Search results for: exchange
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1578

Search results for: exchange

228 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients

Authors: Bharti Verma, Chandrajit Balomajumder

Abstract:

Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.

Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration

Procedia PDF Downloads 139
227 Application of Free Living Nitrogen Fixing Bacteria to Increase Productivity of Potato in Field

Authors: Govinda Pathak

Abstract:

In modern agriculture, the sustainable enhancement of crop productivity while minimizing environmental impacts remains a paramount challenge. Plant Growth Promoting Rhizobacteria (PGPR) have emerged as a promising solution to address this challenge. The rhizosphere, the dynamic interface between plant roots and soil, hosts intricate microbial interactions crucial for plant health and nutrient acquisition. PGPR, a subset of rhizospheric microorganisms, exhibit multifaceted beneficial effects on plants. Their abilities to stimulate growth, confer stress tolerance, enhance nutrient availability, and suppress pathogens make them invaluable contributors to sustainable agriculture. This work examines the pivotal role of free living nitrogen fixer in optimizing agricultural practices. We delve into the intricate mechanisms underlying PGPR-mediated plant-microbe interactions, encompassing quorum sensing, root exudate modulation, and signaling molecule exchange. Furthermore, we explore the diverse strategies employed by PGPR to enhance plant resilience against abiotic stresses such as drought, salinity, and metal toxicity. Additionally, we highlight the role of PGPR in augmenting nutrient acquisition and soil fertility through mechanisms such as nitrogen fixation, phosphorus solubilization, and mineral mobilization. Furthermore, we discuss the potential of PGPR in minimizing the reliance on chemical fertilizers and pesticides, thereby contributing to environmentally friendly agriculture. However, harnessing the full potential of PGPR requires a comprehensive understanding of their interactions with host plants and the surrounding microbial community. We also address challenges associated with PGPR application, including formulation, compatibility, and field efficacy. As the quest for sustainable agriculture intensifies, harnessing the remarkable attributes of PGPR offers a holistic approach to propel agricultural productivity while maintaining ecological balance. This work underscores the promising prospect of free living nitrogen fixer as a panacea for addressing critical agricultural challenges regarding chemical urea in an era of sustainable and resilient food production.

Keywords: PGPR, nitrogen fixer, quorum sensing, Rhizobacteria, pesticides

Procedia PDF Downloads 62
226 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
225 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling

Authors: Moustafa Osman Mohammed

Abstract:

The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.

Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology

Procedia PDF Downloads 68
224 Dividend Policy in Family Controlling Firms from a Governance Perspective: Empirical Evidence in Thailand

Authors: Tanapond S.

Abstract:

Typically, most of the controlling firms are relate to family firms which are widespread and important for economic growth particularly in Asian Pacific region. The unique characteristics of the controlling families tend to play an important role in determining the corporate policies such as dividend policy. Given the complexity of the family business phenomenon, the empirical evidence has been unclear on how the families behind business groups influence dividend policy in Asian markets with the prevalent existence of cross-shareholdings and pyramidal structure. Dividend policy as one of an important determinant of firm value could also be implemented in order to examine the effect of the controlling families behind business groups on strategic decisions-making in terms of a governance perspective and agency problems. The purpose of this paper is to investigate the impact of ownership structure and concentration which are influential internal corporate governance mechanisms in family firms on dividend decision-making. Using panel data and constructing a unique dataset of family ownership and control through hand-collecting information from the nonfinancial companies listed in Stock Exchange of Thailand (SET) between 2000 and 2015, the study finds that family firms with large stakes distribute higher dividends than family firms with small stakes. Family ownership can mitigate the agency problems and the expropriation of minority investors in family firms. To provide insight into the distinguish between ownership rights and control rights, this study examines specific firm characteristics including the degrees of concentration of controlling shareholders by classifying family ownership in different categories. The results show that controlling families with large deviation between voting rights and cash flow rights have more power and affect lower dividend payment. These situations become worse when second blockholders are families. To the best knowledge of the researcher, this study is the first to examine the association between family firms’ characteristics and dividend policy from the corporate governance perspectives in Thailand with weak investor protection environment and high ownership concentration. This research also underscores the importance of family control especially in a context in which family business groups and pyramidal structure are prevalent. As a result, academics and policy makers can develop markets and corporate policies to eliminate agency problem.

Keywords: agency theory, dividend policy, family control, Thailand

Procedia PDF Downloads 290
223 The Foundation Binary-Signals Mechanics and Actual-Information Model of Universe

Authors: Elsadig Naseraddeen Ahmed Mohamed

Abstract:

In contrast to the uncertainty and complementary principle, it will be shown in the present paper that the probability of the simultaneous occupation event of any definite values of coordinates by any definite values of momentum and energy at any definite instance of time can be described by a binary definite function equivalent to the difference between their numbers of occupation and evacuation epochs up to that time and also equivalent to the number of exchanges between those occupation and evacuation epochs up to that times modulus two, these binary definite quantities can be defined at all point in the time’s real-line so it form a binary signal represent a complete mechanical description of physical reality, the time of these exchanges represent the boundary of occupation and evacuation epochs from which we can calculate these binary signals using the fact that the time of universe events actually extends in the positive and negative of time’s real-line in one direction of extension when these number of exchanges increase, so there exists noninvertible transformation matrix can be defined as the matrix multiplication of invertible rotation matrix and noninvertible scaling matrix change the direction and magnitude of exchange event vector respectively, these noninvertible transformation will be called actual transformation in contrast to information transformations by which we can navigate the universe’s events transformed by actual transformations backward and forward in time’s real-line, so these information transformations will be derived as an elements of a group can be associated to their corresponded actual transformations. The actual and information model of the universe will be derived by assuming the existence of time instance zero before and at which there is no coordinate occupied by any definite values of momentum and energy, and then after that time, the universe begin its expanding in spacetime, this assumption makes the need for the existence of Laplace’s demon who at one moment can measure the positions and momentums of all constituent particle of the universe and then use the law of classical mechanics to predict all future and past of universe’s events, superfluous, we only need for the establishment of our analog to digital converters to sense the binary signals that determine the boundaries of occupation and evacuation epochs of the definite values of coordinates relative to its origin by the definite values of momentum and energy as present events of the universe from them we can predict approximately in high precision it's past and future events.

Keywords: binary-signal mechanics, actual-information model of the universe, actual-transformation, information-transformation, uncertainty principle, Laplace's demon

Procedia PDF Downloads 175
222 A Comparison between TM: TM Co Doped and TM: RE Co Doped ZnO Based Advanced Materials for Spintronics Applications; Structural, Optical and Magnetic Property Analysis

Authors: V. V. Srinivasu, Jayashree Das

Abstract:

Owing to the industrial and technological importance, transition metal (TM) doped ZnO has been widely chosen for many practical applications in electronics and optoelectronics. Besides, though still a controversial issue, the reported room temperature ferromagnetism in transition metal doped ZnO has added a feather to its excellence and importance in current semiconductor research for prospective application in Spintronics. Anticipating non controversial and improved optical and magnetic properties, we adopted co doping method to synthesise polycrystalline Mn:TM (Fe,Ni) and Mn:RE(Gd,Sm) co doped ZnO samples by solid state sintering route with compositions Zn1-x (Mn:Fe/Ni)xO and Zn1-x(Mn:Gd/Sm)xO and sintered at two different temperatures. The structure, composition and optical changes induced in ZnO due to co doping and sintering were investigated by XRD, FTIR, UV, PL and ESR studies. X-ray peak profile analysis (XPPA) and Williamson-Hall analysis carried out shows changes in the values of stress, strain, FWHM and the crystallite size in both the co doped systems. FTIR spectra also show the effect of both type of co doping on the stretching and bending bonds of ZnO compound. UV-Vis study demonstrates changes in the absorption band edge as well as the significant change in the optical band gap due to exchange interactions inside the system after co doping. PL studies reveal effect of co doping on UV and visible emission bands in the co doped systems at two different sintering temperatures, indicating the existence of defects in the form of oxygen vacancies. While the TM: TM co doped samples of ZnO exhibit ferromagnetism at room temperature, the TM: RE co doped samples show paramagnetic behaviour. The magnetic behaviours observed are supported by results from Electron Spin resonance (ESR) study; which shows sharp resonance peaks with considerable line width (∆H) and g values more than 2. Such values are usually found due to the presence of an internal field inside the system giving rise to the shift of resonance field towards the lower field. The g values in this range are assigned to the unpaired electrons trapped in oxygen vacancies. TM: TM co doped ZnO samples exhibit low field absorption peaks in their ESR spectra, which is a new interesting observation. We emphasize that the interesting observations reported in this paper may be considered for the improved futuristic applications of ZnO based materials.

Keywords: co-doping, electro spin resonance, microwave absorption, spintronics

Procedia PDF Downloads 339
221 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air

Authors: Tobias Schnabel

Abstract:

Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.

Keywords: naphthalene, titandioxide, indoor air, photocatalysis

Procedia PDF Downloads 143
220 Analyzing the Job Satisfaction of Silver Workers Using Structural Equation Modeling

Authors: Valentin Nickolai, Florian Pfeffel, Christian Louis Kühner

Abstract:

In many industrialized nations, the demand for skilled workers rises, causing the current market for employees to be more candidate-driven than employer-driven. Therefore, losing highly skilled and experienced employees due to early or partial retirement negatively impacts firms. Therefore, finding new ways to incentivize older employees (Silver Workers) to stay longer with the company and in their job can be crucial for the success of a firm. This study analyzes how working remotely can be a valid incentive for experienced Silver Workers to stay in their job and instead work from home with more flexible working hours. An online survey with n = 684 respondents, who are employed in the service sector, has been conducted based on 13 constructs that influence job satisfaction. These have been further categorized into three groups “classic influencing factors,” “influencing factors changed by remote working,” and new remote working influencing factors,” and were analyzed using structural equation modeling (SEM). Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). It was shown in the SEM-analysis that the influencing factor on job satisfaction, “identification with the work,” is the most significant with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis also shows that the identification with the work is the most significant factor in all three work models mentioned above and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees between the ages of 56 and 65 years have the highest job satisfaction when working entirely from home or remotely. Furthermore, their job satisfaction score of 5.4 on a scale from 1 (very dissatisfied) to 7 (very satisfied) is the highest amongst all age groups in any of the three work models. Due to the significantly higher job satisfaction, it can be argued that giving Silver Workers the offer to work from home or remotely can incentivize them not to opt for early retirement or partial retirement but to stay in their job full-time Furthermore, these findings can indicate that employees in the Silver Worker age are much more inclined to leave their job for early retirement if they have to entirely work in the office.

Keywords: home office, remote work instead of early or partial retirement, silver worker, structural equation modeling

Procedia PDF Downloads 75
219 Unleashing the Potential of Green Finance in Architecture: A Promising Path for Balkan Countries

Authors: Luan Vardari, Dena Arapi Vardari

Abstract:

The Balkan countries, known for their diverse landscapes and cultural heritage, face the dual challenge of promoting economic growth while addressing pressing environmental concerns. In recent years, the concept of green finance has emerged as a powerful tool to achieve sustainable development and mitigate the environmental impact of various sectors, including architecture. This extended abstract explores the untapped potential of green finance in architecture within the Balkan region and highlights its role in driving sustainable construction practices and fostering a greener future. The abstract begins by defining green finance and emphasizing its relevance in the context of the architectural sector in Balkan countries. It underlines the benefits of green finance, such as economic growth, environmental conservation, and social well-being. Integrating green finance into architectural projects is important as a means to achieve sustainable development goals while promoting financial viability. Also, delves into the current state of green building practices in the Balkan countries and identifies the need for financial support to further drive adoption. It explores the existing regulatory frameworks and policies that promote sustainable architecture and discusses how green finance can complement these initiatives. Unique challenges faced by Balkan countries are highlighted, along with the potential opportunities that green finance presents in overcoming these challenges. We highlight successful sustainable architectural projects in the region to showcase the practical application of green finance in the Balkans. These projects exemplify the effective utilization of green finance mechanisms, resulting in tangible economic and environmental impacts, including job creation, energy efficiency, and reduced carbon emissions. The abstract concludes by identifying replicable models and lessons learned from these projects that can serve as a blueprint for future sustainable architecture initiatives in the Balkans. The importance of collaboration and knowledge sharing among stakeholders is emphasized. Engaging architects, financial institutions, governments, and local communities is crucial to promoting green finance in architecture. The abstract suggests the establishment of knowledge exchange platforms and regional/international networks to foster collaboration and facilitate the sharing of expertise among Balkan countries.

Keywords: sustainable finance, renewable energy, Balkan region, investment opportunities, green infrastructure, ESG criteria, architecture

Procedia PDF Downloads 68
218 Peers' Alterity in Inverted Inclusion: A Case Study

Authors: Johanna Sagner, María José Sandoval

Abstract:

At the early stages of adolescence, young people, regardless of a disability or not, start to establish closer friendship ties. Unlike previous developmental phases, these ties are rather reciprocal, more committed, and require more time. Friendship ties during adolescence allow the development of social and personal skills, specifically the skills to start constructing identity. In an inclusive context that incorporates young people with a disability, friendship among peers also takes place. Nonetheless, the relation is shaped, among others, by the alterity construction about the other with disability. Research about peers’ relation between young people with and without disability in an inclusive context has shown that the relation tends to become a helper-helpee relation, where those with a disability are seen as people in need. Prejudices about the others’ condition or distancing from the other because of his/hers disability are common. In this sense, the helper-helpee relation, as a non-reciprocal and protective relation, will not promote friendship between classmates, but a rather asymmetric alterity. Our research is an explorative case study that wants to know how the relation between peers is shaped within a different inclusive program, were also the integrated group has special educational needs. Therefore, we analyze from a qualitative and quantitative approach the data of an inverted inclusive program. This is a unique case of a special public school for visual disability in Germany that includes young people from a mainstream school who had learning difficulties. For the research, we analyze data from interviews, focal interviews and open-ended questions with an interpretative phenomenological analysis approach. The questionnaires include a five point Likert scale, for which we calculate the acceptance rate. The findings show that the alterity relation between pupils is less asymmetrical and represents a rather horizontal alterity. The helper-helpee relation is marked by exchange, since both groups have special educational needs and therefore, those with visual disability and those with learning difficulties help each other indistinctly. Friendship is more present among classmates. The horizontal alterity peers’ relation is influenced by a sort of tie, where none of the groups need more or less help than other groups. Both groups identify that they themselves and the other have special needs. The axiological axe of alterity is not of superiority or inferiority, recognizing each other’s differences and otherness. Another influential factor relates with the amount of time they spend together, since the program does not have a resource room or a teacher who teaches parallel lessons. Two probable causes for that rather equal peer relation might be the constellation of fewer pupils per classroom and the differentiated lessons taught by teachers with a special educational formation.

Keywords: alterity, disability, inverted inclusion, peers’ relation

Procedia PDF Downloads 314
217 Psychoeducation to Prevent Spread of HIV Among Men Who Have Sex with Men in Surabaya City

Authors: Christina Albertina Ludwinia Parung, I Gusti Ayu Maya Vratasti

Abstract:

Sexual transmission of HIV among Men who have Sex with Men (MSM) is believed to be one of the sources of the AIDS epidemic. Nowadays, government, communities, and NGOs are taking action to prevent its spread by assisting and educating groups of MSM in their countries. This assistance involves experts in many fields of study, including psychology. In the field of psychology, psychoeducation is believed to be one of the ways to assist the MSM groups. Just like in other countries, this psychoeducation assistance is also needed in Indonesia, where MSM groups are found in many cities within. Surabaya, as the second largest and densely populated city in Indonesia, is known to have a big number of MSM population. In September to December 2020, the author and a colleague conducted a mentoring effort to the MSM community at the MSM community gathering location called Gang Pattaya, in the city of Surabaya. The existence of this community is disguised by the general public, but is well known by NGOs. Community members do MSM out of their liking, although some do it in exchange for money. However, safety factors, such as using condoms for MSM, are not a priority for this community. They do MSM whether they receive a reward or not, just out of a boost of pleasure. There is no attempt to find out the health of the partner once they are attracted to each other. In general, they do not know whether they are infected with HIV. Most of them feel healthy and since they do not show any symptoms, they think it is not necessary to get tested. In the mentoring process, the researchers conduct psychoeducation, which begins with an approach to certain individuals so that they are comfortable with the researchers’ presence, then increasing awareness of safe sex behavior for HIV prevention for groups in the form of counseling using the Theory of Reasoned Action (TRA) approach. Counseling is carried out in various forms including roleplay, games, and seminars. The number of participants was 11 people, varying from 19-47 years old. Pretest related to knowledge of safe sex was carried out before conducting the intervention and post-test after the intervention. The normality test used is the Shapiro-Wilk analysis. Different tests on the data obtained were carried out using the non-parametric Wilcoxon Signed Ranks Test. None of the participants had lower post-test knowledge scores than the pre-test. Prestest and post test for safer sex behavior showed 2 participants with safer sex behavior did not change. Both belong to the senior group, while other participants have an improvement in their safer sex behavior. These findings suggest that intervention programs for MSM as an effort to reduce HIV transmission should pay attention to affective and cognitive coping strategies.

Keywords: HIV, men who have sex with men, psychoeducation, psychology health, safer sex behavior, theory of reasoned action

Procedia PDF Downloads 139
216 Forecast Combination for Asset Classes: Insights on Market Efficiency and Arbitrage

Authors: Rodrigo Baggi Prieto Alvarez, Jorge Miguel Bravo

Abstract:

The Exchange-Traded Funds (ETFs) have transformed asset allocation, allowing investors to gain exposure to diverse asset classes with a single instrument. In turn, forecast combination models have emerged as advantageous methods for improving prediction accuracy. While the Efficient Market Hypothesis (EMH) posits that prices fluctuate randomly, making abnormal returns unattainable, empirical evidence reveals autocorrelation in stock returns, challenging the EMH's strict interpretation. This raises the question of whether econometric models, machine learning methods and forecast combinations can predict asset prices more effectively. Also, comparing forecasts with futures market prices may reveal potential arbitrage opportunities, offering insights into market inefficiencies. Using ETFs indices from January 1st, 2015, to September 30th, 2024, across equity markets (S&P 500, Russell 2000, MSCI Developed Markets and MSCI Emerging Markets), fixed income (7-10 Year Treasury Bond, Developed Markets Treasury Bond, Emerging Markets Treasury Bond and U.S. Corporate Bonds), commodity (Gold Shares ETF) and crypto (ProShares Bitcoin ETF), this paper tests the predictive accuracy of traditional econometric models (ARIMA, ETS), machine learning (SVM, Random Forest, XGBoost) and forecast combinations (ARIMA-SVR, ARIMA-ANN, Ridge Regression and LASSO). Preliminary results suggest that ensemble methods can indeed outperform simple models, indicating that combinations like the Ridge Regression and LASSO are superior to econometric and machine learning models individually. Also, prediction accuracy is better for fixed income ETFs, aligned with the lower volatility of these assets, while models show higher forecast error for crypto and equity ETFs. Finally, initial comparisons between forecasts and the futures market prices reveal potential inefficiencies, suggesting opportunities for spot-futures index arbitrage. Providing empirical evidence on the application of forecasting models to a significant group of financial assets, these findings contribute to discussions on market efficiency and highlight the role of ensemble methods in improving asset price predictability and portfolio management.

Keywords: ETF, asset prediction, forecast combination, EMH, spot-futures index arbitrage

Procedia PDF Downloads 4
215 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger

Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans

Abstract:

Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.

Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model

Procedia PDF Downloads 549
214 Human Resource Management Functions; Employee Performance; Professional Health Workers In Public District Hospitals

Authors: Benjamin Mugisha Bugingo

Abstract:

Healthcare staffhas been considered as asignificant pillar to the health care system. However, the contest of human resources for health in terms of the turnover of health workers in Uganda has been more distinct in the latest years. The objective of the paper, therefore, were to investigate the influence Role Human resource management functions in on employeeperformance of professional health workers in public district hospitals in Kampala. The study objectives were: to establish the effect of performance management function, financialincentives, non-financial incentives, participation, and involvement in the decision-making on the employee performance of professional health workers in public district hospitals in Kampala. The study was devised in the social exchange theory and the equity theory. This study adopted a descriptive research design using quantitative approaches. The study used a cross-sectional research design with a mixed-methods approach. With a population of 402 individuals, the study considered a sample of 252 respondents, including doctors, nurses, midwives, pharmacists, and dentists from 3 district hospitals. The study instruments entailed a questionnaire as a quantitative data collection tool and interviews and focus group discussions as qualitative data gathering tools. To analyze quantitative data, descriptive statistics were used to assess the perceived status of Human resource management functions and the magnitude of intentions to stay, and inferential statistics were used to show the effect of predictors on the outcome variable by plotting a multiple linear regression. Qualitative data were analyzed in themes and reported in narrative and verbatim quotes and were used to complement descriptive findings for a better understanding of the magnitude of the study variables. The findings of this study showed a significant and positive effect of performance management function, financialincentives, non-financial incentives, and participation and involvement in decision-making on employee performance of professional health workers in public district hospitals in Kampala. This study is expected to be a major contributor for the improvement of the health system in the country and other similar settings as it has provided the insights for strategic orientation in the area of human resources for health, especially for enhanced employee performance in relation with the integrated human resource management approach

Keywords: human resource functions, employee performance, employee wellness, profecial workers

Procedia PDF Downloads 98
213 Metal Binding Phage Clones in a Quest for Heavy Metal Recovery from Water

Authors: Tomasz Łęga, Marta Sosnowska, Mirosława Panasiuk, Lilit Hovhannisyan, Beata Gromadzka, Marcin Olszewski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Toxic heavy metal ion contamination of industrial wastewater has recently become a significant environmental concern in many regions of the world. Although the majority of heavy metals are naturally occurring elements found on the earth's surface, anthropogenic activities such as mining and smelting, industrial production, and agricultural use of metals and metal-containing compounds are responsible for the majority of environmental contamination and human exposure. The permissible limits (ppm) for heavy metals in food, water and soil are frequently exceeded and considered hazardous to humans, other organisms, and the environment as a whole. Human exposure to highly nickel-polluted environments causes a variety of pathologic effects. In 2008, nickel received the shameful name of “Allergen of the Year” (GILLETTE 2008). According to the dermatologist, the frequency of nickel allergy is still growing, and it can’t be explained only by fashionable piercing and nickel devices used in medicine (like coronary stents and endoprostheses). Effective remediation methods for removing heavy metal ions from soil and water are becoming increasingly important. Among others, methods such as chemical precipitation, micro- and nanofiltration, membrane separation, conventional coagulation, electrodialysis, ion exchange, reverse and forward osmosis, photocatalysis and polymer or carbon nanocomposite absorbents have all been investigated so far. The importance of environmentally sustainable industrial production processes and the conservation of dwindling natural resources has highlighted the need for affordable, innovative biosorptive materials capable of recovering specific chemical elements from dilute aqueous solutions. The use of combinatorial phage display techniques for selecting and recognizing material-binding peptides with a selective affinity for any target, particularly inorganic materials, has gained considerable interest in the development of advanced bio- or nano-materials. However, due to the limitations of phage display libraries and the biopanning process, the accuracy of molecular recognition for inorganic materials remains a challenge. This study presents the isolation, identification and characterisation of metal binding phage clones that preferentially recover nickel.

Keywords: Heavy metal recovery, cleaning water, phage display, nickel

Procedia PDF Downloads 99
212 Environmental Resilience in Sustainability Outcomes of Spatial-Economic Model Structure on the Topology of Construction Ecology

Authors: Moustafa Osman Mohammed

Abstract:

The resilient and sustainable of construction ecology is essential to world’s socio-economic development. Environmental resilience is crucial in relating construction ecology to topology of spatial-economic model. Sustainability of spatial-economic model gives attention to green business to comply with Earth’s System for naturally exchange patterns of ecosystems. The systems ecology has consistent and periodic cycles to preserve energy and materials flow in Earth’s System. When model structure is influencing communication of internal and external features in system networks, it postulated the valence of the first-level spatial outcomes (i.e., project compatibility success). These instrumentalities are dependent on second-level outcomes (i.e., participant security satisfaction). These outcomes of model are based on measuring database efficiency, from 2015 to 2025. The model topology has state-of-the-art in value-orientation impact and correspond complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic model; develop a set of sustainability indicators associated with model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate environmental resilience. The model is managing and developing schemes from perspective of multiple sources pollutants through the input–output criteria. These criteria are evaluated the external insertions effects to conduct Monte Carlo simulations and analysis for using matrices in a unique spatial structure. The balance “equilibrium patterns” such as collective biosphere features, has a composite index of the distributed feedback flows. These feedback flows have a dynamic structure with physical and chemical properties for gradual prolong of incremental patterns. While these structures argue from system ecology, static loads are not decisive from an artistic/architectural perspective. The popularity of system resilience, in the systems structure related to ecology has not been achieved without the generation of confusion and vagueness. However, this topic is relevant to forecast future scenarios where industrial regions will need to keep on dealing with the impact of relative environmental deviations. The model attempts to unify analytic and analogical structure of urban environments using database software to integrate sustainability outcomes where the process based on systems topology of construction ecology.

Keywords: system ecology, construction ecology, industrial ecology, spatial-economic model, systems topology

Procedia PDF Downloads 19
211 Development of Risk Index and Corporate Governance Index: An Application on Indian PSUs

Authors: M. V. Shivaani, P. K. Jain, Surendra S. Yadav

Abstract:

Public Sector Undertakings (PSUs), being government-owned organizations have commitments for the economic and social wellbeing of the society; this commitment needs to be reflected in their risk-taking, decision-making and governance structures. Therefore, the primary objective of the study is to suggest measures that may lead to improvement in performance of PSUs. To achieve this objective two normative frameworks (one relating to risk levels and other relating to governance structure) are being put forth. The risk index is based on nine risks, such as, solvency risk, liquidity risk, accounting risk, etc. and each of the risks have been scored on a scale of 1 to 5. The governance index is based on eleven variables, such as, board independence, diversity, risk management committee, etc. Each of them are scored on a scale of 1 to five. The sample consists of 39 PSUs that featured in Nifty 500 index and, the study covers a 10 year period from April 1, 2005 to March, 31, 2015. Return on assets (ROA) and return on equity (ROE) have been used as proxies of firm performance. The control variables used in the model include, age of firm, growth rate of firm and size of firm. A dummy variable has also been used to factor in the effects of recession. Given the panel nature of data and possibility of endogeneity, dynamic panel data- generalized method of moments (Diff-GMM) regression has been used. It is worth noting that the corporate governance index is positively related to both ROA and ROE, indicating that with the improvement in governance structure, PSUs tend to perform better. Considering the components of CGI, it may be suggested that (i). PSUs ensure adequate representation of women on Board, (ii). appoint a Chief Risk Officer, and (iii). constitute a risk management committee. The results also indicate that there is a negative association between risk index and returns. These results not only validate the framework used to develop the risk index but also provide a yardstick to PSUs benchmark their risk-taking if they want to maximize their ROA and ROE. While constructing the CGI, certain non-compliances were observed, even in terms of mandatory requirements, such as, proportion of independent directors. Such infringements call for stringent penal provisions and better monitoring of PSUs. Further, if the Securities and Exchange Board of India (SEBI) and Ministry of Corporate Affairs (MCA) bring about such reforms in the PSUs and make mandatory the adherence to the normative frameworks put forth in the study, PSUs may have more effective and efficient decision-making, lower risks and hassle free management; all these ultimately leading to better ROA and ROE.

Keywords: PSU, risk governance, diff-GMM, firm performance, the risk index

Procedia PDF Downloads 157
210 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 65
209 Integration of Technology into Nursing Education: A Collaboration between College of Nursing and University Research Center

Authors: Lori Lioce, Gary Maddux, Norven Goddard, Ishella Fogle, Bernard Schroer

Abstract:

This paper presents the integration of technologies into nursing education. The collaborative effort includes the College of Nursing (CoN) at the University of Alabama in Huntsville (UAH) and the UAH Systems Management and Production Center (SMAP). The faculty at the CoN conducts needs assessments to identify education and training requirements. A team of CoN faculty and SMAP engineers then prioritize these requirements and establish improvement/development teams. The development teams consist of nurses to evaluate the models and to provide feedback and of undergraduate engineering students and their senior staff mentors from SMAP. The SMAP engineering staff develops and creates the physical models using 3D printing, silicone molds and specialized molding mixtures and techniques. The collaboration has focused on developing teaching and training, or clinical, simulators. In addition, the onset of the Covid-19 pandemic has intensified this relationship, as 3D modeling shifted to supplied personal protection equipment (PPE) to local health care providers. A secondary collaboration has been introducing students to clinical benchmarking through the UAH Center for Management and Economic Research. As a result of these successful collaborations the Model Exchange & Development of Nursing & Engineering Technology (MEDNET) has been established. MEDNET seeks to extend and expand the linkage between engineering and nursing to K-12 schools, technical schools and medical facilities in the region to the resources available from the CoN and SMAP. As an example, stereolithography (STL) files of the 3D printed models, along with the specifications to fabricate models, are available on the MEDNET website. Ten 3D printed models have been developed and are currently in use by the CoN. The following additional training simulators are currently under development:1) suture pads, 2) gelatin wound models and 3) printed wound tattoos. Specification sheets have been written for these simulations that describe the use, fabrication procedures and parts list. These specifications are available for viewing and download on MEDNET. Included in this paper are 1) descriptions of CoN, SMAP and MEDNET, 2) collaborative process used in product improvement/development, 3) 3D printed models of training and teaching simulators, 4) training simulators under development with specification sheets, 5) family care practice benchmarking, 6) integrating the simulators into the nursing curriculum, 7) utilizing MEDNET as a pandemic response, and 8) conclusions and lessons learned.

Keywords: 3D printing, nursing education, simulation, trainers

Procedia PDF Downloads 122
208 Transport Properties of Alkali Nitrites

Authors: Y. Mateyshina, A.Ulihin, N.Uvarov

Abstract:

Electrolytes with different type of charge carrier can find widely application in different using, e.g. sensors, electrochemical equipments, batteries and others. One of important components ensuring stable functioning of the equipment is electrolyte. Electrolyte has to be characterized by high conductivity, thermal stability, and wide electrochemical window. In addition to many advantageous characteristic for liquid electrolytes, the solid state electrolytes have good mechanical stability, wide working range of temperature range. Thus search of new system of solid electrolytes with high conductivity is an actual task of solid state chemistry. Families of alkali perchlorates and nitrates have been investigated by us earlier. In literature data about transport properties of alkali nitrites are absent. Nevertheless, alkali nitrites MeNO2 (Me= Li+, Na+, K+, Rb+ and Cs+), except for the lithium salt, have high-temperature phases with crystal structure of the NaCl-type. High-temperature phases of nitrites are orientationally disordered, i.e. non-spherical anions are reoriented over several equivalents directions in the crystal lattice. Pure lithium nitrite LiNO2 is characterized by ionic conductivity near 10-4 S/cm at 180°C and more stable as compared with lithium nitrate and can be used as a component for synthesis of composite electrolytes. In this work composite solid electrolytes in the binary system LiNO2 - A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) were synthesized and their structural, thermodynamic and electrical properties investigated. Alkali nitrite was obtained by exchange reaction from water solutions of barium nitrite and alkali sulfate. The synthesized salt was characterized by X-ray powder diffraction technique using D8 Advance X-Ray Diffractometer with Cu K radiation. Using thermal analysis, the temperatures of dehydration and thermal decomposition of salt were determined.. The conductivity was measured using a two electrode scheme in a forevacuum (6.7 Pa) with an HP 4284A (Precision LCR meter) in a frequency range 20 Hz < ν < 1 MHz. Solid composite electrolytes LiNO2 - A A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) have been synthesized by mixing of preliminary dehydrated components followed by sintering at 250°C. In the series of nitrite of alkaline metals Li+-Cs+, the conductivity varies not monotonically with increasing radius of cation. The minimum conductivity is observed for KNO2; however, with further increase in the radius of cation in the series, the conductivity tends to increase. The work was supported by the Russian Foundation for Basic research, grant #14-03-31442.

Keywords: conductivity, alkali nitrites, composite electrolytes, transport properties

Procedia PDF Downloads 319
207 Suitable Operating Conditions of Hot Water Generators Combined with Central Air Package Units: A Case Study of Tipco Building Group

Authors: Chalermporn Jindapeng

Abstract:

The main objective of the study of the suitable operating conditions of hot water generators combined with central air package units: a case study of Tipco Building Group was to analyze the suitable operating conditions and energy-related costs in each operating condition of hot water generators combined with central air package units which resulted in water-cooled packages. Thermal energy from vapor form refrigerants at high pressures and temperatures was exchanged with thermal energy of the water in the swimming pool that required suitable temperature control for users with the use of plate heat exchangers before refrigerants could enter the condenser in its function to change the status of vapor form refrigerants at high pressures and temperatures to liquid form at high pressures and temperatures. Thus, if this was used to replace heat pumps it could reduce the electrical energy that was used to make hot water and reduce the cost of the electrical energy of air package units including the increased efficacy of air package units. Of the analyses of the suitable operating conditions by means of the study of the elements involved with actual measurements from the system that had been installed at the Tipco Building Group hot water generators were combined with air package units which resulted in water-cooled packages with a cooling capacity of 75 tonnes. Plate heat exchangers were used in the transfer of thermal energy from refrigerants to one set of water with a heat exchanger area of 1.5 m² which was used to increase the temperature of swimming pool water that has a capacity of 240 m³. From experimental results, it was discovered after continuous temperature measurements in the swimming pool every 15 minutes that swimming pool water temperature increased by 0.78 ⁰C 0.75 ⁰C 0.74 ⁰C and 0.71 ⁰C. The rates of flow of hot water through the heat exchangers were equal to 14, 16, 18 and 20 litres per minute respectively where the swimming pool water temperature was at a constant value and when the rate of flow of hot water increased this caused hot water temperatures to decrease and the coefficient of performance of the air package units to increase from 5.9 to 6.3, 6.7, 6.9 and 7.6 while the rates of flow of hot water were equal to 14, 16, 18 and 20 litres per minute, respectively. As for the cooling systems, there were no changes and the system cooling functions were normal as the cooling systems were able to continuously transfer incoming heat for the swimming pool water which resulted in a constant pressure in the cooling system that allowed its cooling functions to work normally.

Keywords: central air package units, heat exchange, hot water generators, swimming pool

Procedia PDF Downloads 258
206 Factors Influencing the Adoption of Interpersonal Communication Media to Maximize Business Competitiveness among Small and Medium Enterprises in Hong Kong: Industry Types and Entrepreneur Characteristics

Authors: Olivine Lo

Abstract:

Small- and Medium-Sized Enterprises (SMEs) consist of a broad variety of businesses, ranging from small grocery shops to manufacturing concerns. Some are dynamic and innovative, while others are more traditional. The definition of SMEs varies by country but is most determined by the number of employees, though business assets and sales revenues are alternative measures. There are eight main types of SME industries in Hong Kong: garment, electronics, plastics, metal and machinery, trading and logistics, building, manufacturing, and service industries. Information exchange is a key goal of human communication, and communicators have used a variety of media to maintain relationships through traditional face-to-face interactions and written forms like letters and faxes. With the advancement of mediated-interpersonal communication media from telephone to synchronic online tools like email, instant messaging, voice messaging, and video conferencing for sustaining relationships, particularly enabling geographically distanced relationships. Although these synchronous tools are gaining popularity, they are facilitating relationship maintenance in everyday life and complementing rather than replacing the more conventional face-to-face interactions. This study will test if there are any variances in effects by industry type among Hong Kong SMEs. The competitiveness of the business environment refers to the competition faced by a business within its particular industry. The more intense the competition in a given sector, the greater the potential for strategic uses of specific needs in a business. Both internal organization characteristics and external environments may affect firm performance and financial resources. The level of competitiveness within an industry will be a more reliable indicator to show how Hong Kong SMEs are striving to achieve their business goals using different techniques in their communication media preferences, rather than mere classification by industry type. This study thus divides the competitiveness of the business environment into internal and external: (1) the internal environment competition is the inherent competitiveness of the products or services provided by the SMEs, whereas (2) the external environment competition includes the economic and political realities and competitors joining the market. This study will test various organizational characteristics and competitiveness of the business environment to predict entrepreneurs’ communication media preferences.

Keywords: competitiveness of business environment, small- and medium-sized enterprises, organizational characteristics, communication media preference

Procedia PDF Downloads 31
205 Optical Assessment of Marginal Sealing Performance around Restorations Using Swept-Source Optical Coherence Tomography

Authors: Rima Zakzouk, Yasushi Shimada, Yasunori Sumi, Junji Tagami

Abstract:

Background and purpose: The resin composite has become the main material for the restorations of caries in recent years due to aesthetic characteristics, especially with the development of the adhesive techniques. The quality of adhesion to tooth structures is depending on an exchange process between inorganic tooth material and synthetic resin and a micromechanical retention promoted by resin infiltration in partially demineralized dentin. Optical coherence tomography (OCT) is a noninvasive diagnostic method for obtaining cross-sectional images that produce high-resolution of the biological tissue at the micron scale. The aim of this study was to evaluate the gap formation at adhesive/tooth interface of two-step self-etch adhesives that are preceded with or without phosphoric acid pre-etching in different regions of teeth using SS-OCT. Materials and methods: Round tapered cavities (2×2 mm) were prepared in cervical part of bovine incisors teeth and divided into 2 groups (n=10): first group self-etch adhesive (Clearfil SE Bond) was applied for SE group and second group treated with acid etching before applying the self-etch adhesive for PA group. Subsequently, both groups were restored with Estelite Flow Quick Flowable Composite Resin and observed under OCT. Following 5000 thermal cycles, the same section was obtained again for each cavity using OCT at 1310-nm wavelength. Scanning was repeated after two months to monitor the gap progress. Then the gap length was measured using image analysis software, and the statistics analysis were done between both groups using SPSS software. After that, the cavities were sectioned and observed under Confocal Laser Scanning Microscope (CLSM) to confirm the result of OCT. Results: Gaps formed at the bottom of the cavity was longer than the gap formed at the margin and dento-enamel junction in both groups. On the other hand, pre-etching treatment led to damage the DEJ regions creating longer gap. After 2 months the results showed almost progress in the gap length significantly at the bottom regions in both groups. In conclusions, phosphoric acid etching treatment did not reduce the gap lrngth in most regions of the cavity. Significance: The bottom region of tooth was more exposed to gap formation than margin and DEJ regions, The DEJ damaged with phosphoric acid treatment.

Keywords: optical coherence tomography, self-etch adhesives, bottom, dento enamel junction

Procedia PDF Downloads 227
204 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container

Authors: Mohammad R. Jalali

Abstract:

Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.

Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions

Procedia PDF Downloads 398
203 Evidence on the Nature and Extent of Fall in Oil Prices on the Financial Performance of Listed Companies: A Ratio Analysis Case Study of the Insurance Sector in the UAE

Authors: Pallavi Kishore, Mariam Aslam

Abstract:

The sharp decline in oil prices that started in 2014 affected most economies in the world either positively or negatively. In some economies, particularly the oil exporting countries, the effects were felt immediately. The Gulf Cooperation Council’s (GCC henceforth) countries are oil and gas-dependent with the largest oil reserves in the world. UAE (United Arab Emirates) has been striving to diversify away from oil and expects higher non-oil growth in 2018. These two factors, falling oil prices and the economy strategizing away from oil dependence, make a compelling case to study the financial performance of various sectors in the economy. Among other sectors, the insurance sector is widely recognized as an important indicator of the health of the economy. An expanding population, surge in construction and infrastructure, increased life expectancy, greater expenditure on automobiles and other luxury goods translate to a booming insurance sector. A slow-down of the insurance sector, on the other hand, may indicate a general slow-down in the economy. Therefore, a study on the insurance sector will help understand the general nature of the current economy. This study involves calculations and comparisons of ratios pre and post the fall in oil prices in the insurance sector in the UAE. A sample of 33 companies listed on the official stock exchanges of UAE-Dubai Financial Market and Abu Dhabi Stock Exchange were collected and empirical analysis employed to study the financial performance pre and post fall in oil prices. Ratios were calculated in 5 categories: Profitability, Liquidity, Leverage, Efficiency, and Investment. The means pre- and post-fall are compared to conclude that the profitability ratios including ROSF (Return on Shareholder Funds), ROCE (Return on Capital Employed) and NPM (Net Profit Margin) have all taken a hit. Parametric tests, including paired t-test, concludes that while the fall in profitability ratios is statistically significant, the other ratios have been quite stable in the period. The efficiency, liquidity, gearing and investment ratios have not been severely affected by the fall in oil prices. This may be due to the implementation of stronger regulatory policies and is a testimony to the diversification into the non-oil economy. The regulatory authorities can use the findings of this study to ensure transparency in revealing financial information to the public and employ policies that will help further the health of the economy. The study will also help understand which areas within the sector could benefit from more regulations.

Keywords: UAE, insurance sector, ratio analysis, oil price, profitability, liquidity, gearing, investment, efficiency

Procedia PDF Downloads 245
202 An Overview of PFAS Treatment Technologies with an In-Depth Analysis of Two Case Studies

Authors: Arul Ayyaswami, Vidhya Ramalingam

Abstract:

Per- and polyfluoroalkyl substances (PFAS) have emerged as a significant environmental concern due to their ubiquity and persistence in the environment. Their chemical characteristics and adverse effects on human health demands more effective and sustainable solutions in remediation of the PFAS. The work presented here encompasses an overview of treatment technologies with two case studies that utilize effective approaches in addressing PFAS contaminated media. Currently the options for treatment of PFAS compounds include Activated carbon adsorption, Ion Exchange, Membrane Filtration, Advanced oxidation processes, Electrochemical treatment, and Precipitation and Coagulation. In the first case study, a pilot study application of colloidal activated carbon (CAC) was completed to address PFAS from aqueous film-forming foam (AFFF) used to extinguish a large fire. The pilot study was used to demonstrate the effectiveness of a CAC in situ permeable reactive barrier (PRB) in effectively stopping the migration of PFOS and PFOA, moving from the source area at high concentrations. Before the CAC PRB installation, an injection test using - fluorescein dye was conducted to determine the primary fracture-induced groundwater flow pathways. A straddle packer injection delivery system was used to isolate discrete intervals and gain resolution over the 70 feet saturated zone targeted for treatment. Flow rates were adjusted, and aquifer responses were recorded for each interval. The results from the injection test were used to design the pilot test injection plan using CAC PRB. Following the CAC PRB application, the combined initial concentration 91,400 ng/L of PFOS and PFOA were reduced to approximately 70 ng/L (99.9% reduction), after only one month following the injection event. The results demonstrate the remedy's effectiveness to quickly and safely contain high concentrations of PFAS in fractured bedrock, reducing the risk to downgradient receptors. The second study involves developing a reductive defluorination treatment process using UV and electron acceptor. This experiment indicates a significant potential in treatment of PFAS contaminated waste media such as landfill leachates. The technology also shows a promising way of tacking these contaminants without the need for secondary waste disposal or any additional pre-treatments.

Keywords: per- and polyfluoroalkyl substances (PFAS), colloidal activated carbon (CAC), destructive PFAS treatment technology, aqueous film-forming foam (AFFF)

Procedia PDF Downloads 60
201 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 264
200 Water Quality in Buyuk Menderes Graben, Turkey

Authors: Tugbanur Ozen Balaban, Gultekin Tarcan, Unsal Gemici, Mumtaz Colak, I. Hakki Karamanderesi

Abstract:

Buyuk Menderes Graben is located in the Western Anatolia (Turkey). The graben has become the largest industrial and agricultural area with a total population exceeding 3.000.000. There are two big cities within the study areas from west to east as Aydın and Denizli. The study area is very rich with regard to cold ground waters and thermal waters. Electrical production using geothermal potential has become very popular in the last decades in this area. Buyuk Menderes Graben is a tectonically active extensional region and is undergoing a north–south extensional tectonic regime which commenced at the latest during Early Middle Miocene period. The basement of the study area consists of Menderes massif rocks that are made up of high-to low-grade metamorphics and they are aquifer for both cold ground waters and thermal waters depending on the location. Neogene terrestrial sediments, which are mainly composed by alluvium fan deposits unconformably cover the basement rocks in different facies have very low permeability and locally may act as cap rocks for the geothermal systems. The youngest unit is Quaternary alluvium which is the shallow regional aquifer consists of Holocene alluvial deposits in the study area. All the waters are of meteoric origin and reflect shallow or deep circulation according to the 8O, 2H and 3H contents. Meteoric waters move to deep zones by fractured system and rise to the surface along the faults. Water samples (drilling well, spring and surface waters) and local seawater were collected between 2010 and 2012 years. Geochemical modeling was calculated distribution of the aqueous species and exchange processes by using PHREEQCi speciation code. Geochemical analyses show that cold ground water types are evolving from Ca–Mg–HCO3 to Na–Cl–SO4 and geothermal aquifer waters reflect the water types of Na-Cl-HCO3 in Aydın. Water types of Denizli are Ca-Mg-HCO3 and Ca-Mg-HCO3-SO4. Thermal water types reflect generally Na-HCO3-SO4. The B versus Cl rates increase from east to west with the proportion of seawater introduced into the fresh water aquifers and geothermal reservoirs. Concentrations of some elements (As, B, Fe and Ni) are higher than the tolerance limit of the drinking water standard of Turkey (TS 266) and international drinking water standards (WHO, FAO etc).

Keywords: Buyuk Menderes, isotope chemistry, geochemical modelling, water quality

Procedia PDF Downloads 536
199 Evaluating of Chemical Extractants for Assessment of Bioavailable Heavy Metals in Polluted Soils

Authors: Violina Angelova, Krasimir Ivanov, Stefan Krustev, Dimitar Dimitrov

Abstract:

Availability of a metal is characterised by its quantity transgressing from soil into different extractants or by its content in plants. In literature, the terms 'available forms of compounds' and 'mobile' are often considered as equivalents of the term 'accessible' to plants. Rapid and a sufficiently reliable method for defining the accessible for plants forms turns out to be their extraction through different extractants, imitating the functioning of the root system. As a criterion for the pertinence of the extractant to this purpose usually serves the significant statistic correlation between the extracted quantities of the element from soil and its content in plants. The aim of this work was to evaluate the effectiveness of various extractions (DTPA-TEA, AB-DTPA, Mehlich 3, 0.01 M CaCl₂, 1M NH₄NO₃) for the determination of bioavailability of heavy metals in industrially polluted soils from the metallurgical activity near Plovdiv and Kardjali, Bulgaria. Quantity measurements for contents of heavy metals were performed with ICP-OES. The results showed that extraction capacity was as follows: Mehlich 3>ABDTPA>DTPA-TEA>CaCl₂>NaNO₃. The content of the mobile form of heavy metals depends on the nature of metal ion, the nature of extractant and pH. The obtained results show that CaCl₂ extracts a greater quantity of mobile forms of heavy metals than NH₄NO₃. DTPA-TEA and AB-DTPA are capable of extracting from the soil not only the heavy metals participating in the exchange processes but also the heavy metals bound in carbonates and organic complexes, as well as bound and occluded in oxide and secondary clay minerals. AB-DTPA extracts a bit more heavy metals than DTPA-TEA. The darker color of the solutions obtained with AB-DTPA indicates that considerable quantities organic matter are being destructed. A comparison of the mobile forms of heavy metals extracted from clean and highly polluted soils has revealed that in the polluted soils the greater portion of heavy metals exists in a mobile form. High correlation coefficients are obtained between the metals extracted with different extractants and their total content in soil (r=0.9). A positive correlation between the pH, soil organic matter and the extracted quantities of heavy metals has been found. The results of correlation analysis revealed that the heavy metals extracted by DTPA-TEA, AB-DTPA, Mehlich 3, CaCl₂ and NaNO₃ correlated significantly with plant uptake. Significant correlation was found between DTPA-TEA, AB-DTPA, and CaCl₂ with heavy metals concentration in plants. Application of extracting methods contains chelating agents would be recommended in the future research onthe availabilityof heavy metals in polluted soils.

Keywords: availability, chemical extractants, heavy metals, mobile forms

Procedia PDF Downloads 356