Search results for: business intelligence readiness model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20287

Search results for: business intelligence readiness model

18937 Attaining Financial Efficiency through Funds Utilization

Authors: Muhammad Shujaat Saleem, Imamuddin

Abstract:

In reply to the argument made by the non-believers of Makkah “Sale is similar to riba”, Almighty Allah ordered “Sale is permissible while riba is impermissible”. The main intent of the study was to clarify the fallacy prevailing among the Muslims that in practical terms the product of Murabaha which is being offered by the Islamic banks is similar to that of conventional interest based business loan. However, specific objective was to ascertain the degree of financial efficiency on the basis of fund/loan utilization for intended purpose of Murabaha financing vis-à-vis conventional interest based business loan. The study employed survey strategy to collect primary data through structured close ended questionnaires from the sample of 98 Murabaha officers and 178 loan officers out of the whole population of 5 Islamic and 10 conventional banks respectively. Quantitative and qualitative techniques were used to analyze the data and the same is tabulated by use of frequency tables. The study found that the financial efficiency of Murabaha financing is more than that of conventional interest based business loan by 28% as Murabaha funds of Islamic banks are utilized for its intended purpose to the extent of 97% on average, compared to 69% of business loan offered by conventional banks.

Keywords: financial efficiency, murabaha funds, loan amount, intended purpose

Procedia PDF Downloads 338
18936 Multiple Intelligence Theory with a View to Designing a Classroom for the Future

Authors: Phalaunnaphat Siriwongs

Abstract:

The classroom of the 21st century is an ever-changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not a cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pinpoint an exact number, it is clear that in this case, more does not mean better. By looking into the success and pitfalls of classroom size, the true advantages of smaller classes becomes clear. Previously, one class was comprised of 50 students. Since they were seventeen- and eighteen-year-old students, it was sometimes quite difficult for them to stay focused. To help students understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.

Keywords: multiple intelligences, role play, performance assessment, formative assessment

Procedia PDF Downloads 283
18935 The Role of Executive Functions and Emotional Intelligence in Leadership: A Neuropsychological Perspective

Authors: Chrysovalanto Sofia Karatosidi, Dimitra Iordanoglou

Abstract:

The overlap of leadership skills with personality traits, beliefs, values, and the integration of cognitive abilities, analytical and critical thinking skills into leadership competencies raises the need to segregate further and investigate them. Hence, the domains of cognitive functions that contribute to leadership effectiveness should also be identified. Organizational cognitive neuroscience and neuroleadership can shed light on the study of these critical leadership skills. As the first part of our research, this pilot study aims to explore the relationships between higher-order cognitive functions (executive functions), trait emotional intelligence (EI), personality, and general cognitive ability in leadership. Twenty-six graduate and postgraduate students were assessed on neuropsychological tests that measure important aspects of executive functions (EF) and completed self-reported questionnaires about trait EI, personality, leadership styles, and leadership effectiveness. Specifically, we examined four core EF—fluency (phonemic and semantic), information updating and monitoring, working memory, and inhibition of prepotent responses. Leadership effectiveness was positively associated with phonemic fluency (PF), which involves mental flexibility, in turn, an increasingly important ability for future leaders in this rapidly changing world. Transformational leadership was positively associated with trait EI, extraversion, and openness to experience, a result that is following previous findings. The relationship between specific EF constructs and leadership effectiveness emphasizes the role of higher-order cognitive functions in the field of leadership as an individual difference. EF brings a new perspective into leadership literature by providing a direct, non-invasive, scientifically-valid connection between brain function and leadership behavior.

Keywords: cognitive neuroscience, emotional intelligence, executive functions, leadership

Procedia PDF Downloads 158
18934 The Impact of Autism on Child's behavior and Attitude

Authors: Mariam Atef Zakaria Faltas

Abstract:

A descriptive statistical analysis of the data showed that the most important factor evoking negative attitudes among teachers is student behavior. have been presented as useful models for understanding the risk factors and protective factors associated with the emergence of autistic traits. Although these "syndrome" forms of autism reach clinical thresholds, they appear to be distinctly different from the idiopathic or "non-syndrome" autism phenotype. Most teachers reported that kindergartens did not prepare them for the educational needs of children with autism, particularly in relation to non-verbal skills. The study is important and points the way for improving teacher inclusion education in Thailand. Inclusive education for students with autism is still in its infancy in Thailand. Although the number of autistic children in schools has increased significantly since the Thai government introduced the Education Regulations for Persons with Disabilities Act in 2008, there is a general lack of services for autistic students and their families. This quantitative study used the Teaching Skills and Readiness Scale for Students with Autism (APTSAS) to test the attitudes and readiness of 110 elementary school teachers when teaching students with autism in general education classrooms. To uncover the true nature of these co morbidities, it is necessary to expand the definition of autism to include the cognitive features of the disorder, and then apply this expanded conceptualization to examine patterns of autistic syndromes. This study used various established eye-tracking paradigms to assess the visual and attention performance of children with DS and FXS who meet the autism thresholds defined in the Social Communication Questionnaire. To study whether the autistic profiles of these children are associated with visual orientation difficulties ("sticky attention"), decreased social attention, and increased visual search performance, all of which are hallmarks of the idiopathic autistic child phenotype. Data will be collected from children with DS and FXS, aged 6 to 10 years, and two control groups matched for age and intellectual ability (i.e., children with idiopathic autism).In order to enable a comparison of visual attention profiles, cross-sectional analyzes of developmental trajectories are carried out. Significant differences in the visual-attentive processes underlying the presentation of autism in children with FXS and DS have been suggested, supporting the concept of syndrome specificity. The study provides insights into the complex heterogeneity associated with autism syndrome symptoms and autism itself, with clinical implications for the utility of autism intervention programs in DS and FXS populations.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 56
18933 Using Industry Projects to Modernize Business Education

Authors: Marie Sams, Kate Barnett-Richards, Jacqui Speculand, Gemma Tombs

Abstract:

Business education in the United Kingdom has seen a number of improvements over the years in moving from delivering traditional chalk and talk lectures to using digital technologies and inviting guest lectures from industry to deliver sessions for students. Engaging topical industry talks to enhance course delivery is generally seen as a positive aspect of enhancing curriculum, however it is acknowledged that perhaps there are better ways in which industry can contribute to the quality of business programmes. Additionally, there is a consensus amongst UK industry managers that a bigger involvement in designing and inputting into business curriculum will have a greater impact on the quality of business ready graduates. Funded by the Disruptive Media Learning Lab at Coventry University in the UK, a project (SOPI - Student Online Projects with Industry) was initiated to enable students to work in project teams to respond and engage with real problems and challenges faced by five managers in various industries including retail, events and manufacturing. Over a semester, approximately 200 students were given the opportunity to develop their management, facilitation, problem solving and reflective skills, whilst having some exposure to real challenges in industry with a focus on supply chain and project management. Face to face seminars were re-designed to enable students to work on live issues in a competitive environment, and were guided to consider the theoretical aspects of their module delivery to underpin the solutions that they were generating. Dialogue between student groups and managers took place using Google+ community; an online social media tool which enables private discussions to take place and can be accessed on mobile devices. Results of the project will be shared in how this development has added value to students experience and understanding of the two subject areas. Student reflections will be analysed and evaluated to assess how the project has contributed to their perception of how the theoretical nature of these two business subjects are applied in practical situations.

Keywords: business, education, industry, projects

Procedia PDF Downloads 183
18932 Differences in Parental Acceptance, Rejection, and Attachment and Associations with Adolescent Emotional Intelligence and Life Satisfaction

Authors: Diana Coyl-Shepherd, Lisa Newland

Abstract:

Research and theory suggest that parenting and parent-child attachment influence emotional development and well-being. Studies indicate that adolescents often describe differences in relationships with each parent and may form different types of attachment to mothers and fathers. During adolescence and young adulthood, romantic partners may also become attachment figures, influencing well being, and providing a relational context for emotion skill development. Mothers, however, tend to be remain the primary attachment figure; fathers and romantic partners are more likely to be secondary attachment figures. The following hypotheses were tested: 1) participants would rate mothers as more accepting and less rejecting than fathers, 2) participants would rate secure attachment to mothers higher and insecure attachment lower compared to father and romantic partner, 3) parental rejection and insecure attachment would be negatively related to life satisfaction and emotional intelligence, and 4) secure attachment and parental acceptance would be positively related life satisfaction and emotional intelligence. After IRB and informed consent, one hundred fifty adolescents and young adults (ages 11-28, M = 19.64; 71% female) completed an online survey. Measures included parental acceptance, rejection, attachment (i.e., secure, dismissing, and preoccupied), emotional intelligence (i.e., seeking and providing comfort, use, and understanding of self emotions, expressing warmth, understanding and responding to others’ emotional needs), and well-being (i.e., self-confidence and life satisfaction). As hypothesized, compared to fathers’, mothers’ acceptance was significantly higher t (190) = 3.98, p = .000 and rejection significantly lower t (190) = - 4.40, p = .000. Group differences in secure attachment were significant, f (2, 389) = 40.24, p = .000; post-hoc analyses revealed significant differences between mothers and fathers and between mothers and romantic partners; mothers had the highest mean score. Group differences in preoccupied attachment were significant, f (2, 388) = 13.37, p = .000; post-hoc analyses revealed significant differences between mothers and romantic partners, and between fathers and romantic partners; mothers have the lowest mean score. However, group differences in dismissing attachment were not significant, f (2, 389) = 1.21, p = .30; scores for mothers and romantic partners were similar; father means score was highest. For hypotheses 3 and 4 significant negative correlations were found between life satisfaction and dismissing parent, and romantic attachment, preoccupied father and romantic attachment, and mother and father rejection variables; secure attachment variables and parental acceptance were positively correlated with life satisfaction. Self-confidence was correlated only with mother acceptance. For emotional intelligence, seeking and providing comfort were negatively correlated with parent dismissing and mother rejection; secure mother and romantic attachment and mother acceptance were positively correlated with these variables. Use and understanding of self-emotions were negatively correlated with parent and partner dismissing attachment, and parent rejection; romantic secure attachment and parent acceptance were positively correlated. Expressing warmth was negatively correlated with dismissing attachment variables, romantic preoccupied attachment, and parent rejection; whereas attachment secure variables were positively associated. Understanding and responding to others’ emotional needs were correlated with parent dismissing and preoccupied attachment variables and mother rejection; only secure father attachment was positively correlated.

Keywords: adolescent emotional intelligence, life satisfaction, parent and romantic attachment, parental rejection and acceptance

Procedia PDF Downloads 192
18931 A Comparison of Using English Language in Homestay Business between Samut Songkram, Thailand and Yangzhou, China

Authors: Panisa Panyalert

Abstract:

This research aims to study the difference between Thailand and China in using English language in the homestay business, and also promoting using English language in the Thai community for developing employees in the tourism business. Then, the two provinces which are Samut Songkram province, Thailand and Yangzhou province, China where English is not the official language can be occurred more problems and difficulties in the communication to foreign tourists. The study uses the questionnaire for collecting the data by distributing the questionnaire to the homestay’s staff both in Samut Songkram province, Thailand and Yangzhou province, China. The sample group is 100 homestays for each province. The method of participant as observer role is required to play during visiting each homestay. Due to the comparative of the research between Samut Songkram and Yangzhou homestays, there are two hypotheses, hypothesis one: there will be relationships between English using and the profit of a homestay, probability because if the homestay staff can speak English, there will be more travelers, especially foreigners come for staying, and hypothesis two: managers in Thailand may know more English than the Chinese homestay staff. The questionnaire is separated into three parts to answer the two hypotheses. The first part is about the general information of the informant, the second part is mainly concerned with the homestay business characteristics, and the third part is English language using. As a result, the research is clearly answered the second hypothesis which is Thai homestay is using more English language than Chinese homestay.

Keywords: English language, guesthouse, homestay, using English

Procedia PDF Downloads 251
18930 Identity Conflict between Social and Business Entrepreneurs: The Challenge of Constructing a Novel Social Identity

Authors: Rui G. Serôdio, Carina Martins, Alexandra Serra, José A. Lima, Luísa Catita, Paula Lopes

Abstract:

Building on social identity approach, we tested the impact of social categorization and comparison in the psychosocial process by which social entrepreneurs define their group identity. Specifically, we address how both differentiation and assimilation processes are set of in the context of constructing a novel, distinctive and socially salient – social entrepreneurs. As part of a larger research line, a quasi-experimental study with Social and Business Entrepreneurs, as well as “Lay People” provided evidence consistent with our predictions: (1) Social Entrepreneurs, in contrast with Lay People and Business Entrepreneurs, value more strongly social identity than personal identity, and the later is the only group that values Personal Differentiation; (2) unlike Entrepreneurs, Social Entrepreneurs display an ingroup bias across group evaluations; (3) Lay People, display a self-serving bias, although, overall, they allocate a more positive image to the target groups; (4) combining own vs. others evaluations across all groups, Social Entrepreneurs receive the more positive value. From the standpoint of social identity and self-categorization theories and their approach to group process, we discuss the processes of intergroup comparison and differentiation as core processes in the construction of a positive social identity. We illustrate it within the context of social entrepreneurship, a political and social “wave” that flows across Europe at this time.

Keywords: group processes, social entrepreneurship, social identity, business entrepreneurs

Procedia PDF Downloads 696
18929 Awareness among Medical Students and Faculty about Integration of Artifical Intelligence Literacy in Medical Curriculum

Authors: Fatima Faraz

Abstract:

BACKGROUND: While Artificial intelligence (AI) provides new opportunities across a wide variety of industries, healthcare is no exception. AI can lead to advancements in how the healthcare system functions and improves the quality of patient care. Developing countries like Pakistan are lagging in the implementation of AI-based solutions in healthcare. This demands increased knowledge and AI literacy among health care professionals. OBJECTIVES: To assess the level of awareness among medical students and faculty about AI in preparation for teaching AI basics and data science applications in clinical practice in an integrated medical curriculum. METHODS: An online 15-question semi-structured questionnaire, previously tested and validated, was delivered among participants through convenience sampling. The questionnaire composed of 3 parts: participant’s background knowledge, AI awareness, and attitudes toward AI applications in medicine. RESULTS: A total of 182 students and 39 faculty members from Rawalpindi Medical University, Pakistan, participated in the study. Only 26% of students and 46.2% of faculty members responded that they were aware of AI topics in clinical medicine. The major source of AI knowledge was social media (35.7%) for students and professional talks and colleagues (43.6%) for faculty members. 23.5% of participants answered that they personally had a basic understanding of AI. Students and faculty (60.1%) were interested in AI in patient care and teaching domain. These findings parallel similar published AI survey results. CONCLUSION: This survey concludes interest among students and faculty in AI developments and technology applications in healthcare. Further studies are required in order to correctly fit AI in the integrated modular curriculum of medical education.

Keywords: medical education, data science, artificial intelligence, curriculum

Procedia PDF Downloads 101
18928 Mitigation of Risk Management Activities towards Accountability into Microfinance Environment: Malaysian Case Study

Authors: Nor Azlina A. Rahman, Jamaliah Said, Salwana Hassan

Abstract:

Prompt changes in global business environment, such as passionate competition, managerial/operational, changing governmental regulation and innovation in technology have significant impacts on the organizations. At present, global business environment demands for more proactive institutions on microfinance to provide an opportunity for the business success. Microfinance providers in Malaysia still accelerate its activities of funding by cash and cheque. These institutions are at high risk as the paper-based system is deemed to be slow and prone to human error, as well as requiring a major annual reconciliation process. The global transformation of financial services, growing involvement of technology, innovation and new business activities had progressively made risk management profile to be more subjective and diversified. The persistent, complex and dynamic nature of risk management activities in the institutions arise due to highly automated advancements of technology. This may thus manifest in a variety of ways throughout the financial services sector. This study seeks out to examine current operational risks management being experienced by microfinance providers in Malaysia; investigate the process of current practices on facilitator control factor mechanisms, and explore how the adoption of technology, innovation and use of management accounting practices would affect the risk management process of operation system in microfinance providers in Malaysia. A case study method was employed in this study. The case study also need to find that the vital past role of management accounting will be used for mitigation of risk management activities towards accountability as an information or guideline to microfinance provider. An empirical element obtainable with qualitative method is needed in this study, where multipart and in-depth information are essential to understand the issues of these institution phenomena. This study is expected to propose a theoretical model for implementation of technology, innovation and management accounting practices into the system of operation to improve internal control and subsequently lead to mitigation of risk management activities among microfinance providers to be more successful.

Keywords: microfinance, accountability, operational risks, management accounting practices

Procedia PDF Downloads 439
18927 Homomorphic Conceptual Framework for Effective Supply Chain Strategy (HCEFSC) within Operational Research (OR) with Sustainability and Phenomenology

Authors: Hussain Abdullah Al-Salamin, Elias Ogutu Azariah Tembe

Abstract:

Supply chain (SC) is an operational research (OR) approach and technique which acts as catalyst within central nervous system of business today. Without SC, any type of business is at doldrums, hence entropy. SC is the lifeblood of business today because it is the pivotal hub which provides imperative competitive advantage. The paper present a conceptual framework dubbed as Homomorphic Conceptual Framework for Effective Supply Chain Strategy (HCEFSC).The term homomorphic is derived from abstract algebraic mathematical term homomorphism (same shape) which also embeds the following mathematical application sets: monomorphism, isomorphism, automorphisms, and endomorphism. The HCFESC is intertwined and integrated with wide and broad sets of elements.

Keywords: homomorphism, isomorphism, monomorphisms, automorphisms, epimorphisms, endomorphism, supply chain, operational research (OR)

Procedia PDF Downloads 372
18926 A Modeling Approach for Blockchain-Oriented Information Systems Design

Authors: Jiaqi Yan, Yani Shi

Abstract:

The blockchain technology is regarded as the most promising technology that has the potential to trigger a technological revolution. However, besides the bitcoin industry, we have not yet seen a large-scale application of blockchain in those domains that are supposed to be impacted, such as supply chain, financial network, and intelligent manufacturing. The reasons not only lie in the difficulties of blockchain implementation, but are also root in the challenges of blockchain-oriented information systems design. As the blockchain members are self-interest actors that belong to organizations with different existing information systems. As they expect different information inputs and outputs of the blockchain application, a common language protocol is needed to facilitate communications between blockchain members. Second, considering the decentralization of blockchain organization, there is not any central authority to organize and coordinate the business processes. Thus, the information systems built on blockchain should support more adaptive business process. This paper aims to address these difficulties by providing a modeling approach for blockchain-oriented information systems design. We will investigate the information structure of distributed-ledger data with conceptual modeling techniques and ontology theories, and build an effective ontology mapping method for the inter-organization information flow and blockchain information records. Further, we will study the distributed-ledger-ontology based business process modeling to support adaptive enterprise on blockchain.

Keywords: blockchain, ontology, information systems modeling, business process

Procedia PDF Downloads 449
18925 Floods Hazards and Emergency Respond in Negara Brunei Darussalam

Authors: Hj Mohd Sidek bin Hj Mohd Yusof

Abstract:

More than 1.5 billion people around the world are adversely affected by floods. Floods account for about a third of all natural catastrophes, cause more than half of all fatalities and are responsible for a third of overall economic loss around the world. Giving advanced warning of impending disasters can reduce or even avoid the number of deaths, social and economic hardships that are so commonly reported after the event. Integrated catchment management recognizes that it is not practical or viable to provide structural measures that will keep floodwater away from the community and their property. Non-structural measures are therefore required to assist the community to cope when flooding occurs which exceeds the capacity of the structural measures. Non-structural measures may need to be used to influence the way land is used or buildings are constructed, or they may be used to improve the community’s preparedness and response to flooding. The development and implementation of non-structural measures may be guided and encouraged by policy and legislation, or through voluntary action by the community based on knowledge gained from public education programs. There is a range of non-structural measures that can be used for flood hazard mitigation which can be the use measures includes policies and rules applied by government to regulate the kinds of activities that are carried out in various flood-prone areas, including minimum floor levels and the type of development approved. Voluntary actions taken by the authorities and by the community living and working on the flood plain to lessen flooding effects on themselves and their properties including monitoring land use changes, monitoring and investigating the effects of bush / forest clearing in the catchment and providing relevant flood related information to the community. Response modification measures may include: flood warning system, flood education, community awareness and readiness, evacuation arrangements and recovery plan. A Civil Defense Emergency Management needs to be established for Brunei Darussalam in order to plan, co-ordinate and undertake flood emergency management. This responsibility may be taken by the Ministry of Home Affairs, Brunei Darussalam who is already responsible for Fire Fighting and Rescue services. Several pieces of legislation and planning instruments are in place to assist flood management, particularly: flood warning system, flood education Community awareness and readiness, evacuation arrangements and recovery plan.

Keywords: RTB, radio television brunei, DDMC, district disaster management center, FIR, flood incidence report, PWD, public works department

Procedia PDF Downloads 256
18924 Project-Bbased Learning (PBL) Taken to Extremes: Full-Year/Full-Time PBL Replacement of Core Curriculum

Authors: Stephen Grant Atkins

Abstract:

Radical use of project-based learning (PBL) in a small New Zealand business school provides an opportunity to longitudinally examine its effects over a decade of pre-Covid data. Prior to this business school’s implementation of PBL, starting in 2012, the business pedagogy literature presented just one example of PBL replacing an entire core-set of courses. In that instance, a British business school merged four of its ‘degree Year 3’ accounting courses into one PBL semester. As radical as that would have seemed, to students aged 20-to-22, the PBL experiment conducted in a New Zealand business school was notably more extreme: 41 nationally-approved Learning Outcomes (L.O.s), these deriving from 8 separate core courses, were aggregated into one grand set of L.O.s, and then treated as a ‘full-year’/‘full-time’ single course. The 8 courses in question were all components of this business school’s compulsory ‘degree Year 1’ curriculum. Thus, the students involved were notably younger (…ages 17-to-19…), and no ‘part-time’ enrolments were allowed. Of interest are this PBL experiment’s effects on subsequent performance outcomes in ‘degree Years 2 & 3’ (….which continued to operate in their traditional ways). Of special interest is the quality of ‘group project’ outcomes. This is because traditionally, ‘degree Year 1’ course assessments are only minimally based on group work. This PBL experiment altered that practice radically, such that PBL ‘degree Year 1’ alumni entered their remaining two years of business coursework with far more ‘project group’ experience. Timeline-wise, thus of interest here, firstly, is ‘degree Year 2’ performance outcomes data from years 2010-2012 + 2016-2018, and likewise ‘degree Year 3’ data for years 2011-2013 + 2017-2019. Those years provide a pre-&-post comparative baseline for performance outcomes in students never exposed to this school’s radical PBL experiment. That baseline is then compared to PBL alumni outcomes (2013-2016….including’Student Evaluation of Course Quality’ outcomes…) to clarify ‘radical PBL’ effects.

Keywords: project-based learning, longitudinal mixed-methods, students criticism, effects-on-learning

Procedia PDF Downloads 97
18923 Patent Protection for AI Innovations in Pharmaceutical Products

Authors: Nerella Srinivas

Abstract:

This study explores the significance of patent protection for artificial intelligence (AI) innovations in the pharmaceutical sector, emphasizing applications in drug discovery, personalized medicine, and clinical trial optimization. The challenges of patenting AI-driven inventions are outlined, focusing on the classification of algorithms as abstract ideas, meeting the non-obviousness standard, and issues around defining inventorship. The methodology includes examining case studies and existing patents, with an emphasis on how companies like Benevolent AI and Insilico Medicine have successfully secured patent rights. Findings demonstrate that a strategic approach to patent protection is essential, with particular attention to showcasing AI’s technical contributions to pharmaceutical advancements. Conclusively, the study underscores the critical role of understanding patent law and innovation strategies in leveraging intellectual property rights in the rapidly advancing field of AI-driven pharmaceuticals.

Keywords: artificial intelligence, pharmaceutical industry, patent protection, drug discovery, personalized medicine, clinical trials, intellectual property, non-obviousness

Procedia PDF Downloads 13
18922 Artificial Intelligence as a User of Copyrighted Work: Descriptive Study

Authors: Dominika Collett

Abstract:

AI applications, such as machine learning, require access to a vast amount of data in the training phase, which can often be the subject of copyright protection. During later usage, the various content with which the application works can be recorded or made available on the basis of which it produces the resulting output. The EU has recently adopted new legislation to secure machine access to protected works under the DSM Directive; but, the issue of machine use of copyright works is not clearly addressed. However, such clarity is needed regarding the increasing importance of AI and its development. Therefore, this paper provides a basic background of the technology used in the development of applications in the field of computer creativity. The second part of the paper then will focus on a legal analysis of machine use of the authors' works from the perspective of existing European and Czech legislation. The main results of the paper discuss the potential collision of existing legislation in regards to machine use of works with special focus on exceptions and limitations. The legal regulation of machine use of copyright work will impact the development of AI technology.

Keywords: copyright, artificial intelligence, legal use, infringement, Czech law, EU law, text and data mining

Procedia PDF Downloads 124
18921 Community Benefitting through Tourism: DASTA-Thailand Model

Authors: Jutamas Wisansing, Thanakarn Vongvisitsin, Udom Hongchatikul

Abstract:

Designated Areas for Sustainable Tourism Administration (DASTA) is a public organization, dedicating to sustainable tourism development in 6 designated areas in Thailand. This paper provides rich reflections from a decade of DASTA, formulating an advanced model to deepen our understanding of 2 key intertwining issues; 1) what are the new landscapes of actors for community based tourism and 2) who are the benefactors and beneficiaries of tourism development within the community? An action research approach was used, enabling the process and evidence-based cases to be better captured. The aim is to build theoretical foundation through 13 communities/cases, which have engaged in community based tourism pilot projects. Drawing from emic and qualitative research, specific and contextual phenomenon provides succinct patterns of ‘Community Benefitting through Tourism (CbtT)’ model. The re-definition of the 2 key issues helps shape the interlinking of actors; practicalities of inclusive tourism and inter-sectoral framework and its value chain will also be set forth. In tourism sector, community members could be active primarily on the supply side as employees, entrepreneurs and local heritage experts. CbtT when well defined stimulates the entire value chain of local economy while promoting social innovation through positive dialogue with wider actors. Collaboration with a new set of actors who are from the tourism-related businesses and non-tourism related businesses create better impacts on mutual benefits.

Keywords: community based tourism, community benefitting through tourism -CbtT DASTA model, sustainable tourism in thailand, value chain and inclusive business

Procedia PDF Downloads 299
18920 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model

Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu

Abstract:

Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies

Keywords: crop yield, roughness coefficient, PAR, WRM model

Procedia PDF Downloads 409
18919 I, Me and the Bot: Forming a Theory of Symbolic Interactivity with a Chatbot

Authors: Felix Liedel

Abstract:

The rise of artificial intelligence has numerous and far-reaching consequences. In addition to the obvious consequences for entire professions, the increasing interaction with chatbots also has a wide range of social consequences and implications. We are already increasingly used to interacting with digital chatbots, be it in virtual consulting situations, creative development processes or even in building personal or intimate virtual relationships. A media-theoretical classification of these phenomena has so far been difficult, partly because the interactive element in the exchange with artificial intelligence has undeniable similarities to human-to-human communication but is not identical to it. The proposed study, therefore, aims to reformulate the concept of symbolic interaction in the tradition of George Herbert Mead as symbolic interactivity in communication with chatbots. In particular, Mead's socio-psychological considerations will be brought into dialog with the specific conditions of digital media, the special dispositive situation of chatbots and the characteristics of artificial intelligence. One example that illustrates this particular communication situation with chatbots is so-called consensus fiction: In face-to-face communication, we use symbols on the assumption that they will be interpreted in the same or a similar way by the other person. When briefing a chatbot, it quickly becomes clear that this is by no means the case: only the bot's response shows whether the initial request corresponds to the sender's actual intention. This makes it clear that chatbots do not just respond to requests. Rather, they function equally as projection surfaces for their communication partners but also as distillations of generalized social attitudes. The personalities of the chatbot avatars result, on the one hand, from the way we behave towards them and, on the other, from the content we have learned in advance. Similarly, we interpret the response behavior of the chatbots and make it the subject of our own actions with them. In conversation with the virtual chatbot, we enter into a dialog with ourselves but also with the content that the chatbot has previously learned. In our exchanges with chatbots, we, therefore, interpret socially influenced signs and behave towards them in an individual way according to the conditions that the medium deems acceptable. This leads to the emergence of situationally determined digital identities that are in exchange with the real self but are not identical to it: In conversation with digital chatbots, we bring our own impulses, which are brought into permanent negotiation with a generalized social attitude by the chatbot. This also leads to numerous media-ethical follow-up questions. The proposed approach is a continuation of my dissertation on moral decision-making in so-called interactive films. In this dissertation, I attempted to develop a concept of symbolic interactivity based on Mead. Current developments in artificial intelligence are now opening up new areas of application.

Keywords: artificial intelligence, chatbot, media theory, symbolic interactivity

Procedia PDF Downloads 52
18918 Intelligent Software Architecture and Automatic Re-Architecting Based on Machine Learning

Authors: Gebremeskel Hagos Gebremedhin, Feng Chong, Heyan Huang

Abstract:

Software system is the combination of architecture and organized components to accomplish a specific function or set of functions. A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture. The main aim of this paper is to analyze prove architecture design and automatic re-architecting using machine learning. Intelligence software architecture and automatic re-architecting process is reorganizing in to more suitable one of the software organizational structure system using the user access dataset for creating relationship among the components of the system. The 3-step approach of data mining was used to analyze effective recovery, transformation and implantation with the use of clustering algorithm. Therefore, automatic re-architecting without changing the source code is possible to solve the software complexity problem and system software reuse.

Keywords: intelligence, software architecture, re-architecting, software reuse, High level design

Procedia PDF Downloads 119
18917 Emotion Mining and Attribute Selection for Actionable Recommendations to Improve Customer Satisfaction

Authors: Jaishree Ranganathan, Poonam Rajurkar, Angelina A. Tzacheva, Zbigniew W. Ras

Abstract:

In today’s world, business often depends on the customer feedback and reviews. Sentiment analysis helps identify and extract information about the sentiment or emotion of the of the topic or document. Attribute selection is a challenging problem, especially with large datasets in actionable pattern mining algorithms. Action Rule Mining is one of the methods to discover actionable patterns from data. Action Rules are rules that help describe specific actions to be made in the form of conditions that help achieve the desired outcome. The rules help to change from any undesirable or negative state to a more desirable or positive state. In this paper, we present a Lexicon based weighted scheme approach to identify emotions from customer feedback data in the area of manufacturing business. Also, we use Rough sets and explore the attribute selection method for large scale datasets. Then we apply Actionable pattern mining to extract possible emotion change recommendations. This kind of recommendations help business analyst to improve their customer service which leads to customer satisfaction and increase sales revenue.

Keywords: actionable pattern discovery, attribute selection, business data, data mining, emotion

Procedia PDF Downloads 199
18916 The Role of Artificial Intelligence in Criminal Procedure

Authors: Herke Csongor

Abstract:

The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.

Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment

Procedia PDF Downloads 38
18915 Numerical Modeling of the Depth-Averaged Flow over a Hill

Authors: Anna Avramenko, Heikki Haario

Abstract:

This paper reports the development and application of a 2D depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. K-E and 2D LES turbulence models were consider in this article. 2D CFD simulations for one hill was done to check the depth-averaged model in practise.

Keywords: depth-averaged equations, numerical modeling, CFD, wind park model

Procedia PDF Downloads 603
18914 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution

Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino

Abstract:

This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.

Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization

Procedia PDF Downloads 136
18913 Screening Diversity: Artificial Intelligence and Virtual Reality Strategies for Elevating Endangered African Languages in the Film and Television Industry

Authors: Samuel Ntsanwisi

Abstract:

This study investigates the transformative role of Artificial Intelligence (AI) and Virtual Reality (VR) in the preservation of endangered African languages. The study is contextualized within the film and television industry, highlighting disparities in screen representation for certain languages in South Africa, underscoring the need for increased visibility and preservation efforts; with globalization and cultural shifts posing significant threats to linguistic diversity, this research explores approaches to language preservation. By leveraging AI technologies, such as speech recognition, translation, and adaptive learning applications, and integrating VR for immersive and interactive experiences, the study aims to create a framework for teaching and passing on endangered African languages. Through digital documentation, interactive language learning applications, storytelling, and community engagement, the research demonstrates how these technologies can empower communities to revitalize their linguistic heritage. This study employs a dual-method approach, combining a rigorous literature review to analyse existing research on the convergence of AI, VR, and language preservation with primary data collection through interviews and surveys with ten filmmakers. The literature review establishes a solid foundation for understanding the current landscape, while interviews with filmmakers provide crucial real-world insights, enriching the study's depth. This balanced methodology ensures a comprehensive exploration of the intersection between AI, VR, and language preservation, offering both theoretical insights and practical perspectives from industry professionals.

Keywords: language preservation, endangered languages, artificial intelligence, virtual reality, interactive learning

Procedia PDF Downloads 61
18912 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising

Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri

Abstract:

Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.

Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing

Procedia PDF Downloads 589
18911 A Framework for Evaluating the QoS and Cost of Web Services Based on Its Functional Performance

Authors: M. Mohemmed Sha, T. Manesh, A. Ahmed Mohamed Mustaq

Abstract:

In this corporate world, the technology of Web services has grown rapidly and its significance for the development of web based applications gradually rises over time. The success of Business to Business integration rely on finding novel partners and their services in a global business environment. But the selection of the most suitable Web service from the list of services with the identical functionality is more vital. The satisfaction level of the customer and the provider’s reputation of the Web service are primarily depending on the range it reaches the customer’s requirements. In most cases the customer of the Web service feels that he is spending for the service which is undelivered. This is because the customer always thinks that the real functionality of the web service is not reached. This will lead to change of the service frequently. In this paper, a framework is proposed to evaluate the Quality of Service (QoS) and its cost that makes the optimal correlation between each other. Also this research work proposes some management decision against the functional deviancy of the web service that are guaranteed at time of selection.

Keywords: web service, service level agreement, quality of a service, cost of a service, QoS, CoS, SOA, WSLA, WsRF

Procedia PDF Downloads 419
18910 Applications of Artificial Intelligence (AI) in Cardiac imaging

Authors: Angelis P. Barlampas

Abstract:

The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.

Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine

Procedia PDF Downloads 78
18909 The Promotion of AI Technology to Financial Development in China

Authors: Li Yong

Abstract:

Using the data of 135 financial institutions in China from 2018 to 2022, this paper deeply analyzes the underlying theoretical mechanism of artificial intelligence (AI) technology promoting financial development and examines the impact of AI technology on the digital transformation performance of financial enterprises. It is found that the level of AI technology has a significant positive impact on the development of finance. Compared with the impact on the expansion of financial scale, AI technology plays a greater role in improving the performance of financial institutions, reflecting the trend characteristics of the current AI technology to promote the evolution of financial structure. By investigating the intermediary transmission effects, we found that AI technology plays a positive role in promoting the performance of financial institutions by reducing operating costs and improving customer satisfaction, but its function in innovating financial products and mitigating financial risks is relatively limited. In addition, the promotion of AI technology in financial development has significant heterogeneity in terms of the type, scale, and attributes of financial institutions.

Keywords: artificial intelligence technology, financial development, China, heterogeneity

Procedia PDF Downloads 65
18908 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 88