Search results for: high relative accuracy
22922 Assessing the Validity and Reliability of Neuromuscular Performance Tests in Professional Basketball Players
Authors: Álvaro de Pedro Múñez, Óscar García García, Tania Álvarez Yates, Virginia Serrano Gómez
Abstract:
This study aimed to analyze professional basketball player´s neuromuscular behaviour. The main goal was to describe the neuromuscular performance of elite male basketball players and to analyze the validity and reliability of different tests. The tests used were Squat Jump (SJ), Countermovement Free), and 5m, 10m, and 20m sprint tests. All these tests were carried out during the preseason. 100 professional basketball players participated in this study; we used 2 classification variables: performance level (Leb Gold, BBL, and BCL), as well as position (Bigs and Guards). The application of the Kolmogorov-Smirnov test, in conjunction with the Lilliefors test, showed that the sample distribution was normal, linear, and homoscedastic. The relative reliability analysis was carried out by calculating the Intraclass Correlation Index (ICC). We found all variables to have a high validity and reliability. The coefficient of variation (CV) was calculated for raw data and after log-transformed and used as an absolute reliability indicator. The intraclass correlation coefficients (ICC) and coefficient of variation (CV) for the various tests are the following. For the Countermovement Jump (CMJ), the right leg showed an ICC of 0.94 (CV: 7.8%), and the left leg had an ICC of 0.84 (CV: 11.2%). For the sprint tests, the 5m sprint demonstrated excellent reliability with an intraclass correlation coefficient (ICC) of 0.81 and a coefficient of variation (CV) of 3.2%. The 10m sprint exhibited an ICC of 0.91 and a CV of 1.0%, while the 20m sprint achieved the highest reliability with an ICC of 0.92 and a CV of 0.8%. Regarding jump performance, the Squat Jump (SJ) displayed an ICC of 0.96 with a CV of 2.8%, and the Countermovement Jump (CMJ) showed a slightly lower but still strong reliability with an ICC of 0.93 and a CV of 6.7%. Lastly, the "CMJ free" test exhibited an ICC of 0.97 (CV: 5.2%). The tests demonstrated high reliability, with ICC values ranging from 0.81 to 0.97. The 5m, 10m, and 20m sprints, as well as the CMJ and SJ tests, showed strong consistency, particularly the 10m and 20m sprints (ICC 0.91-0.92). Coefficients of variation were low, indicating precise and stable measurements suitable for performance assessment.Keywords: neuromuscular performance, basketball players, validity and reliability, intraclass correlation coefficient, vertical jump, sprint tests
Procedia PDF Downloads 722921 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering
Procedia PDF Downloads 39822920 Challenges and Insights by Electrical Characterization of Large Area Graphene Layers
Authors: Marcus Klein, Martina GrießBach, Richard Kupke
Abstract:
The current advances in the research and manufacturing of large area graphene layers are promising towards the introduction of this exciting material in the display industry and other applications that benefit from excellent electrical and optical characteristics. New production technologies in the fabrication of flexible displays, touch screens or printed electronics apply graphene layers on non-metal substrates and bring new challenges to the required metrology. Traditional measurement concepts of layer thickness, sheet resistance, and layer uniformity, are difficult to apply to graphene production processes and are often harmful to the product layer. New non-contact sensor concepts are required to adapt to the challenges and even the foreseeable inline production of large area graphene. Dedicated non-contact measurement sensors are a pioneering method to leverage these issues in a large variety of applications, while significantly lowering the costs of development and process setup. Transferred and printed graphene layers can be characterized with high accuracy in a huge measurement range using a very high resolution. Large area graphene mappings are applied for process optimization and for efficient quality control for transfer, doping, annealing and stacking processes. Examples of doped, defected and excellent Graphene are presented as quality images and implications for manufacturers are explained.Keywords: graphene, doping and defect testing, non-contact sheet resistance measurement, inline metrology
Procedia PDF Downloads 30922919 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix
Authors: Natia Jalagonia, Tinatin Kuchukhidze
Abstract:
Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculatedKeywords: synthesis, PMHS, membrane, electrolyte
Procedia PDF Downloads 25822918 Electrochemical Behavior and Cathodic Stripping Voltammetric Determination of Dianabol Steroid in Urine at Bare Glassy Carbon Paste Electrode
Authors: N. Al-Orfi, M. S. El-Shahawi, A. S. Bashammakh
Abstract:
The electrochemical response of glassy carbon electrode (GCE) for the sensitive and selective determination of dianabol steroid (DS) in phosphate, Britton-Robinson (B-R) and HEPES buffers of pH 2.0 - 11, 2.0 - 11 and 6.2 - 8.0, respectively using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) at bare GCE was studied. The dependence of the CV response of the developed cathodic peak potential (Ep, c), peak current (ip, c) and the current function (ip, c / υ1/2) on the scan rate (υ) at the bare GCE revealed the occurrence of electrode coupled chemical reaction of EC type mechanism. The selectivity of the proposed method was assessed in the presence of high concentrations of major interfering species e.g. uric acid, ascorbic acid, citric acid, glucose, fructose, sucrose, starch and ions Na+, K+, PO4-3, NO3- and SO42-. The recovery of the method was not significant where t(critical)=2.20 > texp=1.81-1.93 at 95% confidence. The analytical application of the sensor for the quantification of DS in biological fluids as urine was investigated. The results were demonstrated as recovery percentages in the range 95±2.5-97±4.7% with relative standard deviation (RSD) of 0.5-1.5%.Keywords: dianabol, determination, modified electrode, urine
Procedia PDF Downloads 27422917 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)
Authors: Azimollah Aleshzadeh, Enver Vural Yavuz
Abstract:
The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping
Procedia PDF Downloads 13322916 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution
Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal
Abstract:
Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.Keywords: bayesian regularization, neural network, wind shear, accuracy
Procedia PDF Downloads 50422915 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA
Procedia PDF Downloads 23022914 Effect of Yogurt on Blood and Liver Lipids Lavel in Rats
Authors: Nora Mohammed Al-Kehayez
Abstract:
This present investigation was performed to study the effect of low fat yogurt on serum and liver lipids profile of male albino rats (weighing 100 g+or- 5 gram) when fed balanced or high fat high cholesterol diets and given yogurt ad libitum compared with control groups. Rats were divided into 4 groups, each group contains 6 rats. The groups of rats were fed as follows: Group(1) was fed balanced diet + water(control). Group(2) was fed balanced diet + low fat yogurt. Group(3) was fed high fat high cholesterol diet + water(Control). Group(4) was fed high fat high cholesterol diet + low fat yogurt. The obtained results could be summarized as follows: When rats were given low fat yogurt and fed balanced or high fat high cholesterol diets a significantly greater weight gains resulted in comparison with the control groups given water instead of yogurt. The data on the weights of liver and heart expressed' as percentage increased the body weight in case of rats which were fed balanced diet with low fat yogurt while in case of rats which were fed high fat high cholesterol diet with low fat yogurt the increment scenes to be less. Results of serum cholesterol levels in serum of rats were given balanced or high fat high cholesterol diets and consuming low fat yogurt was showed a significant reduction values. However the low fat yogurt produced the highest significant decrease values. The values of serum cholesterol go hand in hand with serum lipoprotein fractions in rats given low fat yogurt with both balanced or high fat high cholesterol diets. An increase of high density lipoprotein HDL-C and a decrease of low density lipoprotein LDL-C values were obtained. When rats ingested low fat yogurt a significant decrease in serum and liver triglycerides content was obtained wether with balanced or high fat high cholesterol diets. Rats consuming high fat high cholesterol diets with water showed a significant increase in liver total lipids, total cholesterol and phospholipides levels in comparison with the same liver parameters in rats given balanced diet with water. Supplement with low fat yogurt significantly suppressed these effects.Keywords: yogurt, lipids profile, albino, rats
Procedia PDF Downloads 42322913 Human Posture Estimation Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.Keywords: multi-view, pose estimation, ST-GCN, joint fusion
Procedia PDF Downloads 7022912 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 19322911 Shear Reinforcement of Stone Columns During Soil Liquefaction
Authors: Zeineb Ben Salem, Wissem Frikha, Mounir Bouassida
Abstract:
The aim of this paper is to assess the effectiveness of stone columns as a liquefaction countermeasure focusing on shear reinforcementbenefit. In fact, stone columns which have high shear modulus relative to the surrounding soils potentially can carry higher shear stress levels. Thus, stone columns provide shear reinforcement and decrease the Cyclic Shear Stress Ratio CSR to which the treated soils would be subjected during an earthquake. In order to quantify the level of shear stress reduction in reinforced soil, several approaches have been developed. Nevertheless, the available approaches do not take into account the improvement of the soil parameters, mainly the shear modulusdue to stone columns installation. Indeed, in situ control tests carried out before and after the installation of stone columns based upon the results of collected data derived from 24 case histories have given evidence of the improvement of the existing soil properties.In this paper, the assessment of shear reinforcement of stone columns that accounts such improvement of the soil parameters due to stone column installation is investigated. Comparative results indicate that considering the improvement effects considerably affect the assessment of shear reinforcement for liquefaction analysis of reinforced soil by stone columns.Keywords: stone column, liquefaction, shear reinforcement, CSR, soil improvement
Procedia PDF Downloads 15322910 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data
Authors: E. Bal Beşikçi, O. Arslan
Abstract:
Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient
Procedia PDF Downloads 61722909 Forecasting Impacts on Vulnerable Shorelines: Vulnerability Assessment Along the Coastal Zone of Messologi Area - Western Greece
Authors: Evangelos Tsakalos, Maria Kazantzaki, Eleni Filippaki, Yannis Bassiakos
Abstract:
The coastal areas of the Mediterranean have been extensively affected by the transgressive event that followed the Last Glacial Maximum, with many studies conducted regarding the stratigraphic configuration of coastal sediments around the Mediterranean. The coastal zone of the Messologi area, western Greece, consists of low relief beaches containing low cliffs and eroded dunes, a fact which, in combination with the rising sea level and tectonic subsidence of the area, has led to substantial coastal. Coastal vulnerability assessment is a useful means of identifying areas of coastline that are vulnerable to impacts of climate change and coastal processes, highlighting potential problem areas. Commonly, coastal vulnerability assessment takes the form of an ‘index’ that quantifies the relative vulnerability along a coastline. Here we make use of the coastal vulnerability index (CVI) methodology by Thieler and Hammar-Klose, by considering geological features, coastal slope, relative sea-level change, shoreline erosion/accretion rates, and mean significant wave height as well as mean tide range to assess the present-day vulnerability of the coastal zone of Messologi area. In light of this, an impact assessment is performed under three different sea level rise scenarios, and adaptation measures to control climate change events are proposed. This study contributes toward coastal zone management practices in low-lying areas that have little data information, assisting decision-makers in adopting best adaptations options to overcome sea level rise impact on vulnerable areas similar to the coastal zone of Messologi.Keywords: coastal vulnerability index, coastal erosion, sea level rise, GIS
Procedia PDF Downloads 17722908 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 13122907 Introduction of Electronic Health Records to Improve Data Quality in Emergency Department Operations
Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe
Abstract:
In its simplest form, data quality can be defined as 'fitness for use' and it is a concept with multi-dimensions. Emergency Departments(ED) require information to treat patients and on the other hand it is the primary source of information regarding accidents, injuries, emergencies etc. Also, it is the starting point of various patient registries, databases and surveillance systems. This interventional study was carried out to improve data quality at the ED of the National Hospital of Sri Lanka (NHSL) by introducing an e health solution to improve data quality. The NHSL is the premier trauma care centre in Sri Lanka. The study consisted of three components. A research study was conducted to assess the quality of data in relation to selected five dimensions of data quality namely accuracy, completeness, timeliness, legibility and reliability. The intervention was to develop and deploy an electronic emergency department information system (eEDIS). Post assessment of the intervention confirmed that all five dimensions of data quality had improved. The most significant improvements are noticed in accuracy and timeliness dimensions.Keywords: electronic health records, electronic emergency department information system, emergency department, data quality
Procedia PDF Downloads 27622906 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle
Authors: R. Haoui
Abstract:
The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.Keywords: finite volume, lunchers, nozzles, shock wave
Procedia PDF Downloads 28922905 Analysis of Alliin and Allicin Contents in Allium tuncelianum
Authors: M. Ipek, A. Cansev, A. Ipek, Y. Sahan
Abstract:
Allium tuncelianum is a close relative of cultivated garlic (A. sativum L.) and naturally grows only in eastern part of Turkey. This species has mild garlic odor and therefore, it is locally consumed as garlic by collecting from its natural flora. This over collection threatens the species to extinction. Although it has morphological resemblance to cultivated garlic, the nutritional value of the species has not been characterized very well. Alliin and allicin are two predominant organosulfur compounds found in cultivated garlic. Allicin derived from alliin precursor gives garlic characteristic odor and most of the garlic health benefits are attributed to this compound. The aims of this work were to determine alliin and allicin contents of A. tuncelianum and to compare them with those of cultivated garlic, onion (A. cepa L.) and leek (A. porrum L.). Alliin and allicin were extracted from 400 mg lyophilized samples and 10 µl extracts were measured with high-performance liquid chromatography attached with diode array detector. The alliin contents of A. tuncelianum genotypes ranged from 2.5 to 7.0 mg/g and the allicin contents changed from 0.5 to 1.5 mg/g, whereas alliin and allicin contents of garlic genotypes ranged from 20.0 to 30.0 mg/g and 3.0 to 6.0 mg/g, respectively. On the other hand, we did not detect any measurable alliin and allicin in onion or leek tissues. In conclusion, alliin and allicin contents of A. tuncelianum were characterized first time in this study, which are about 20% of alliin and allicin contents of cultivated garlic.Keywords: allicin, alliin, Allium tuncelianum, garlic
Procedia PDF Downloads 36822904 Grain Selection in Spiral Grain Selectors during Casting Single-Crystal Turbine Blades
Authors: M. Javahar, H. B. Dong
Abstract:
Single crystal components manufactured using Ni-base Superalloys are routinely used in the hot sections of aero engines and industrial gas turbines due to their outstanding high temperature strength, toughness and resistance to degradation in corrosive and oxidative environments. To control the quality of the single crystal turbine blades, particular attention has been paid to grain selection, which is used to obtain the single crystal morphology from a plethora of columnar grains. For this purpose, different designs of grain selectors are employed and the most common type is the spiral grain selector. A typical spiral grain selector includes a starter block and a spiral (helix) located above. It has been found that the grains with orientation well aligned to the thermal gradient survive in the starter block by competitive grain growth while the selection of the single crystal grain occurs in the spiral part. In the present study, 2D spiral selectors with different geometries were designed and produced using a state-of-the-art Bridgeman Directional Solidification casting furnace to investigate the competitive growth during grain selection in 2d grain selectors. The principal advantage of using a 2-D selector is to facilitate the wax injection process in investment casting by enabling significant degree of automation. The automation within the process can be derived by producing 2D grain selector wax patterns parts using a split die (metal mold model) coupled with wax injection stage. This will not only produce the part with high accuracy but also at an acceptable production rate.Keywords: grain selector, single crystal, directional solidification, CMSX-4 superalloys, investment casting
Procedia PDF Downloads 58922903 Comparing Radiographic Detection of Simulated Syndesmosis Instability Using Standard 2D Fluoroscopy Versus 3D Cone-Beam Computed Tomography
Authors: Diane Ghanem, Arjun Gupta, Rohan Vijayan, Ali Uneri, Babar Shafiq
Abstract:
Introduction: Ankle sprains and fractures often result in syndesmosis injuries. Unstable syndesmotic injuries result from relative motion between the distal ends of the tibia and fibula, anatomic juncture which should otherwise be rigid, and warrant operative management. Clinical and radiological evaluations of intraoperative syndesmosis stability remain a challenging task as traditional 2D fluoroscopy is limited to a uniplanar translational displacement. The purpose of this pilot cadaveric study is to compare the 2D fluoroscopy and 3D cone beam computed tomography (CBCT) stress-induced syndesmosis displacements. Methods: Three fresh-frozen lower legs underwent 2D fluoroscopy and 3D CIOS CBCT to measure syndesmosis position before dissection. Syndesmotic injury was simulated by resecting the (1) anterior inferior tibiofibular ligament (AITFL), the (2) posterior inferior tibiofibular ligament (PITFL) and the inferior transverse ligament (ITL) simultaneously, followed by the (3) interosseous membrane (IOM). Manual external rotation and Cotton stress test were performed after each of the three resections and 2D and 3D images were acquired. Relevant 2D and 3D parameters included the tibiofibular overlap (TFO), tibiofibular clear space (TCS), relative rotation of the fibula, and anterior-posterior (AP) and medial-lateral (ML) translations of the fibula relative to the tibia. Parameters were measured by two independent observers. Inter-rater reliability was assessed by intraclass correlation coefficient (ICC) to determine measurement precision. Results: Significant mismatches were found in the trends between the 2D and 3D measurements when assessing for TFO, TCS and AP translation across the different resection states. Using 3D CBCT, TFO was inversely proportional to the number of resected ligaments while TCS was directly proportional to the latter across all cadavers and ‘resection + stress’ states. Using 2D fluoroscopy, this trend was not respected under the Cotton stress test. 3D AP translation did not show a reliable trend whereas 2D AP translation of the fibula was positive under the Cotton stress test and negative under the external rotation. 3D relative rotation of the fibula, assessed using the Tang et al. ratio method and Beisemann et al. angular method, suggested slight overall internal rotation with complete resection of the ligaments, with a change < 2mm - threshold which corresponds to the commonly used buffer to account for physiologic laxity as per clinical judgment of the surgeon. Excellent agreement (>0.90) was found between the two independent observers for each of the parameters in both 2D and 3D (overall ICC 0.9968, 95% CI 0.995 - 0.999). Conclusions: The 3D CIOS CBCT appears to reliably depict the trend in TFO and TCS. This might be due to the additional detection of relevant rotational malpositions of the fibula in comparison to the standard 2D fluoroscopy which is limited to a single plane translation. A better understanding of 3D imaging may help surgeons identify the precise measurements planes needed to achieve better syndesmosis repair.Keywords: 2D fluoroscopy, 3D computed tomography, image processing, syndesmosis injury
Procedia PDF Downloads 7122902 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis
Authors: Akinola Ikudayisi, Josiah Adeyemo
Abstract:
The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts
Procedia PDF Downloads 25922901 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands
Authors: Ilham S. M. Elsayed
Abstract:
The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.Keywords: Alahsa Governorate, population density, Urban Heat Island, weather station
Procedia PDF Downloads 25422900 Dielectric Properties of Mineral Oil Blended with Soyabean Oil for Power Transformers: A Laboratory Investigation
Authors: Deepa S N, Srinivasan a D, Veeramanju K T
Abstract:
The power transformer is a critical equipment in the transmission and distribution network that must be managed to ensure uninterrupted power service. The liquid insulation is essential for the proper functioning of the transformer, as it serves as both coolant and insulating medium, which influences the transformer’s durability. Further, the insulating state of a power transformer has a significant impact on its reliability. Mineral oil derived from petroleum crude oil has been employed as liquid dielectrics for decades due to its superior functional characteristics, however as a resource for the same are getting depleted over the years. Research is undertaken across the globe to identify a viable substitute for mineral oil. Further, alternate insulating oils are being investigated for better environmental impact, biodegradability and economics. Several combinations of vegetable oil derived natural esters are being inspected by researchers across the globe in these domains. In this work, mineral oil is blended with soyabean oil with various proportions and dielectric properties such as dielectric breakdown voltage, relative permittivity, dissipation factor, viscosity, flash and fire point have been investigated according to international standards. A quantitative comparison is made among various samples and is observed that the blended oil sample of equal proportion of mineral oil and soyabean oil, MO50+SO50 exhibits superior dielectric properties such as breakdown voltage of 65kV, dissipation factor of 0.0044, relative permittivity of 3.1680 that are closer to the range of values recommended for power transformer applications. Also, Breakdown voltage values of all the investigated oil samples obeyed the Weibull and Normal probability distribution.Keywords: blended oil, dielectric breakdown, liquid insulation, power transformer
Procedia PDF Downloads 9222899 Lung Disease Detection from the Chest X Ray Images Using Various Transfer Learning
Authors: Aicha Akrout, Amira Echtioui, Mohamed Ghorbel
Abstract:
Pneumonia remains a significant global health concern, posing a substantial threat to human lives due to its contagious nature and potentially fatal respiratory complications caused by bacteria, fungi, or viruses. The reliance on chest X-rays for diagnosis, although common, often necessitates expert interpretation, leading to delays and potential inaccuracies in treatment. This study addresses these challenges by employing transfer learning techniques to automate the detection of lung diseases, with a focus on pneumonia. Leveraging three pre-trained models, VGG-16, ResNet50V2, and MobileNetV2, we conducted comprehensive experiments to evaluate their performance. Our findings reveal that the proposed model based on VGG-16 demonstrates superior accuracy, precision, recall, and F1 score, achieving impressive results with an accuracy of 93.75%, precision of 94.50%, recall of 94.00%, and an F1 score of 93.50%. This research underscores the potential of transfer learning in enhancing pneumonia diagnosis and treatment outcomes, offering a promising avenue for improving healthcare delivery and reducing mortality rates associated with this debilitating respiratory condition.Keywords: chest x-ray, lung diseases, transfer learning, pneumonia detection
Procedia PDF Downloads 4422898 Spectral Quasi Linearization Techniques for the Solution of Time Fractional Diffusion Wave Equations in Boundary Value Problems
Authors: Kizito Ugochukwu Nwajeria
Abstract:
This paper presents a spectral quasi-linearization technique (SQLT) for solving time fractional diffusion wave equations in boundary value problems. The proposed method integrates spectral approximations for spatial derivatives with a quasi-linearization approach to address the nonlinearity introduced by fractional time derivatives. Time fractional differential equations typically formulated using Caputo or Riemann-Liouville derivatives, model complex phenomena such as anomalous diffusion and wave propagation, which are not captured by classical integer-order models. The SQLT method iteratively linearizes the nonlinear terms at each time step, transforming the original problem into a series of linear subproblems, which can be efficiently solved. Using high-order spectral methods such as Chebyshev or Legendre polynomials for spatial discretization, the technique achieves high accuracy in approximating the solution. A convergence analysis is provided, demonstrating the method's efficiency and establishing error bounds. Numerical experiments on a range of test problems confirm the effectiveness of SQLT in solving fractional diffusion wave equations with various boundary conditions. The method offers a robust framework for addressing time fractional differential equations in diverse fields, including materials science, bioengineering, and anomalous transport phenomena.Keywords: spectral methods, quasilinearization, time-fractional diffusion-wave equations, boundary value problems, fractional calculus
Procedia PDF Downloads 1422897 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 33522896 Contribution to the Understanding of the Hydrodynamic Behaviour of Aquifers of the Taoudéni Sedimentary Basin (South-eastern Part, Burkina Faso)
Authors: Kutangila Malundama Succes, Koita Mahamadou
Abstract:
In the context of climate change and demographic pressure, groundwater has emerged as an essential and strategic resource whose sustainability relies on good management. The accuracy and relevance of decisions made in managing these resources depend on the availability and quality of scientific information they must rely on. It is, therefore, more urgent to improve the state of knowledge on groundwater to ensure sustainable management. This study is conducted for the particular case of the aquifers of the transboundary sedimentary basin of Taoudéni in its Burkinabe part. Indeed, Burkina Faso (and the Sahel region in general), marked by low rainfall, has experienced episodes of severe drought, which have justified the use of groundwater as the primary source of water supply. This study aims to improve knowledge of the hydrogeology of this area to achieve sustainable management of transboundary groundwater resources. The methodological approach first described lithological units regarding the extension and succession of different layers. Secondly, the hydrodynamic behavior of these units was studied through the analysis of spatio-temporal variations of piezometric. The data consists of 692 static level measurement points and 8 observation wells located in the usual manner in the area and capturing five of the identified geological formations. Monthly piezometric level chronicles are available for each observation and cover the period from 1989 to 2020. The temporal analysis of piezometric, carried out in comparison with rainfall chronicles, revealed a general upward trend in piezometric levels throughout the basin. The reaction of the groundwater generally occurs with a delay of 1 to 2 months relative to the flow of the rainy season. Indeed, the peaks of the piezometric level generally occur between September and October in reaction to the rainfall peaks between July and August. Low groundwater levels are observed between May and July. This relatively slow reaction of the aquifer is observed in all wells. The influence of the geological nature through the structure and hydrodynamic properties of the layers was deduced. The spatial analysis reveals that piezometric contours vary between 166 and 633 m with a trend indicating flow that generally goes from southwest to northeast, with the feeding areas located towards the southwest and northwest. There is a quasi-concordance between the hydrogeological basins and the overlying hydrological basins, as well as a bimodal flow with a component following the topography and another significant component deeper, controlled by the regional gradient SW-NE. This latter component may present flows directed from the high reliefs towards the sources of Nasso. In the source area (Kou basin), the maximum average stock variation, calculated by the Water Table Fluctuation (WTF) method, varies between 35 and 48.70 mm per year for 2012-2014.Keywords: hydrodynamic behaviour, taoudeni basin, piezometry, water table fluctuation
Procedia PDF Downloads 6522895 Colour Recognition Pen Technology in Dental Technique and Dental Laboratories
Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad
Abstract:
Recognition of the color spectrum of the teeth plays a significant role in the dental laboratories to produce dentures. Since there are various types and colours of teeth for each patient, there is a need to specify the exact and the most suitable colour to produce a denture. Usually, dentists utilize pallets to identify the color that suits a patient based on the color of the adjacent teeth. Consistent with this, there can be human errors by dentists to recognize the optimum colour for the patient, and it can be annoying for the patient. According to the statistics, there are some claims from the patients that they are not satisfied by the colour of their dentures after the installation of the denture in their mouths. This problem emanates from the lack of sufficient accuracy during the colour recognition process of denture production. The colour recognition pen (CRP) is a technology to distinguish the colour spectrum of the intended teeth with the highest accuracy. CRP is equipped with a sensor that is capable to read and analyse a wide range of spectrums. It is also connected to a database that contains all the spectrum ranges, which exist in the market. The database is editable and updatable based on market requirements. Another advantage of this invention can be mentioned as saving time for the patients since there is no need to redo the denture production in case of failure on the first try.Keywords: colour recognition pen, colour spectrum, dental laboratory, denture
Procedia PDF Downloads 19822894 An Assessment of the Effects of Microbial Products on the Specific Oxygen Uptake in Submerged Membrane Bioreactor
Authors: M. F. R. Zuthi, H. H. Ngo, W. S. Guo, S. S. Chen, N. C. Nguyen, L. J. Deng, T. D. C Tran
Abstract:
Sustaining a desired rate of oxygen transfer for microbial activity is a matter of major concern for Biological Wastewater Treatment (MBR). The study reported in the paper was aimed at assessing the effects of microbial products on the Specific Oxygen Uptake Rate (SOUR) in a Conventional Membrane Bioreactor (CMBR) and that in a Sponge Submerged MBR (SSMBR). The production and progressive accumulation of Soluble Microbial Products (SMP) and Bound-Extracellular Polymeric Substances (BEPS) were found affecting the SOUR of the microorganisms which varied at different stages of operation of the MBR systems depending on the variable concentrations of the SMP/bEPS. The effect of bEPS on the SOUR was stronger in the SSMBR compared to that of the SMP, while relative high concentrations of SMP had adverse effects on the SOUR of the CMBR system. Of the different mathematical correlations analyzed in the study, logarithmic mathematical correlations could be established between SOUR and bEPS in SSMBR, and similar correlations could also be found between SOUR and SMP concentrations in the CMBR.Keywords: microbial products, microbial activity, specific oxygen uptake rate, membrane bioreactor
Procedia PDF Downloads 30922893 Expectation and Satisfaction of Health Spa Business Service, Ranong Province, Thailand
Authors: Supattra Pranee
Abstract:
The purposes of this research are to study the current business of health spa and to study the customers’ level of expectation as well as level of satisfaction of the health spa business in Ranong, Thailand. This paper drew upon data collected from health spa customers by using questionnaire. In addition, an in-depth interview was utilized to collect data from health spa entrepreneurs. The findings revealed that the health spa business is growing very fast and the coming ASEAN Economic Community (AEC) will ameliorate the business growth and increase the customer base. There is a need to improve staff’s ability to communicate in English. However, the economic size of Ranong province is still small which has resulted in the hesitation of investors to increase their investment in this business. The findings also revealed four categories of level of expectation and satisfaction as follows: (1) Service: overall, customers had a high expectation with a mean of 3.80 and 0.873 SD and a high level of satisfaction with a mean of 3.66 and 0.704 SD. (2) Staff: overall, customers had a high expectation with a mean of 3.95 and 0.865 SD and a high level of satisfaction with a mean of 3.84 and 0.783 SD. (3) Product, Equipment, and Tools: overall, customers had a high expectation with a mean of 4.02 and 0.913 SD and a high level of satisfaction with a mean of 3.88 and 0.772 SD. (4) Place, Atmosphere, and Environment: overall, customers had a high expectation with a mean of 3.95 and 0.906 SD and a high level of satisfaction with a mean of 3.86 and 0.785 SD.Keywords: expectation, health spa business, satisfaction, ranong province
Procedia PDF Downloads 303