Search results for: graph representation of circuit networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4954

Search results for: graph representation of circuit networks

3604 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms

Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani

Abstract:

This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.

Keywords: tunnel fire, flame length, ANN, genetic algorithm

Procedia PDF Downloads 643
3603 Geological Structure Identification in Semilir Formation: An Correlated Geological and Geophysical (Very Low Frequency) Data for Zonation Disaster with Current Density Parameters and Geological Surface Information

Authors: E. M. Rifqi Wilda Pradana, Bagus Bayu Prabowo, Meida Riski Pujiyati, Efraim Maykhel Hagana Ginting, Virgiawan Arya Hangga Reksa

Abstract:

The VLF (Very Low Frequency) method is an electromagnetic method that uses low frequencies between 10-30 KHz which results in a fairly deep penetration. In this study, the VLF method was used for zonation of disaster-prone areas by identifying geological structures in the form of faults. Data acquisition was carried out in Trimulyo Region, Jetis District, Bantul Regency, Special Region of Yogyakarta, Indonesia with 8 measurement paths. This study uses wave transmitters from Japan and Australia to obtain Tilt and Elipt values that can be used to create RAE (Rapat Arus Ekuivalen or Current Density) sections that can be used to identify areas that are easily crossed by electric current. This section will indicate the existence of a geological structure in the form of faults in the study area which is characterized by a high RAE value. In data processing of VLF method, it is obtained Tilt vs Elliptical graph and Moving Average (MA) Tilt vs Moving Average (MA) Elipt graph of each path that shows a fluctuating pattern and does not show any intersection at all. Data processing uses Matlab software and obtained areas with low RAE values that are 0%-6% which shows medium with low conductivity and high resistivity and can be interpreted as sandstone, claystone, and tuff lithology which is part of the Semilir Formation. Whereas a high RAE value of 10% -16% which shows a medium with high conductivity and low resistivity can be interpreted as a fault zone filled with fluid. The existence of the fault zone is strengthened by the discovery of a normal fault on the surface with strike N550W and dip 630E at coordinates X= 433256 and Y= 9127722 so that the activities of residents in the zone such as housing, mining activities and other activities can be avoided to reduce the risk of natural disasters.

Keywords: current density, faults, very low frequency, zonation

Procedia PDF Downloads 175
3602 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks

Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee

Abstract:

Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.

Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)

Procedia PDF Downloads 109
3601 Study on Network-Based Technology for Detecting Potentially Malicious Websites

Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park

Abstract:

Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.

Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits

Procedia PDF Downloads 366
3600 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data

Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin

Abstract:

Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.

Keywords: honey, fluorescence, PARAFAC, artificial neural networks

Procedia PDF Downloads 954
3599 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)

Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini

Abstract:

Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.

Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria

Procedia PDF Downloads 103
3598 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks

Authors: Shahzad Yousaf, Imran Shafi

Abstract:

This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.

Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions

Procedia PDF Downloads 391
3597 Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification

Authors: Malgorzata Schwab, Ashis Kumer Biswas

Abstract:

In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities.

Keywords: trusted, neural, invertible, API

Procedia PDF Downloads 146
3596 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 127
3595 Internet Use, Social Networks, Loneliness and Quality of Life among Adults Aged 50 and Older: Mediating and Moderating Effects

Authors: Rabia Khaliala, Adi Vitman-Schorr

Abstract:

Background: The increase in longevity of people on one hand, and on the other hand the fact that the social networks in later life become increasingly narrower, highlight the importance of Internet use to enhance quality of life (QoL). However, whether Internet use increases or decreases social networks, loneliness and quality of life is not clear-cut. Purposes: To explore the direct and/or indirect effects of Internet use on QoL, and to examine whether ethnicity and time the elderly spent with family moderate the mediation effect of Internet use on quality of life throughout loneliness. Methods: This descriptive-correlational study was carried out in 2016 by structured interviews with a convenience sample of 502 respondents aged 50 and older, living in northern Israel. Bootstrapping with resampling strategies was used for testing mediation a model. Results: Use of the Internet was found to be positively associated with QoL. However, this relationship was mediated by loneliness, and moderated by the time the elderly spent with family members. In addition, respondents' ethnicity significantly moderated the mediation effect between Internet use and loneliness. Conclusions: Internet use can enhance QoL of older adults directly or indirectly by reducing loneliness. However, these effects are conditional on other variables. The indirect effect moderated by ethnicity, and the direct effect moderated by the time the elderly spend with their families. Researchers and practitioners should be aware of these interactions which can impact loneliness and quality of life of older persons differently.

Keywords: internet use, loneliness, quality of life, social contacts

Procedia PDF Downloads 185
3594 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application

Authors: Jurijs Salijevs, Katrina Bolocko

Abstract:

The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.

Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare

Procedia PDF Downloads 103
3593 The Effect of Technology on Legal Securities and Privacy Issues

Authors: Nancy Samuel Reyad Farhan

Abstract:

even though international crook law has grown considerably inside the ultimate decades, it still remains fragmented and lacks doctrinal cohesiveness. Its idea is defined within the doctrine as pretty disputable. there is no concrete definition of the term. in the home doctrine, the hassle of crook law troubles that rise up within the worldwide setting, and international troubles that get up in the national crook regulation, is underdeveloped each theoretically and nearly. To the exceptional of writer’s know-how, there aren't any studies describing worldwide elements of crook law in a complete way, taking a more expansive view of the difficulty. This paper provides consequences of a part of the doctoral studies, assignment a theoretical framework of the worldwide crook law. It ambitions at checking out the present terminology on international components of criminal law. It demonstrates differences among the notions of global crook regulation, criminal regulation international and law worldwide crook. It confronts the belief of crook regulation with associated disciplines and indicates their interplay. It specifies the scope of international criminal regulation. It diagnoses the contemporary criminal framework of global components of criminal regulation, referring to each crook law issues that rise up inside the international setting, and international problems that rise up within the context of national criminal law. ultimately, de lege lata postulates had been formulated and route of modifications in global criminal law turned into proposed. The followed studies hypothesis assumed that the belief of international criminal regulation became inconsistent, not understood uniformly, and there has been no conformity as to its location inside the system of regulation, objective and subjective scopes, while the domestic doctrine did not correspond with international requirements and differed from the global doctrine. applied research strategies covered inter alia a dogmatic and legal technique, an analytical technique, a comparative approach, in addition to desk studies.

Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures

Procedia PDF Downloads 31
3592 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos

Authors: Dhanuja S. Patil, Sanjay B. Waykar

Abstract:

Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.

Keywords: summarization, detection, Bayesian network, t-cherry tree

Procedia PDF Downloads 326
3591 Hosoya Polynomials of Zero-Divisor Graphs

Authors: Abdul Jalil M. Khalaf, Esraa M. Kadhim

Abstract:

The Hosoya polynomial of a graph G is a graphical invariant polynomial that its first derivative at x= 1 is equal to the Wiener index and second derivative at x=1 is equal to the Hyper-Wiener index. In this paper we study the Hosoya polynomial of zero-divisor graphs.

Keywords: Hosoya polynomial, wiener index, Hyper-Wiener index, zero-divisor graphs

Procedia PDF Downloads 531
3590 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks

Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang

Abstract:

For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.

Keywords: high-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network

Procedia PDF Downloads 435
3589 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks

Authors: Ahmed Negm, George Aggidis, Xiandong Ma

Abstract:

With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.

Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management

Procedia PDF Downloads 91
3588 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 259
3587 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress

Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang

Abstract:

The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.

Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology

Procedia PDF Downloads 93
3586 Design and Implementation of a Cross-Network Security Management System

Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).

Keywords: network security management, device organization, emergency response, cross-network

Procedia PDF Downloads 168
3585 A Critical Discourse Analysis on Ableist Ideologies in Primary Education English Language Textbooks in the Philippines

Authors: Brittany Joi B. Kirsch

Abstract:

Textbooks carry a crucial role in imparting ideologies that stimulate inclusivity and social diversity. In the Philippines, a law on inclusive education (IE) for differently-abled learners has recently been signed in order to ensure their rights to quality and IE are protected and upheld (Republic Act No. 11650, 2022). With the presence of ableism in textbooks, the promotion of IE may be challenged. A considerable amount of research has been done on disability representation and ableism in foreign countries; however, none, to the extent of the researcher’s knowledge, has been conducted on ableist ideologies in primary education English language textbooks in the Philippines. Hence, this paper aims to investigate the negotiation of ableist ideologies in primary education English language textbooks in the Philippines. Utilizing Fairclough’s (1995) three-dimensional model of critical discourse analysis (CDA) as the framework, six prescribed primary education English language textbooks from different grade levels were analyzed to examine instances of ableism in the texts. To further support the analysis of the study, supplemental data were gathered from the accounts of six public elementary school English language teachers. Findings reveal that the textbooks contain ableist ideologies with a limited representation of differently-abled people; by disclosing them as (1) invisible, (2) equipped with negative abilities, and (3) plagued with delicate health. By identifying ableist ideologies in textbooks, educational institutions and publishers may benefit in assessing and reforming instructional materials to resolve the presence of such ideologies, thereby abiding by the country’s law on IE and strengthening its overall implementation.

Keywords: textbooks, ideologies, inclusive education, critical discourse analysis, ableism

Procedia PDF Downloads 112
3584 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams

Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew

Abstract:

Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.

Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions

Procedia PDF Downloads 114
3583 Design of Solar Charge Controller and Power Converter with the Multisim

Authors: Sohal Latif

Abstract:

Solar power is in the form of photovoltaic, also known as PV, which is a form of renewable energy that applies solar panels in producing electricity from the sun. It has a vital role in fulfilling the present need for clean and renewable energy to get rid of conventional and non-renewable energy sources that emit high levels of greenhouse gases. Solar energy is embraced because of its availability, easy accessibility, and effectiveness in the provision of power, chiefly in country areas. In solar charging, device charge entails a change of light power into electricity using photovoltaic or PV panels, which supply direct current electric power or DC. Here, the solar charge controller has a very crucial role to play regarding the voltages and the currents coming from the solar panels to take up the changing needs of a battery without overcharging the same. Certain devices, such as inverters, are required to transform the DC power produced by the solar panels into an AC to serve the normal electrical appliances and the current power network. This project was initiated for a project of a solar charge controller and power converter with the MULTISIM. The formation of this project begins with a literature survey to obtain basic knowledge about power converters, charge controllers, and photovoltaic systems. Fundamentals of the operation of solar panels include the process by which light is converted into electricity and a comparison of PWM and MPPT chargers with controllers. Knowledge of rectifiers is built to help achieve AC-to-DC and DC-AC change. Choosing a resistor, capacitance, MOSFET, and OP-AMP is done by the need of the system. The circuit diagrams of converters and charge controllers are designed using the Multisim program. Pulse width modulation, Bubba oscillator circuit, and inverter circuits are modeled and simulated. In the subsequent steps, the analysis of the simulation outcomes indicates the efficiency of the intended converter systems. The various outputs from the different configurations, with the transformer incorporated as well as without it, are then monitored for effective power conversion as well as power regulation.

Keywords: solar charge controller, MULTISIM, converter, inverter

Procedia PDF Downloads 22
3582 Representation of Master–Disciple Relationship in Rumi’s Poems: Spirituality Vis-A-Vis Collective Consciousness

Authors: Nodi Islam

Abstract:

This paper critically reads Rumi’s poems in The Masnavi (Book One) and the philosophy of master-disciple relationship, as reflected as a medium to attain the higher consciousness in the poems which is considered as spiritual by the Sufi practitioners. This paper further applies the concept of collective consciousness introduced by Durkheim, which stands for a set of beliefs, ideas, moral attitudes that operate as a unifying force in a certain society, in reading Rumi’s poems. According to Sufi philosophy, in order to reach to the beloved who is the Higher Being, a lover has to be a disciple of a master and dedicate himself completely even if it means to give up the earthly desires. When the process is completed, he achieves the divinity which is the utmost happiness to be one with the beloved. As this process is considered spiritual by the Sufi practitioners, this paper suggests that, apart from being spiritual, this is a reflection of collective consciousness also. This process plays a part to construct the collectivity as a means to create masters and disciples. Collective consciousness operates in this particular belief system of Sufis who tend to follow this phenomenon as a rule of obedience and accepts the rule because this is how their particular community proceeds on. This paper offers a view of Rumi’s poems which reflect such relationship and tends to offer a general discussion on the hegemonic approach of the Sufi society especially of the Mevlevi order. Finally, this paper offers a constructive representation of Mevlevi society based upon the idea of spirituality which could be an outcome of psychological and social issues and practices.

Keywords: collective consciousness, divinity, master-disciple relationship, Mevlevi order

Procedia PDF Downloads 172
3581 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes

Authors: Frank Kuebler, Rolf Steinhilper

Abstract:

Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.

Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process

Procedia PDF Downloads 524
3580 Designing Automated Embedded Assessment to Assess Student Learning in a 3D Educational Video Game

Authors: Mehmet Oren, Susan Pedersen, Sevket C. Cetin

Abstract:

Despite the frequently criticized disadvantages of the traditional used paper and pencil assessment, it is the most frequently used method in our schools. Although assessments do an acceptable measurement, they are not capable of measuring all the aspects and the richness of learning and knowledge. Also, many assessments used in schools decontextualize the assessment from the learning, and they focus on learners’ standing on a particular topic but do not concentrate on how student learning changes over time. For these reasons, many scholars advocate that using simulations and games (S&G) as a tool for assessment has significant potentials to overcome the problems in traditionally used methods. S&G can benefit from the change in technology and provide a contextualized medium for assessment and teaching. Furthermore, S&G can serve as an instructional tool rather than a method to test students’ learning at a particular time point. To investigate the potentials of using educational games as an assessment and teaching tool, this study presents the implementation and the validation of an automated embedded assessment (AEA), which can constantly monitor student learning in the game and assess their performance without intervening their learning. The experiment was conducted on an undergraduate level engineering course (Digital Circuit Design) with 99 participant students over a period of five weeks in Spring 2016 school semester. The purpose of this research study is to examine if the proposed method of AEA is valid to assess student learning in a 3D Educational game and present the implementation steps. To address this question, this study inspects three aspects of the AEA for the validation. First, the evidence-centered design model was used to lay out the design and measurement steps of the assessment. Then, a confirmatory factor analysis was conducted to test if the assessment can measure the targeted latent constructs. Finally, the scores of the assessment were compared with an external measure (a validated test measuring student learning on digital circuit design) to evaluate the convergent validity of the assessment. The results of the confirmatory factor analysis showed that the fit of the model with three latent factors with one higher order factor was acceptable (RMSEA < 0.00, CFI =1, TLI=1.013, WRMR=0.390). All of the observed variables significantly loaded to the latent factors in the latent factor model. In the second analysis, a multiple regression analysis was used to test if the external measure significantly predicts students’ performance in the game. The results of the regression indicated the two predictors explained 36.3% of the variance (R2=.36, F(2,96)=27.42.56, p<.00). It was found that students’ posttest scores significantly predicted game performance (β = .60, p < .000). The statistical results of the analyses show that the AEA can distinctly measure three major components of the digital circuit design course. It was aimed that this study can help researchers understand how to design an AEA, and showcase an implementation by providing an example methodology to validate this type of assessment.

Keywords: educational video games, automated embedded assessment, assessment validation, game-based assessment, assessment design

Procedia PDF Downloads 421
3579 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 74
3578 Postfeminism, Femvertising and Inclusion: An Analysis of Changing Women's Representation in Contemporary Media

Authors: Saveria Capecchi

Abstract:

In this paper, the results of qualitative content research on postfeminist female representation in contemporary Western media (advertising, television series, films, social media) are presented. Female role models spectacularized in media culture are an important part of the development of social identities and could inspire new generations. Postfeminist cultural texts have given rise to heated debate between gender and media studies scholars. There are those who claim they are commercial products seeking to sell feminism to women, a feminism whose political and subversive role is completely distorted and linked to the commercial interests of the cosmetics, fashion, fitness and cosmetic surgery industries, in which women’s ‘power’ lies mainly in their power to seduce. There are those who consider them feminist manifestos because they represent independent ‘modern women’ free from male control who aspire to achieve professionally and overcome gender stereotypes like that of the ‘housewife-mother’. Major findings of the research show that feminist principles have been gradually absorbed by the cultural industry and adapted to its commercial needs, resulting in the dissemination of contradictory values. On the one hand, in line with feminist arguments, patriarchal ideology is condemned and the concepts of equality and equal opportunity between men and women are promoted. On the other hand, feminist principles and demands are ascribed to individualism, which translates into the slogan: women are free to decide for themselves, even to objectify their own bodies. In particular, it is observed that femvertising trend in media industry is changing female representation moving away from classic stereotypes: the feminine beauty ideal of slenderness, emphasized in the media since the seventies, is ultimately challenged by the ‘curvy’ body model, which is considered to be more inclusive and based on the concept of ‘natural beauty’. Another aspect of change is the ‘anti-romantic’ revolution performed by some heroines, who are not in search of Prince Charming, in television drama and in the film industry. In conclusion, although femvertising tends to simplify and trivialize the concepts characterizing fourth-wave feminism (‘intersectionality’ and ‘inclusion’), it is also a tendency that enables the challenging of media imagery largely based on male viewpoints, interests and desires.

Keywords: feminine beauty ideal, femvertising, gender and media, postfeminism

Procedia PDF Downloads 151
3577 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 137
3576 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
3575 A Contemporary Advertising Strategy on Social Networking Sites

Authors: M. S. Aparna, Pushparaj Shetty D.

Abstract:

Nowadays social networking sites have become so popular that the producers or the sellers look for these sites as one of the best options to target the right audience to market their products. There are several tools available to monitor or analyze the social networks. Our task is to identify the right community web pages and find out the behavior analysis of the members by using these tools and formulate an appropriate strategy to market the products or services to achieve the set goals. The advertising becomes more effective when the information of the product/ services come from a known source. The strategy explores great buying influence in the audience on referral marketing. Our methodology proceeds with critical budget analysis and promotes viral influence propagation. In this context, we encompass the vital bits of budget evaluation such as the number of optimal seed nodes or primary influential users activated onset, an estimate coverage spread of nodes and maximum influence propagating distance from an initial seed to an end node. Our proposal for Buyer Prediction mathematical model arises from the urge to perform complex analysis when the probability density estimates of reliable factors are not known or difficult to calculate. Order Statistics and Buyer Prediction mapping function guarantee the selection of optimal influential users at each level. We exercise an efficient tactics of practicing community pages and user behavior to determine the product enthusiasts on social networks. Our approach is promising and should be an elementary choice when there is little or no prior knowledge on the distribution of potential buyers on social networks. In this strategy, product news propagates to influential users on or surrounding networks. By applying the same technique, a user can search friends who are capable to advise better or give referrals, if a product interests him.

Keywords: viral marketing, social network analysis, community web pages, buyer prediction, influence propagation, budget constraints

Procedia PDF Downloads 262