR. For that purpose, it is assumed that commitment levels are rather a result of the fulfillment or disappointment of expectations. Hence, instead of merely asking how CSR perception affects commitment, a more complex independent variable is taken into account: a weighted satisfaction construct that summarizes two different factors. Therefore, the individual level of commitment contingent on CSR is conceptualized as a function of two psychological processes: (1) the individual significance that an employee ascribes to specific employer attributes and (2) the individual satisfaction based on the fulfillment of expectation that rely on preceding perceptions of employer attributes. The results presented are based on a quantitative survey that was undertaken among employees of the German service sector. Conceptually a five-dimensional CSR construct (ecology, employees, marketplace, society and corporate governance) and a two-dimensional non-CSR construct (company and workplace) were applied to differentiate employer characteristics. (1) Respondents were asked to indicate the importance of different facets of CSR-related and non-CSR-related employer attributes. By means of a conjoint analysis, the relative importance of each employer attribute was calculated from the data. (2) In addition to this, participants stated their level of satisfaction with specific employer attributes. Both indications were merged to individually weighted satisfaction indexes on the seven-dimensional levels of employer characteristics. The affective organizational commitment of employees (dependent variable) was gathered by applying the established 15-items Organizational Commitment Questionnaire (OCQ). The findings related to the relationship between satisfaction and commitment will be presented. Furthermore, the question will be addressed, how important satisfaction with CSR is in relation to the satisfaction with other attributes of the company in the creation of commitment. Practical as well as scientific implications will be discussed especially with reference to previous results that focused on CSR perception as a commitment driver.

Keywords: corporate social responsibility, organizational commitment, employee attitudes/satisfaction, employee expectations, employer brand

Procedia PDF Downloads 267
6415 Development of the Religious Out-Group Aggression Scale

Authors: Rylle Evan Gabriel Zamora, Micah Dennise Malia, Abygail Deniese Villabona

Abstract:

When examining studies on aggression, the studies about individual aggression vastly outnumbers those studies on group aggression. Given the nature of aggression to be violent and cyclical, and the amount violent events that have occurred in the near present, the study of group aggression is relevant now more than ever. This discrepancy is parallel with the number of valid and reliable psychological tests that measure group aggression. Throughout history, one of the biggest causes of group based violence and aggression is religion. This is particularly true within the context of the Philippines as there are a large number of religious groups. Thus, this study aimed to develop a standardized test that measures an individual’s tendency to be aggressive to those who are in conflict with his or her religious beliefs. This study employs a test development design that employs a qualitative phase to ensure the validity of the scale. Thus, the study was divided into three phases. First is a pilot test wherein an instrument was designed from existing literature which was then administered to 173 respondents from the four largest religious groups in the Philippines. After extensive factor analysis and reliability testing, new items were then formed from the qualitative data collected from eight participants, consisting of two individuals per religious group. The final testing integrates all statistically significant items from the first phase, and the newly formed items from the second phase, which was then administered to 200 respondents. The results were then tested further for reliability using Cronbach’s alpha and validity through factor analysis. The items that were proven to be significant were then combined to create a final instrument that may be used by future studies.

Keywords: religious aggression, group aggression, test development, psychological assessment, social psychology

Procedia PDF Downloads 294
6414 Application to Monitor the Citizens for Corona and Get Medical Aids or Assistance from Hospitals

Authors: Vathsala Kaluarachchi, Oshani Wimalarathna, Charith Vandebona, Gayani Chandrarathna, Lakmal Rupasinghe, Windhya Rankothge

Abstract:

It is the fundamental function of a monitoring system to allow users to collect and process data. A worldwide threat, the corona outbreak has wreaked havoc in Sri Lanka, and the situation has gotten out of hand. Since the epidemic, the Sri Lankan government has been unable to establish a systematic system for monitoring corona patients and providing emergency care in the event of an outbreak. Most patients have been held at home because of the high number of patients reported in the nation, but they do not yet have access to a functioning medical system. It has resulted in an increase in the number of patients who have been left untreated because of a lack of medical care. The absence of competent medical monitoring is the biggest cause of mortality for many people nowadays, according to our survey. As a result, a smartphone app for analyzing the patient's state and determining whether they should be hospitalized will be developed. Using the data supplied, we are aiming to send an alarm letter or SMS to the hospital once the system recognizes them. Since we know what those patients need and when they need it, we will put up a desktop program at the hospital to monitor their progress. Deep learning, image processing and application development, natural language processing, and blockchain management are some of the components of the research solution. The purpose of this research paper is to introduce a mechanism to connect hospitals and patients even when they are physically apart. Further data security and user-friendliness are enhanced through blockchain and NLP.

Keywords: blockchain, deep learning, NLP, monitoring system

Procedia PDF Downloads 133
6413 Learner's Difficulties Acquiring English: The Case of Native Speakers of Rio de La Plata Spanish Towards Justifying the Need for Corpora

Authors: Maria Zinnia Bardas Hoffmann

Abstract:

Contrastive Analysis (CA) is the systematic comparison between two languages. It stems from the notion that errors are caused by interference of the L1 system in the acquisition process of an L2. CA represents a useful tool to understand the nature of learning and acquisition. Also, this particular method promises a path to un-derstand the nature of underlying cognitive processes, even when other factors such as intrinsic motivation and teaching strategies were found to best explain student’s problems in acquisition. CA study is justified not only from the need to get a deeper understanding of the nature of SLA, but as an invaluable source to provide clues, at a cognitive level, for those general processes involved in rule formation and abstract thought. It is relevant for cross disciplinary studies and the fields of Computational Thought, Natural Language processing, Applied Linguistics, Cognitive Linguistics and Math Theory. That being said, this paper intends to address here as well its own set of constraints and limitations. Finally, this paper: (a) aims at identifying some of the difficulties students may find in their learning process due to the nature of their specific variety of L1, Rio de la Plata Spanish (RPS), (b) represents an attempt to discuss the necessity for specific models to approach CA.

Keywords: second language acquisition, applied linguistics, contrastive analysis, applied contrastive analysis English language department, meta-linguistic rules, cross-linguistics studies, computational thought, natural language processing

Procedia PDF Downloads 150
6412 The Counselling Practice of School Social Workers in Swedish Elementary Schools - A Focus Group Study

Authors: Kjellgren Maria, Lilliehorn Sara, Markström Urban

Abstract:

This article describes the counselling practice of school social workers (SSWs) with individual children. SSWs work in the school system’s pupil health team, whose primary task is health promotion and prevention. The work of SSWs is about helping children and adolescents who, for various reasons, suffer from mental ill-health, school absenteeism, or stress that make them unable to achieve their intended goals. SSWs preferably meet these children in individual counselling sessions. The aim of this article is to describe and analyse SSWs’ experience of counselling with children and to examine the characteristics of counselling practice. The data collection was conducted through four semi-structured focus group interviews with a total of 22 SSWs in four different regions in Sweden. SSWs provide counselling to children in order to bring about improved feelings or behavioural changes. It can be noted that SSWs put emphasis on both the counselling process and the alliance with the child. The interviews showed a common practice among SSWs regarding the structure of the counselling sessions, with certain steps and approaches being employed. However, the specific interventions differed and were characterised by an eclectic standpoint in which SSWs utilise a broad repertoire of therapeutic schools and techniques. Furthermore, a relational perspective emerged as a most prominent focus for the SSWs by re-emerging throughout the material. We believe that SSWs could benefit from theoretical perspectives on ‘contextual model’ and ‘attachment theory’ as ‘models of the mind’. Being emotionally close to the child and being able to follow their development requires a lot from SSWs, as both professional caregivers and as “safe havens”.

Keywords: school social conselling, school social workers, contextual model, attachment thory

Procedia PDF Downloads 134
6411 Architecture for QoS Based Service Selection Using Local Approach

Authors: Gopinath Ganapathy, Chellammal Surianarayanan

Abstract:

Services are growing rapidly and generally they are aggregated into a composite service to accomplish complex business processes. There may be several services that offer the same required function of a particular task in a composite service. Hence a choice has to be made for selecting suitable services from alternative functionally similar services. Quality of Service (QoS)plays as a discriminating factor in selecting which component services should be selected to satisfy the quality requirements of a user during service composition. There are two categories of approaches for QoS based service selection, namely global and local approaches. Global approaches are known to be Non-Polynomial (NP) hard in time and offer poor scalability in large scale composition. As an alternative to global methods, local selection methods which reduce the search space by breaking up the large/complex problem of selecting services for the workflow into independent sub problems of selecting services for individual tasks are coming up. In this paper, distributed architecture for selecting services based on QoS using local selection is presented with an overview of local selection methodology. The architecture describes the core components, namely, selection manager and QoS manager needed to implement the local approach and their functions. Selection manager consists of two components namely constraint decomposer which decomposes the given global or workflow level constraints in local or task level constraints and service selector which selects appropriate service for each task with maximum utility, satisfying the corresponding local constraints. QoS manager manages the QoS information at two levels namely, service class level and individual service level. The architecture serves as an implementation model for local selection.

Keywords: architecture of service selection, local method for service selection, QoS based service selection, approaches for QoS based service selection

Procedia PDF Downloads 426
6410 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 76
6409 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks

Authors: Tesfaye Mengistu

Abstract:

Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.

Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net

Procedia PDF Downloads 112
6408 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 371
6407 Modeling Route Selection Using Real-Time Information and GPS Data

Authors: William Albeiro Alvarez, Gloria Patricia Jaramillo, Ivan Reinaldo Sarmiento

Abstract:

Understanding the behavior of individuals and the different human factors that influence the choice when faced with a complex system such as transportation is one of the most complicated aspects of measuring in the components that constitute the modeling of route choice due to that various behaviors and driving mode directly or indirectly affect the choice. During the last two decades, with the development of information and communications technologies, new data collection techniques have emerged such as GPS, geolocation with mobile phones, apps for choosing the route between origin and destination, individual service transport applications among others, where an interest has been generated to improve discrete choice models when considering the incorporation of these developments as well as psychological factors that affect decision making. This paper implements a discrete choice model that proposes and estimates a hybrid model that integrates route choice models and latent variables based on the observation on the route of a sample of public taxi drivers from the city of Medellín, Colombia in relation to its behavior, personality, socioeconomic characteristics, and driving mode. The set of choice options includes the routes generated by the individual service transport applications versus the driver's choice. The hybrid model consists of measurement equations that relate latent variables with measurement indicators and utilities with choice indicators along with structural equations that link the observable characteristics of drivers with latent variables and explanatory variables with utilities.

Keywords: behavior choice model, human factors, hybrid model, real time data

Procedia PDF Downloads 152
6406 Functional Aspects of Carbonic Anhydrase

Authors: Bashistha Kumar Kanth, Seung Pil Pack

Abstract:

Carbonic anhydrase is ubiquitously distributed in organisms, and is fundamental to many eukaryotic biological processes such as photosynthesis, respiration, CO2 and ion transport, calcification and acid–base balance. However, CA occurs across the spectrum of prokaryotic metabolism in both the archaea and bacteria domains and many individual species contain more than one class. In this review, various roles of CA involved in cellular mechanism are presented to find out the CA functions applicable for industrial use.

Keywords: carbonic anhydrase, mechanism, CO2 sequestration, respiration

Procedia PDF Downloads 492
6405 Weed Out the Bad Seeds: The Impact of Strategic Portfolio Management on Patent Quality

Authors: A. Lefebre, M. Willekens, K. Debackere

Abstract:

Since the 1990s, patent applications have been booming, especially in the field of telecommunications. However, this increase in patent filings has been associated with an (alleged) decrease in patent quality. The plethora of low-quality patents devalues the high-quality ones, thus weakening the incentives for inventors to patent inventions. Despite the rich literature on strategic patenting, previous research has neglected to emphasize the importance of patent portfolio management and its impact on patent quality. In this paper, we compare related patent portfolios vs. nonrelated patents and investigate whether the patent quality and innovativeness differ between the two types. In the analyses, patent quality is proxied by five individual proxies (number of inventors, claims, renewal years, designated states, and grant lag), and these proxies are then aggregated into a quality index. Innovativeness is proxied by two measures: the originality and radicalness index. Results suggest that related patent portfolios have, on average, a lower patent quality compared to nonrelated patents, thus suggesting that firms use them for strategic purposes rather than for the extended protection they could offer. Even upon testing the individual proxies as a dependent variable, we find evidence that related patent portfolios are of lower quality compared to nonrelated patents, although not all results show significant coefficients. Furthermore, these proxies provide evidence of the importance of adding fixed effects to the model. Since prior research has found that these proxies are inherently flawed and never fully capture the concept of patent quality, we have chosen to run the analyses with individual proxies as supplementary analyses; however, we stick with the comprehensive index as our main model. This ensures that the results are not dependent upon one certain proxy but allows for multiple views of the concept. The presence of divisional applications might be linked to the level of innovativeness of the underlying invention. It could be the case that the parent application is so important that firms are going through the administrative burden of filing for divisional applications to ensure the protection of the invention and the preemption of competition. However, it could also be the case that the preempting is a result of divisional applications being used strategically as a backup plan and prolonging strategy, thus negatively impacting the innovation in the portfolio. Upon testing the level of novelty and innovation in the related patent portfolios by means of the originality and radicalness index, we find evidence for a significant negative association with related patent portfolios. The minimum innovation that has been brought on by the patents in the related patent portfolio is lower compared to the minimum innovation that can be found in nonrelated portfolios, providing evidence for the second argument.

Keywords: patent portfolio management, patent quality, related patent portfolios, strategic patenting

Procedia PDF Downloads 94
6404 Thiosulfate Leaching of the Auriferous Ore from Castromil Deposit: A Case Study

Authors: Rui Sousa, Aurora Futuro, António Fiúza

Abstract:

The exploitation of gold ore deposits is highly dependent on efficient mineral processing methods, although actual perspectives based on life-cycle assessment introduce difficulties that were unforeseen in a very recent past. Cyanidation is the most applied gold processing method, but the potential environmental problems derived from the usage of cyanide as leaching reagent led to a demand for alternative methods. Ammoniacal thiosulfate leaching is one of the most important alternatives to cyanidation. In this article, some experimental studies carried out in order to assess the feasibility of thiosulfate as a leaching agent for the ore from the unexploited Portuguese gold mine of Castromil. It became clear that the process depends on the concentrations of ammonia, thiosulfate and copper. Based on this fact, a few leaching tests were performed in order to assess the best reagent prescription, and also the effects of different combination of these concentrations. Higher thiosulfate concentrations cause the decrease of gold dissolution. Lower concentrations of ammonia require higher thiosulfate concentrations, and higher ammonia concentrations require lower thiosulfate concentrations. The addition of copper increases the gold dissolution ratio. Subsequently, some alternative operatory conditions were tested such as variations in temperature and in the solid/liquid ratio as well as the application of a pre-treatment before the leaching stage. Finally, thiosulfate leaching was compared to cyanidation. Thiosulfate leaching showed to be an important alternative, although a pre-treatment is required to increase the yield of the gold dissolution.

Keywords: gold, leaching, pre-treatment, thiosulfate

Procedia PDF Downloads 310
6403 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 50
6402 Voting Representation in Social Networks Using Rough Set Techniques

Authors: Yasser F. Hassan

Abstract:

Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.

Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices

Procedia PDF Downloads 394
6401 Geospatial Land Suitability Modeling for Biofuel Crop Using AHP

Authors: Naruemon Phongaksorn

Abstract:

The biofuel consumption has increased significantly over the decade resulting in the increasing request on agricultural land for biofuel feedstocks. However, the biofuel feedstocks are already stressed of having low productivity owing to inappropriate agricultural practices without considering suitability of crop land. This research evaluates the land suitability using GIS-integrated Analytic Hierarchy Processing (AHP) of biofuel crops: cassava, at Chachoengsao province, in Thailand. AHP method that has been widely accepted for land use planning. The objective of this study is compared between AHP method and the most limiting group of land characteristics method (classical approach). The reliable results of the land evaluation were tested against the crop performance assessed by the field investigation in 2015. In addition to the socio-economic land suitability, the expected availability of raw materials for biofuel production to meet the local biofuel demand, are also estimated. The results showed that the AHP could classify and map the physical land suitability with 10% higher overall accuracy than the classical approach. The Chachoengsao province showed high and moderate socio-economic land suitability for cassava. Conditions in the Chachoengsao province were also favorable for cassava plantation, as the expected raw material needed to support ethanol production matched that of ethanol plant capacity of this province. The GIS integrated AHP for biofuel crops land suitability evaluation appears to be a practical way of sustainably meeting biofuel production demand.

Keywords: Analytic Hierarchy Processing (AHP), Cassava, Geographic Information Systems, Land suitability

Procedia PDF Downloads 201
6400 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 69
6399 The Role of Goal Orientation on the Structural-Psychological Empowerment Link in the Public Sector

Authors: Beatriz Garcia-Juan, Ana B. Escrig-Tena, Vicente Roca-Puig

Abstract:

The aim of this article is to conduct a theoretical and empirical study in order to examine how the goal orientation (GO) of public employees affects the relationship between the structural and psychological empowerment that they experience at their workplaces. In doing so, we follow structural empowerment (SE) and psychological empowerment (PE) conceptualizations, and relate them to the public administration framework. Moreover, we review arguments from GO theories, and previous related contributions. Empowerment has emerged as an important issue in the public sector organization setting in the wake of mainstream New Public Management (NPM), the new orientation in the public sector that aims to provide a better service for citizens. It is closely linked to the drive to improve organizational effectiveness through the wise use of human resources. Nevertheless, it is necessary to combine structural (managerial) and psychological (individual) approaches in an integrative study of empowerment. SE refers to a set of initiatives that aim the transference of power from managerial positions to the rest of employees. PE is defined as psychological state of competence, self-determination, impact, and meaning that an employee feels at work. Linking these two perspectives will lead to arrive at a broader understanding of the empowerment process. Specifically in the public sector, empirical contributions on this relationship are therefore important, particularly as empowerment is a very useful tool with which to face the challenges of the new public context. There is also a need to examine the moderating variables involved in this relationship, as well as to extend research on work motivation in public management. It is proposed the study of the effect of individual orientations, such as GO. GO concept refers to the individual disposition toward developing or confirming one’s capacity in achievement situations. Employees’ GO may be a key factor at work and in workforce selection processes, since it explains the differences in personal work interests, and in receptiveness to and interpretations of professional development activities. SE practices could affect PE feelings in different ways, depending on employees’ GO, since they perceive and respond differently to such practices, which is likely to yield distinct PE results. The model is tested on a sample of 521 Spanish local authority employees. Hierarchical regression analysis was conducted to test the research hypotheses using SPSS 22 computer software. The results do not confirm the direct link between SE and PE, but show that learning goal orientation has considerable moderating power in this relationship, and its interaction with SE affects employees’ PE levels. Therefore, the combination of SE practices and employees’ high levels of LGO are important factors for creating psychologically empowered staff in public organizations.

Keywords: goal orientation, moderating effect, psychological empowerment, structural empowerment

Procedia PDF Downloads 281
6398 Proposition of an Integrative Model for Assessing the Effectiveness of the Performance Management System

Authors: Mariana L. de Araújo, Pedro P. M. Menezes

Abstract:

Research on strategic human resource management (SHRM) has made progress in the last few decades, showing a relationship between policies and practices of human resource management (HRM) and improving organizational results. That's because demonstrating the effectiveness of any HRM or other organizational practice, which means the extent that this can operate as a tool to achieve organizational performance, is a complex and arduous task to execute. Even today, there isn't consensus about "effectiveness," and the tools to measure the effectiveness are disconnected and not convincing. It is not different from the performance management system (PMS) effectiveness. A disproportionate focus on specific criteria adopted and an accumulation of studies that don't relate to the others, which damages the development of the field. Therefore, it aimed to evaluate the effectiveness of the PMS through models, dimensions, criteria, and measures. The objective of this study is to propose a theoretical-integrative model for evaluating PMS based on the literature in the PMS field. So, the PRISMA protocol was applied to carry out a systematic review, resulting in 57 studies. After performing the content analysis, we identified six dimensions: learning, societal impact, reaction, financial results, operational results and transfer, and 22 categories. In this way, a theoretical-integrative model for assessing the effectiveness of PMS was proposed based on the findings of this study, in which it was possible to confirm that the effectiveness construct is somewhat complex when viewing that most of the reviewed studies considered multiple dimensions in their assessment. In addition, we identified that the most immediate and proximal results of PMS are the most adopted by the studies; conversely, the studies adopted less distal outcomes to assess the effectiveness of PMS. Another finding of this research is that the reviewed studies predominantly analyze from the individual or psychological perspective, even when it comes to criteria whose phenomena are at an organizational level. Therefore, this study converges with a trend recently identified when referring to a process of "psychologization" in which GP studies, in general, have demonstrated macro results of the GP system from an individual perspective. Therefore, given the identification of a methodological pattern, the predominant influence of individual and psychological aspects in studies on HRM in administration is highlighted, demonstrated by the reflection on the practically absolute way of measuring the effectiveness of PMS from perceptual and subjective measures. Therefore, based on the recognition of the patterns identified, the model proposed to promote studies on the subject more broadly and profoundly to broaden and deepen the perspective of the field of management's interests so that the evaluation of the effectiveness of PMS can promote inputs on the impact of the PMS system in organizational performance. Finally, the findings encourage reflections on assessing the effectiveness of PMS through the theoretical-integrative model developed so that the field can promote new theoretical and practical perspectives.

Keywords: performance management, strategic human resource management, effectiveness, organizational performance

Procedia PDF Downloads 115
6397 Flashsonar or Echolocation Education: Expanding the Function of Hearing and Changing the Meaning of Blindness

Authors: Thomas, Daniel Tajo, Kish

Abstract:

Sight is primarily associated with the function of gathering and processing near and extended spatial information which is largely used to support self-determined interaction with the environment through self-directed movement and navigation. By contrast, hearing is primarily associated with the function of gathering and processing sequential information which may typically be used to support self-determined communication through the self-directed use of music and language. Blindness or the lack of vision is traditionally characterized by a lack of capacity to access spatial information which, in turn, is presumed to result in a lack of capacity for self-determined interaction with the environment due to limitations in self-directed movement and navigation. However, through a specific protocol of FlashSonar education developed by World Access for the Blind, the function of hearing can be expanded in blind people to carry out some of the functions normally associated with sight, that is to access and process near and extended spatial information to construct three-dimensional acoustic images of the environment. This perceptual education protocol results in a significant restoration in blind people of self-determined environmental interaction, movement, and navigational capacities normally attributed to vision - a new way to see. Thus, by expanding the function of hearing to process spatial information to restore self-determined movement, we are not only changing the meaning of blindness, and what it means to be blind, but we are also recasting the meaning of vision and what it is to see.

Keywords: echolocation, changing, sensory, function

Procedia PDF Downloads 154
6396 Archetypes in the Rorschach Inkblots: Imparting Universal Meaning in the Face of Ambiguity

Authors: Donna L. Roberts

Abstract:

The theory of archetypes contends that themes based on universal foundational images reside in and are transmitted generationally through the collective unconscious, which is referenced throughout an individual’s experience in order to make sense of that experience. There is then, a profoundly visceral and instinctive agreement on the gestalt of these universal themes and how they apply to the human condition throughout space and time. The inherent nature of projective tests, such as the Rorschach Inkblot, necessitates that the stimulus is ambiguous and thus elicits responses that reflect the unconscious inner psyche of the respondent. As the development of the Rorschach inkblots was relatively random and serendipitous - i.e., the inkblots were not engineered to elicit a specifically defined response - it would stand to reason that without a collective unconscious, every individual would interpret the inkblots in an individualized and unique way. Yet this is not the case. Instead, common themes appear in the images of the inkblots and their interpretation that reflect this deeper iconic understanding. This study analyzed the ten Rorschach inkblots in terms of Jungian archetypes, both with respect to the form of images on each plate and the commonly observed themes in responses. Examples of the archetypes were compared to each of the inkblots, with subsequent descriptions matched to the standard responses. The findings yielded clear and distinct instances of the universal symbolism intrinsic in the inkblot images as well as ubiquitous throughout the responses. This project illustrates the influence of the theories of psychologist Carl Gustav Jung on the interpretation of the ambiguous stimuli. It further serves to demonstrate the merit of Jungian psychology as a valuable tool with which to understand the nature of projective tests in general, Rorschach’s work specifically, and ultimately the broader implications for our collective unconscious and common humanity.

Keywords: archetypes, inkblots, projective tests, Rorschach

Procedia PDF Downloads 106
6395 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 70
6394 Applications of Multi-Path Futures Analyses for Homeland Security Assessments

Authors: John Hardy

Abstract:

A range of future-oriented intelligence techniques is commonly used by states to assess their national security and develop strategies to detect and manage threats, to develop and sustain capabilities, and to recover from attacks and disasters. Although homeland security organizations use future's intelligence tools to generate scenarios and simulations which inform their planning, there have been relatively few studies of the methods available or their applications for homeland security purposes. This study presents an assessment of one category of strategic intelligence techniques, termed Multi-Path Futures Analyses (MPFA), and how it can be applied to three distinct tasks for the purpose of analyzing homeland security issues. Within this study, MPFA are categorized as a suite of analytic techniques which can include effects-based operations principles, general morphological analysis, multi-path mapping, and multi-criteria decision analysis techniques. These techniques generate multiple pathways to potential futures and thereby generate insight into the relative influence of individual drivers of change, the desirability of particular combinations of pathways, and the kinds of capabilities which may be required to influence or mitigate certain outcomes. The study assessed eighteen uses of MPFA for homeland security purposes and found that there are five key applications of MPFA which add significant value to analysis. The first application is generating measures of success and associated progress indicators for strategic planning. The second application is identifying homeland security vulnerabilities and relationships between individual drivers of vulnerability which may amplify or dampen their effects. The third application is selecting appropriate resources and methods of action to influence individual drivers. The fourth application is prioritizing and optimizing path selection preferences and decisions. The fifth application is informing capability development and procurement decisions to build and sustain homeland security organizations. Each of these applications provides a unique perspective of a homeland security issue by comparing a range of potential future outcomes at a set number of intervals and by contrasting the relative resource requirements, opportunity costs, and effectiveness measures of alternative courses of action. These findings indicate that MPFA enhances analysts’ ability to generate tangible measures of success, identify vulnerabilities, select effective courses of action, prioritize future pathway preferences, and contribute to ongoing capability development in homeland security assessments.

Keywords: homeland security, intelligence, national security, operational design, strategic intelligence, strategic planning

Procedia PDF Downloads 139
6393 Evaluation of the Total Antioxidant Capacity and Total Phenol Content of the Wild and Cultivated Variety of Aegle Marmelos (L) Correa Leaves Used in the Treatment of Diabetes

Authors: V. Nigam, V. Nambiar

Abstract:

Aegle Marmelos leaf has been used as a remedy for various gastrointestinal infections and lowering blood sugar level in traditional system of medicine in India due to the presence of various constituents such as flavonoids, tannins and alkaloids (eg. Aegelin, Marmelosin, Luvangetin).The objective of the present study was to evaluate the total antioxidant activity, total and individual phenol content of the wild and cultivated variety of Aegle marmelos leaves to assess the role of this plant in ethanomedicine in India. The methanolic extracts of the leaves were screened for total antioxidant capacity through Ferric Reducing Antioxidant Potential (FRAP) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay; Total Phenol content (TPC) through spectrophotometric technique based on Folin Ciocalteau assay and for qualitative estimation of phenols, High performance Liquid Chromatography was used. The TPC of wild and cultivated variety was 7.6% and 6.5% respectively whereas HPLC analysis for quantification of individual polyphenol revealed the presence of gallic acid, chlorogenic acid and Ferullic acid in wild variety whereas gallic acid, Ferullic acid and pyrocatechol in cultivated variety. FRAP values and IC 50 value (DPPH) for wild and cultivated variety was 14.65 μmol/l and 11.80μmol/l; 437 μg/ml and 620μg/ml respectively and thus it can be used as potential inhibitor of free radicals. The wild variety was having more antioxidant capacity than the cultivated one it can be exploited further for its therapeutic application. As Aegle marmelos is rich in antioxidant, it can be used as food additives to delay the oxidative deterioration of foods and as nutraceutical in medicinal formulation against degenerative diseases like diabetes.

Keywords: antioxidant activity, aegle marmelos, antidiabetic, nutraceutical

Procedia PDF Downloads 373
6392 Exploring the Impact of Eye Movement Desensitization and Reprocessing (EMDR) And Mindfulness for Processing Trauma and Facilitating Healing During Ayahuasca Ceremonies

Authors: J. Hash, J. Converse, L. Gibson

Abstract:

Plant medicines are of growing interest for addressing mental health concerns. Ayahuasca, a traditional plant-based medicine, has established itself as a powerful way of processing trauma and precipitating healing and mood stabilization. Eye Movement Desensitization and Reprocessing (EMDR) is another treatment modality that aids in the rapid processing and resolution of trauma. We investigated group EMDR therapy, G-TEP, as a preparatory practice before Ayahuasca ceremonies to determine if the combination of these modalities supports participants in their journeys of letting go of past experiences negatively impacting mental health, thereby accentuating the healing of the plant medicine. We surveyed 96 participants (51 experimental G-TEP, 45 control grounding prior to their ceremony; age M=38.6, SD=9.1; F=57, M=34; white=39, Hispanic/Latinx=23, multiracial=11, Asian/Pacific Islander=10, other=7) in a pre-post, mixed methods design. Participants were surveyed for demographic characteristics, symptoms of PTSD and cPTSD (International Trauma Questionnaire (ITQ), depression (Beck Depression Inventory, BDI), and stress (Perceived Stress Scale, PSS) before the ceremony and at the end of the ceremony weekend. Open-ended questions also inquired about their expectations of the ceremony and results at the end. No baseline differences existed between the control and experimental participants. Overall, participants reported a decrease in meeting the threshold for PTSD symptoms (p<0.01); surprisingly, the control group reported significantly fewer thresholds met for symptoms of affective dysregulation, 2(1)=6.776, p<.01, negative self-concept, 2 (1)=7.122, p<.01, and disturbance in relationships, 2 (1)=9.804, p<.01, on subscales of the ITQ as compared to the experimental group. All participants also experienced a significant decrease in scores on the BDI, t(94)=8.995, p<.001, and PSS, t(91)=6.892, p<.001. Similar to patterns of PTSD symptoms, the control group reported significantly lower scores on the BDI, t(65.115)=-2.587, p<.01, and a trend toward lower PSS, t(90)=-1.775, p=.079 (this was significant with a one-sided test at p<.05), compared to the experimental group following the ceremony. Qualitative interviews among participants revealed a potential explanation for these relatively higher levels of depression and stress in the experimental group following the ceremony. Many participants reported needing more time to process their experience to gain an understanding of the effects of the Ayahuasca medicine. Others reported a sense of hopefulness and understanding of the sources of their trauma and the necessary steps to heal moving forward. This suggests increased introspection and openness to processing trauma, therefore making them more receptive to their emotions. The integration process of an Ayahuasca ceremony is a week- to months-long process that was not accessible in this stage of research, yet it is an integral process to understanding the full effects of the Ayahuasca medicine following the closure of a ceremony. Our future research aims to assess participants weeks into their integration process to determine the effectiveness of EMDR, and if the higher levels of depression and stress indicate the initial reaction to greater awareness of trauma and receptivity to healing.

Keywords: ayahuasca, EMDR, PTSD, mental health

Procedia PDF Downloads 65
6391 Texturing of Tool Insert Using Femtosecond Laser

Authors: Ashfaq Khan, Aftab Khan, Mushtaq Khan, Sarem Sattar, Mohammad A Sheikh, Lin Li

Abstract:

Chip removal processes are one of key processes of the manufacturing industry where chip removal is conducted by tool inserts of exceptionally hard materials. Tungsten carbide has been extensively used as tool insert for machining processes involving chip removal processes. These hard materials are generally fabricated by single step sintering process as further modification after fabrication in these materials cannot be done easily. Advances in tool surface modification have revealed that advantages such as improved tribological properties and extended tool life can be harnessed from the same tool by texturing the tool rake surface. Moreover, it has been observed that the shape and location of the texture also influences the behavior. Although texturing offers plentiful advantages the challenge lies in the generation of textures on the tool surface. Extremely hard material such as diamond is required to process tungsten carbide. Laser is unique processing tool that does not have a physical contact with the material and thus does not wear. In this research the potential of utilizing laser for texturing of tungsten carbide to develop custom features would be studied. A parametric study of texturing of Tungsten Carbide with a femtosecond laser would be conducted to investigate the process parameters and establish the feasible processing window. The effect of fluence, scan speed and number of repetition would be viewed in detail. Moreover, the mechanism for the generation of features would also be reviewed.

Keywords: laser, texturing, femtosecond, tungsten carbide

Procedia PDF Downloads 658