Search results for: sustainable water solutions
1653 Ayurvastra: A Study on the Ancient Indian Textile for Healing
Authors: Reena Aggarwal
Abstract:
The use of textile chemicals in the various pre and post-textile manufacturing processes has made the textile industry conscious of its negative contribution to environmental pollution. Popular environmentally friendly fibers such as recycled polyester and organic cotton have been now increasingly used by fabrics and apparel manufacturers. However, after these textiles or the finished apparel are manufactured, they have to be dyed in the same chemical dyes that are harmful and toxic to the environment. Dyeing is a major area of concern for the environment as well as for people who have chemical sensitivities as it may cause nausea, breathing difficulties, seizures, etc. Ayurvastra or herbal medical textiles are one step ahead of the organic lifestyle, which supports the core concept of holistic well-being and also eliminates the impact of harmful chemicals and pesticides. There is a wide range of herbs that can be used not only for dyeing but also for providing medicinal properties to the textiles like antibacterial, antifungal, antiseptic, antidepressant and for treating insomnia, skin diseases, etc. The concept of herbal dyeing of fabric is to manifest herbal essence in every aspect of clothing, i.e., from production to end-use, additionally to eliminate the impact of harmful chemical dyes and chemicals which are known to result in problems like skin rashes, headache, trouble concentrating, nausea, diarrhea, fatigue, muscle and joint pain, dizziness, difficulty breathing, irregular heartbeat and seizures. Herbal dyeing or finishing on textiles will give an extra edge to the textiles as it adds an extra function to the fabric. The herbal extracts can be applied to the textiles by a simple process like the pad dry cure method and mainly acts on the human body through the skin for aiding in the treatment of disease or managing the medical condition through its herbal properties. This paper, therefore, delves into producing Ayurvastra, which is a perfect amalgamation of cloth and wellness. The aim of the paper is to design and create herbal disposable and non-disposable medical textile products acting mainly topically (through the skin) for providing medicinal properties/managing medical conditions. Keeping that in mind, a range of antifungal socks and antibacterial napkins treated with turmeric and aloe vera were developed, which are recommended for the treatment of fungal and bacterial infections, respectively. Both Herbal Antifungal socks and Antibacterial napkins have proved to be efficient enough in managing and treating fungal and bacterial infections of the skin, respectively.Keywords: ayurvastra, ayurveda, herbal, pandemic, sustainable
Procedia PDF Downloads 1301652 In vitro Assessment of Bioactive Properties and Dose-Dependent Antioxidant Activities of Commercial Grape Cultivars in Taiwan
Authors: Kandi Sridhar, Charles Albert Linton
Abstract:
Grapes are excellent sources of bioactive compounds, which have been suggested to be responsible for lowering the risk of chronic diseases. Fresh and freeze-dried extracts of Kyoho and Jubilee, commercial grape varieties available in Taiwan and attractive for their quality berries, were investigated for their total phenolics and total flavonoids contents and related dose-dependent antioxidants properties using various in vitro assays. The efficiency of the extraction yield ranged from 7.10 % to 25.53 % (w/w), depending on solvent used. Fresh samples of Kyoho and Jubilee exhibited total polyphenolic contents (351.56 ± 23.08 and 328.67 ± 16.54 µg GAE/mL, respectively), whereas Kyoho freeze-dried methanol: water extracts contains the good levels of total flavonoids (4767.82 ± 22.20 µg QE/mL). Kyoho and Jubilee freeze-dried extracts exhibited the highest total flavonoid contents. There was a weak correlation between total phenolic and flavonoid assays (r= -0.05, R2 = 0.02, p > 0.05). Kyoho fresh and freeze-dried samples showed the DPPH (11.51 – 77.82 %), superoxide scavenging activity (33.61 – 81.95 %), and total antioxidant inhibition (92.01 – 99.28 %), respectively. Total flavonoids were statistically correlated with EC50 DPPH scavenging radicals (r =0.91, p < 0.01), EC50 nitric oxide (r = 0.25, p > 0.05), and EC50 lipid peroxidation radicals (r = 0.38, p > 0.05). These results suggested that the two commercial grape cultivars in Taiwan could be used as a good source of natural antioxidants. Thus, consumption of grapes as a source antioxidant might lower the risk of chronic diseases. Moreover, future studies will investigate and develop phenolic acid profile for the cultivars in Taiwan.Keywords: antioxidants, EC50 radical scavenging activity, grape cultivars, total phenolics
Procedia PDF Downloads 1781651 Co-design Workshop Approach: Barriers and Facilitators of Using IV Iron in Anaemic Pregnant Women in Malawi - A Qualitative Study
Authors: Elisabeth Mamani-Mategula
Abstract:
Background: Anaemia has significant consequences on both the mother and child's health as it results in maternal haemorrhage, low childbirth weight, premature delivery, poor organ development, and infections at birth and hence the need for treatment. In low-middle income countries, anaemic pregnant women are recommended to take 30 mg to 60 mg of elemental iron daily throughout pregnancy which are often poorly tolerated and adhered to. A potential alternative to oral iron is intravenous (IV) iron which allows the saturation of the body’s iron stores quickly. Currently, a randomised controlled trial on the Effect of intravenous iron on Anaemia in Malawian Pregnant women (REVAMP) is underway. Since this is new in Africa and Malawi is the second country to implement it, its acceptability to both the providers and end-users is not known. Suppose the use of IV iron during pregnancy would be acceptable in Malawi, it could change how we treat and manage pregnant women with anaemia and be scaled up throughout Malawi to improve maternal and child health. Objectives: To identify the barriers and facilitators of implementing IV iron in the Malawian healthcare system and identify ‘touchpoints’ and co-develop strategies to support and inform the implementation of the trial Methodology: A qualitative study was conducted with policymakers, government partners, and health managers through in-depth interviews to identify barriers and facilitators relating to the implementation of IV iron in the health system of Malawi. From the interviews, touchpoints were identified that formed the basis of the discussion in further discussing the barriers and suggested solutions in the co-design workshops with the community members and the health workers, respectively. We purposively recruited 20 health workers (10 male, 10 Female). 20 community members (10 male, 10 female) were recruited randomly. Data was collected through group discussions and interactive sessions and was recorded through audios, flip charts, and sticky notes. We familiarized ourselves with the data and identified themes. Results: Two co-design workshops were conducted with different community members and different health worker carders. Identified individual factors included lack of knowledge about anaemia, lack of male involvement, the attitude of health workers and patient non-compliance with appointments. Community factors included myths and misconceptions about IV iron, including associating the use of IV iron with vampirism and covid 19 vaccination. Health system factors identified were a shortage of staff and equipment, unfamiliarity with IV iron and its cost. Discussion: The use of IV iron, as suggested by the community members and health workers, demands civic education through bringing awareness to end-users and training to providers. Through these co-design workshops, community sensitization and awareness, briefing and training of health workers and creation of educational materials were done.Keywords: acceptability, IV iron, barriers, facilitators, co-design
Procedia PDF Downloads 1291650 Temperature Control and Comfort Level of Elementary School Building with Green Roof in New Taipei City, Taiwan
Authors: Ying-Ming Su, Mei-Shu Huang
Abstract:
To mitigate the urban heat island effect has become a global issue facing the challenge of climate change. Through literature reviews, plant photosynthesis can reduce the carbon dioxide and mitigate the urban heat island effect relatively. Because there are not enough open space and park, green roof has become an important policy in Taiwan. We selected elementary school buildings in northern New Taipei City as research subjects since elementary school is asked priority to build green roof and important educational place to promote green roof concept. Testo 175-H1 recording device was used to record the temperature and humidity difference between roof surface and interior space below roof with and without green roof for the long-term. We also use questionnaire to investigate the awareness of comfort level of green roof and sensation of teachers and students of the elementary school. The results indicated the temperature of roof without greening was higher than that with greening about 2°C. But sometimes during noontime, the temperature of green roof was higher than that of non-green roof related to the character of the accumulation and dissipation of heat of greening probably. The temperature of interior space below green roof was normally lower than that without green roof about 1°C showed that green roof could lower the temperature. The humidity of the green roof was higher than the one without greening also indicated that green roof retained water better. Teachers liked to combine green roof concept in the curriculum, students wished all classes can take turns to maintain the green roof. Teachers and students that school had integrated green roof concept in the curriculum were more willing to participate in the maintenance work of green roof. Teachers and students who may access and touch the green roof can be more aware of the green roof benefit. We suggest architect to increase the accessibility and visibility of green roof, such as a part of the activity space. This idea can be a reference of the green roof curriculum design.Keywords: comfort level, elementary school, green roof, heat island effect
Procedia PDF Downloads 4161649 Development of Surface Modification Technology for Control Element Drive Mechanism Nozzle and Fatigue Enhancement of Ni-Based Alloys
Authors: Auezhan Amanov, Inho Cho, Young-Sik Pyun
Abstract:
Control element drive mechanism (CEDM) nozzle is manufactured as welded on the reactor vessel and currently uses Alloy 690 material. The top of the reactor is equipped with about 100 CEDM nozzles with an internal diameter of about 70 mm. Relatively large Inlet/Outlet nozzles are equipped with two outlet nozzles and four inlet nozzles on the reactor wall. The inner diameter of the nozzle is vulnerable to stress corrosion cracking (SCC), and in order to solve this problem, an ultrasonic nanocrystal surface modification (UNSM) treatment is performed on the inner diameter of the nozzle and the weld surface. The ultimate goal is to improve the service life of parts by applying compressive residual stress and suppressing primary water stress corrosion cracking (PWSCC). The main purpose is to design and fabricate a UNSM treatment device for the internal diameter processing of CEDM nozzles and inlet/outlet nozzles. In order to develop the system, the basic technology such as the development of UNSM tooling is developed and the mechanical properties and fatigue performance of before and after UNSM treatment of reactor nozzle material made of Ni-based alloys using the specimen are compared and evaluated. The inner diameter of the nozzle was treated by a newly developed UNSM treatment under the optimized treatment parameters. It was found that the mechanical properties and fatigue performance of nozzle were improved in comparison with the untreated nozzle, which may be attributed to the increase in hardness, induced compressive residual stress.Keywords: control element drive mechanism nozzle, fatigue, Ni-based alloy, ultrasonic nanocrystal surface modification, UNSM
Procedia PDF Downloads 1111648 First Breeding Populations of The Glossy Ibis (Plegadis falcinellus) in a Peri-Urban Wetland Areas (Marsh of Boussedra; North-East of Algeria)
Authors: Boudraa Wahiba, Chettibi Farah, Lahlah Naouel, Bouslama Zihad, Houhamdi Moussa
Abstract:
The marsh of Boussedra (55 ha) is a peri-urban wetland, located in the city of El - Bouni, wilaya of Annaba (North-east of the Algeria). This city hosts every year, 53 species of waterfowl, belonging to 15 different families, of which the most represented family is the Anatidae with almost 12 species. The Glossy ibis (Plegadis falcinellus) is the only representative of the family of the threskiornithidae. After a total absence for almost a decade, this species has established in North Africa and started breeding since 2000. The Glossy ibis (plegadis falcinellus), breeds with low numbers in distant areas. At the wetland of Boussedra, the population of this species was observed with numbers approaching 160 individuals. During the breeding season of 2014 (between march and july), this species bred in mixed heronries (Cattle egret Bubulcus ibis , Little egret Egretta garzetta, The black-crowned night heron Nycticorax nycticorax , Squacco heron Ardeola ralloides and Little bittern Ixobrychus minutus), where a total of 120 nests were counted. This represents the largest colony observed in North Africa. The reproduction of the studied species took place on a Tamaricaceae (Tamarix gallica), where more than 2000 nest were constructed. During this breeding season, we have monitored the colony's installation and evolution and tried to characterize the reproduction, at the urban water plan of Boussedra (measurements of nests, measurements of eggs and monitoring the growing rate and weight gaining of the chicks, since their birth until their flight).Keywords: glossy ibis, reproduction, peri-urban wetland, mixed heronry, Boussedra, Algeria
Procedia PDF Downloads 3301647 Structure Modification of Leonurine to Improve Its Potency as Aphrodisiac
Authors: Ruslin, R. E. Kartasasmita, M. S. Wibowo, S. Ibrahim
Abstract:
An aphrodisiac is a substance contained in food or drug that can arouse sexual instinct and increase pleasure while working, these substances derived from plants, animals, and minerals. When consuming substances that have aphrodisiac activity and duration can improve the sexual instinct. The natural aphrodisiac effect can be obtained through plants, animals, and minerals. Leonurine compound has aphrodisiac activity, these compounds can be isolated from plants of Leonurus Sp, Sundanese people is known as deundereman, this plant is empirical has aphrodisiac activity and based on the isolation of active compounds from plants known to contain compounds leonurine, so that the compound is expected to have activity aphrodisiac. Leonurine compound can be isolated from plants or synthesized chemically with material dasa siringat acid. Leonurine compound can be obtained commercial and derivatives of these compounds can be synthesized in an effort to increase its activity. This study aims to obtain derivatives leonurine better aphrodisiac activity compared with the parent compound, modified the structure of the compounds in the form leonurin guanidino butyl ester group with butyl amin and bromoetanol. ArgusLab program version 4.0.1 is used to determine the binding energy, hydrogen bonds and amino acids involved in the interaction of the compound PDE5 receptor. The in vivo test leonurine compounds and derivatives as an aphrodisiac ingredients and hormone testosterone levels using 27 male rats Wistar strain and 9 female mice of the same species, ages ranged from 12 weeks rats weighing + 200 g / tail. The test animal is divided into 9 groups according to the type of compounds and the dose given. Each treatment group was orally administered 2 ml per day for 5 days. On the sixth day was observed male rat sexual behavior and taking blood from the heart to measure testosterone levels using ELISA technique. Statistical analysis was performed in this study is the ANOVA test Least Square Differences (LSD) using the program Statistical Product and Service Solutions (SPSS). Aphrodisiac efficacy of the leonurine compound and its derivatives have proven in silico and in vivo test, the in silico testing leonurine derivatives have smaller binding energy derivatives leonurine so that activity better than leonurine compounds. Testing in vivo using rats of wistar strain that better leonurine derivative of this compound shows leonurine that in silico studies in parallel with in vivo tests. Modification of the structure in the form of guanidine butyl ester group with butyl amin and bromoethanol increase compared leonurine compound for aphrodisiac activity, testosterone derivatives of compounds leonurine experienced a significant improvement especial is 1RD compounds especially at doses of 100 and 150 mg/bb. The results showed that the compound leonurine and its compounds contain aphrodisiac activity and increase the amount of testosterone in the blood. The compound test used in this study acts as a steroid precursor resulting in increased testosterone.Keywords: aphrodisiac dysfunction erectile leonurine 1-RD 2-RD, dysfunction, erectile leonurine, 1-RD 2-RD
Procedia PDF Downloads 2791646 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 1231645 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data
Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding
Abstract:
The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)
Procedia PDF Downloads 1511644 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System
Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko
Abstract:
Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic
Procedia PDF Downloads 611643 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures
Authors: Haytam Kasem
Abstract:
The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model
Procedia PDF Downloads 2391642 Assessing Adaptive Capacity to Climate Change and Agricultural Productivity of Farming Households of Makueni County in Kenya
Authors: Lilian Mbinya Muasa
Abstract:
Climate change is inevitable and a global challenge with long term implications to the sustainable development of many countries today. The negative impacts of climate change are creating far reaching social, economic and environmental problems threatening lives and livelihoods of millions of people in the world. Developing countries especially sub-Saharan countries are more vulnerable to climate change due to their weak ecosystem, low adaptive capacity and high dependency on rain fed agriculture. Countries in Sub-Saharan Africa are more vulnerable to climate change impacts due to their weak adaptive capacity and over-reliance on rain fed agriculture. In Kenya, 78% of the rural communities are poor farmers who heavily rely on rain fed agriculture thus are directly affected by climate change impacts.Currently, many parts of Kenya are experiencing successive droughts which are contributing to persistently unstable and declining agricultural productivity especially in semi arid eastern Kenya. As a result, thousands of rural communities repeatedly experience food insecurity which plunge them to an ever over-reliance on relief food from the government and Non-Governmental Organization In addition, they have adopted poverty coping strategies to diversify their income, for instance, deforestation to burn charcoal, sand harvesting and overgrazing which instead contribute to environmental degradation.This research was conducted in Makueni County which is classified as one of the most food insecure counties in Kenya and experiencing acute environmental degradation. The study aimed at analyzing the adaptive capacity to climate change across farming households of Makueni County in Kenya by, 1) analyzing adaptive capacity to climate change and agricultural productivity across farming households, 2) identifying factors that contribute to differences in adaptive capacity across farming households, and 3) understanding the relationship between climate change, agricultural productivity and adaptive capacity. Analytical Hierarchy Process (AHP) was applied to determine adaptive capacity and Total Factor Productivity (TFP) to determine Agricultural productivity per household. Increase in frequency of prolonged droughts and scanty rainfall. Preliminary findings indicate a magnanimous decline in agricultural production in the last 10 years in Makueni County. In addition, there is an over reliance of households on indigenous knowledge which is no longer reliable because of the unpredictability nature of climate change impacts. These findings on adaptive capacity across farming households provide the first step of developing and implementing action-oriented climate change policies in Makueni County and Kenya.Keywords: adaptive capacity, agricultural productivity, climate change, vulnerability
Procedia PDF Downloads 3261641 Biodiversity Interactions Between C3 and C4 Plants under Agroforestry Cropping System
Authors: Ezzat Abd El Lateef
Abstract:
Agroforestry means combining the management of trees with productive agricultural activities, especially in semiarid regions where crop yield increases are limited in agroforestry systems due to the fertility and microclimate improvements and the large competitive effect of trees with crops for water and nutrients, in order to assess the effect of agroforestry of some field crops with citrus trees as an approach to establish biodiversity in fruit tree plantations. Three field crops, i.e., maize, soybean and sunflower, were inter-planted with seedless orange trees (4*4 m) or were planted as solid plantings. The results for the trees indicated a larger fruit yield was obtained when soybean and sunflowers were interplant with citrus. Statistically significant effects (P<0.05) were found for maize grain and biological yields, with increased yields when grown as solid planting. There were no differences in the yields of soya bean and sunflower, where the yields were very similar between the two cropping systems. It is evident from the trials that agroforestry is an efficient concept to increase biodiversity through the interaction of trees with the interplant field crop species. Maize, unlike the other crops, was more sensitive to shade conditions under agroforestry practice and not preferred in the biodiversity system. The potential of agroforestry to improve or increase biodiversity is efficient as the understorey crops are usually C4 species, and the overstorey trees are invariably C3 species in agroforestry. Improvement in interplant species is most likely if the understorey crop is a C3 species, which are usually light saturated in the open, and partial shade may have little effect on assimilation or by a concurrent reduction in transpiration. It could be concluded that agroforestry is an efficient concept to increase biodiversity through the interaction of trees with the interplant field crop species. Some field crops could be employed successfully, like soybean or sunflowers, while others like maize are sensitive to incorporate in agroforestry system.Keywords: agroforestry, field crops, C3 and C4 plants, yield
Procedia PDF Downloads 1821640 Spatial Interactions Between Earthworm Abundance and Tree Growth Characteristics in Western Niger Delta
Authors: Olatunde Sunday Eludoyin, Charles Obiechina Olisa
Abstract:
The study examined the spatial interactions between earthworm abundance (EA) and tree growth characteristics in ecological belts of Western Niger Delta, Nigeria. Eight 20m x 20m quadrat were delimited in the natural vegetation in each of the rainforest (RF), mangrove (M), fresh water swamp (FWS), and guinea savanna (GS) ecological belts to gather data about the tree species (TS) characteristics which included individual number of tree species (IN), diversity (Di), density (De) and richness (Ri). Three quadrats of 1m x 1m were delineated in each of the 20m x 20m quadrats to collect earthworm species the topsoil (0-15cm), and subsoil (15-30cm) and were taken to laboratory for further analysis. Descriptive statistics and inferential statistics were used for data analysis. Findings showed that a total of 19 earthworm species was found, with 58.5% individual species recorded in the topsoil and 41.5% recorded in the subsoil. The total population ofEudriliuseugeniae was predominantly highest in both topsoil (38.4%) and subsoil (27.1%). The total population of individual species of earthworm was least in GS in the topsoil (11.9%) and subsoil (8.4%). A total of 40 different species of TS was recorded, of which 55.5% were recorded in FWS, while RF was significantly highest in the species diversity(0.5971). Regression analysis revealed that Ri, IN, DBH, Di, and De of trees explained 65.9% of the variability of EA in the topsoil, while 46.9 % of the variability of earthworm abundance was explained by the floristic parameters in the subsoil.Similarly, correlation statistics revealed that in the topsoil, EA is positively and significantly correlated with Ri (r=0.35; p<0.05), IN (r=0.523; p<0.05) and De (r=0.469; p<0.05) while DBH was negatively and significantly correlated with earthworm abundance (r=-0.437; p<0.05). In the subsoil, only Ri and DBH correlated significantly with EA. The study concluded that EA in the study locations was highly influenced by tree growth species especially Ri, IN, DBH, Di, and De. The study recommended that the TSabundance should be improved in the study locations to ensure the survival of earthworms for ecosystem functions.Keywords: interactions, earthworm abundance, tree growth, ecological zones, western niger delta
Procedia PDF Downloads 1001639 The Impact of Air Pollution on Health and the Environment: The Case of Cement Beni-Saf, Western Algeria
Authors: N. Hachemi, I. Benmehdi, O. Hasnaoui
Abstract:
The air like water is an essential element for living beings. Each day, a man breathes about 20m3 of air. It originally consists of a set of gas whose presence and concentrations correspond to the needs of life. This study focuses on air pollution by smoke and dust emitted from the chimney of the cement works of Beni Saf, pathological and their impact on the environment. Dust of the cement plant are harmless to permissible levels for living organisms, but the two combined phenomena namely the release of dust and aridity of the climate, which severely marked area of Beni Saf; have contributed adverse effects in on human health and the degradation of vegetation cover and species especially weakened by environmental stress. The most visible impact is certainly the deposition of dust on the surrounding areas of the cement factory, and seriously affecting the aesthetics of the landscape. Health problems are more important inside and outside the factory. Among the diseases notable caused by the cement works are: deafness, heart disease, asthma and mental. The dust of the cement works is mainly composed of fine particles of limestone, clay, free lime, silicates and also loaded of the gases such as carbon dioxide gas CO2. The accumulation of this gas in the atmosphere is directly involved in the phenomenon of increasing of greenhouse effect. Some gases, for example, are directly toxic. They can change the climate, changing precipitation types and become a greater source of stress by drought, etc. The environment also suffers from air pollution indirectly; it is more precisely the acid rain. They are produced by the combustion of non-metals in air. Acid rain has consequences for contaminating the soil, weakening the flora, fauna and acidifies lakes. Finally, the pollution problems are multiple and specific dust. It can worsen and change, it has reached epidemic proportions quantitatively and qualitatively disturbing and unpredictable.Keywords: atmospheric pollution, cement, dust, environment
Procedia PDF Downloads 3371638 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry
Authors: C. A. Barros, Ana P. Barroso
Abstract:
Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis
Procedia PDF Downloads 2141637 Generation Z: Insights into Travel Behavior
Authors: Joao Ferreira Do Rosario, Nuno Gustavo, Ana Machado, Lurdes Calisto, Luisa Carvalho, Georgette Andraz
Abstract:
Currently, tourism small and medium enterprises (TSMEs) face serious economic and financial problems, making recovery efforts difficult. How the pandemic will affect tourists' behavior is still to be known. Will tourists be even more cautious regarding their choices or, on the contrary, will they be more adventurers with an enormous desire to travel in search of the lost freedom? Tourists may become even more demanding when traveling, more austere, or less concerned and eager to socialize. Adjusting to this "new tourist" is an added challenge for tourism service providers. Generation Z made up of individuals born in 1995 and following years, currently tends to assume a particular role and meaning in the present and future economic and social context, considering that we are facing the youngest workforce as well as tomorrow's consumers. This generation is distinguished from others as it is the first generation to combine a high level of education and technological knowledge and to fully experience the digital world. These young people are framed by a new value system that can explain new behaviours and consumption, namely, in the context of tourism. All these considerations point to the importance of investigating this target group as it is essential to understand how these individuals perceive, understand, act, and can be involved in a new environment built around a society regulated by new priorities and challenges of a sustainable nature. This leads not only to a focus on short-term market choices but mainly to predict future choices from a longer-term perspective. Together with the social background of a person, values are considered a stable antecedent of behavior and might therefore predict not just immediate, but also future choices. Furthermore, the meaning attributed to travel has a general connotation and goes beyond a specific travel choice or experience. In other words, values and travel's meaning form a chain of influences on the present and future travel behavior. This study explores the social background and values of Generation Z travelers vs the meaning these tourists give to travel. The aim is to discover in their present behavior cues to predict travel choices so that the future of tourism can be secured. This study also provides data for predicting the tourism choices of youngsters in the more immediate future. Methodologically, a quantitative approach was adopted based on the collection of data through a survey. Since academic research on Generation Z of tourists is still scarce, it is expected to contribute to deepening scientific knowledge in this area. Furthermore, it is expected that this research will support tourism professionals in defining differentiated marketing strategies and adapted to the requirements of this target, in a new time.Keywords: Generation Z, travel behavior, travel meaning, Generation Z Values
Procedia PDF Downloads 2241636 Improved Signal-To-Noise Ratio by the 3D-Functionalization of Fully Zwitterionic Surface Coatings
Authors: Esther Van Andel, Stefanie C. Lange, Maarten M. J. Smulders, Han Zuilhof
Abstract:
False outcomes of diagnostic tests are a major concern in medical health care. To improve the reliability of surface-based diagnostic tests, it is of crucial importance to diminish background signals that arise from the non-specific binding of biomolecules, a process called fouling. The aim is to create surfaces that repel all biomolecules except the molecule of interest. This can be achieved by incorporating antifouling protein repellent coatings in between the sensor surface and it’s recognition elements (e.g. antibodies, sugars, aptamers). Zwitterionic polymer brushes are considered excellent antifouling materials, however, to be able to bind the molecule of interest, the polymer brushes have to be functionalized and so far this was only achieved at the expense of either antifouling or binding capacity. To overcome this limitation, we combined both features into one single monomer: a zwitterionic sulfobetaine, ensuring antifouling capabilities, equipped with a clickable azide moiety which allows for further functionalization. By copolymerizing this monomer together with a standard sulfobetaine, the number of azides (and with that the number of recognition elements) can be tuned depending on the application. First, the clickable azido-monomer was synthesized and characterized, followed by copolymerizing this monomer to yield functionalizable antifouling brushes. The brushes were fully characterized using surface characterization techniques like XPS, contact angle measurements, G-ATR-FTIR and XRR. As a proof of principle, the brushes were subsequently functionalized with biotin via strain-promoted alkyne azide click reactions, which yielded a fully zwitterionic biotin-containing 3D-functionalized coating. The sensing capacity was evaluated by reflectometry using avidin and fibrinogen containing protein solutions. The surfaces showed excellent antifouling properties as illustrated by the complete absence of non-specific fibrinogen binding, while at the same time clear responses were seen for the specific binding of avidin. A great increase in signal-to-noise ratio was observed, even when the amount of functional groups was lowered to 1%, compared to traditional modification of sulfobetaine brushes that rely on a 2D-approach in which only the top-layer can be functionalized. This study was performed on stoichiometric silicon nitride surfaces for future microring resonator based assays, however, this methodology can be transferred to other biosensor platforms which are currently being investigated. The approach presented herein enables a highly efficient strategy for selective binding with retained antifouling properties for improved signal-to-noise ratios in binding assays. The number of recognition units can be adjusted to a specific need, e.g. depending on the size of the analyte to be bound, widening the scope of these functionalizable surface coatings.Keywords: antifouling, signal-to-noise ratio, surface functionalization, zwitterionic polymer brushes
Procedia PDF Downloads 3061635 Opportunities and Challenges in Midwifery Education: A Literature Review
Authors: Abeer M. Orabi
Abstract:
Midwives are being seen as a key factor in returning birth care to a normal physiologic process that is woman-centered. On the other hand, more needs to be done to increase access for every woman to professional midwifery care. Because of the nature of the midwifery specialty, the magnitude of the effect that can result from a lack of knowledge if midwives make a mistake in their care has the potential to affect a large number of the birthing population. So, the development, running, and management of midwifery educational programs should follow international standards and come after a thorough community needs assessment. At the same time, the number of accredited midwifery educational programs needs to be increased so that larger numbers of midwives will be educated and qualified, as well as access to skilled midwifery care will be increased. Indeed, the selection of promising midwives is important for the successful completion of an educational program, achievement of the program goals, and retention of graduates in the field. Further, the number of schooled midwives in midwifery education programs, their background, and their experience constitute some concerns in the higher education industry. Basically, preceptors and clinical sites are major contributors to the midwifery education process, as educational programs rely on them to provide clinical practice opportunities. In this regard, the selection of clinical training sites should be based on certain criteria to ensure their readiness for the intended training experiences. After that, communication, collaboration, and liaison between teaching faculty and field staff should be maintained. However, the shortage of clinical preceptors and the massive reduction in the number of practicing midwives, in addition to unmanageable workloads, act as significant barriers to midwifery education. Moreover, the medicalized approach inherent in the hospital setting makes it difficult to practice the midwifery model of care, such as watchful waiting, non-interference in normal processes, and judicious use of interventions. Furthermore, creating a motivating study environment is crucial for avoiding unnecessary withdrawal and retention in any educational program. It is well understood that research is an essential component of any profession for achieving its optimal goal and providing a foundation and evidence for its practices, and midwifery is no exception. Midwives have been playing an important role in generating their own research. However, the selection of novel, researchable, and sustainable topics considering community health needs is also a challenge. In conclusion, ongoing education and research are the lifeblood of the midwifery profession to offer a highly competent and qualified workforce. However, many challenges are being faced, and barriers are hindering their improvement.Keywords: barriers, challenges, midwifery education, educational programs
Procedia PDF Downloads 1151634 Virtual Learning during the Period of COVID-19 Pandemic at a Saudi University
Authors: Ahmed Mohammed Omer Alghamdi
Abstract:
Since the COVID-19 pandemic started, a rapid, unexpected transition from face-to-face to virtual classroom (VC) teaching has involved several challenges and obstacles. However, there are also opportunities and thoughts that need to be examined and discussed. In addition, the entire world is witnessing that the teaching system and, more particularly, higher education institutes have been interrupted. To maintain the learning and teaching practices as usual, countries were forced to transition from traditional to virtual classes using various technology-based devices. In this regard, the Kingdom of Saudi Arabia (KSA) is no exception. Focusing on how the current situation has forced many higher education institutes to change to virtual classes may possibly provide a clear insight into adopted practices and implications. The main purpose of this study, therefore, was to investigate how both Saudi English as a foreign language (EFL) teachers and students perceived the implementation of virtual classes as a key factor for useful language teaching and learning process during the COVID-19 pandemic period at a Saudi university. The impetus for the research was, therefore, the need to find ways of identifying the deficiencies in this application and to suggest possible solutions that might rectify those deficiencies. This study seeks to answer the following overarching research question: “How do Saudi EFL instructors and students perceive the use of virtual classes during the COVID-19 pandemic period in their language teaching and learning context?” The following sub-questions are also used to guide the design of the study to answer the main research question: (1) To what extent are virtual classes important intra-pandemic from Saudi EFL instructors’ and students’ perspectives? (2) How effective are virtual classes for fostering English language students’ achievement? (3) What are the challenges and obstacles that instructors and students may face during the implementation of virtual teaching? A mixed method approach was employed in this study; the questionnaire data collection represented the quantitative method approach for this study, whereas the transcripts of recorded interviews represented the qualitative method approach. The participants included EFL teachers (N = 4) and male and female EFL students (N = 36). Based on the findings of this study, various aspects from teachers' and students’ perspectives were examined to determine the use of the virtual classroom applications in terms of fulfilling the students’ English language learning needs. The major findings of the study revealed that the virtual classroom applications during the current pandemic situation encountered three major challenges, among which the existence of the following essential aspects, namely lack of technology and an internet connection, having a large number of students in a virtual classroom and lack of students’ and teachers’ interactions during the virtual classroom applications. Finally, the findings indicated that although Saudi EFL students and teachers view the virtual classrooms in a positive light during the pandemic period, they reported that for long and post-pandemic period, they preferred the traditional face-to-face teaching procedure.Keywords: virtual classes, English as a foreign language, COVID-19, Internet, pandemic
Procedia PDF Downloads 861633 Insights into Particle Dispersion, Agglomeration and Deposition in Turbulent Channel Flow
Authors: Mohammad Afkhami, Ali Hassanpour, Michael Fairweather
Abstract:
The work described in this paper was undertaken to gain insight into fundamental aspects of turbulent gas-particle flows with relevance to processes employed in a wide range of applications, such as oil and gas flow assurance in pipes, powder dispersion from dry powder inhalers, and particle resuspension in nuclear waste ponds, to name but a few. In particular, the influence of particle interaction and fluid phase behavior in turbulent flow on particle dispersion in a horizontal channel is investigated. The mathematical modeling technique used is based on the large eddy simulation (LES) methodology embodied in the commercial CFD code FLUENT, with flow solutions provided by this approach coupled to a second commercial code, EDEM, based on the discrete element method (DEM) which is used for the prediction of particle motion and interaction. The results generated by LES for the fluid phase have been validated against direct numerical simulations (DNS) for three different channel flows with shear Reynolds numbers, Reτ = 150, 300 and 590. Overall, the LES shows good agreement, with mean velocities and normal and shear stresses matching those of the DNS in both magnitude and position. The research work has focused on the prediction of those conditions favoring particle aggregation and deposition within turbulent flows. Simulations have been carried out to investigate the effects of particle size, density and concentration on particle agglomeration. Furthermore, particles with different surface properties have been simulated in three channel flows with different levels of flow turbulence, achieved by increasing the Reynolds number of the flow. The simulations mimic the conditions of two-phase, fluid-solid flows frequently encountered in domestic, commercial and industrial applications, for example, air conditioning and refrigeration units, heat exchangers, oil and gas suction and pressure lines. The particle size, density, surface energy and volume fractions selected are 45.6, 102 and 150 µm, 250, 1000 and 2159 kg m-3, 50, 500, and 5000 mJ m-2 and 7.84 × 10-6, 2.8 × 10-5, and 1 × 10-4, respectively; such particle properties are associated with particles found in soil, as well as metals and oxides prevalent in turbulent bounded fluid-solid flows due to erosion and corrosion of inner pipe walls. It has been found that the turbulence structure of the flow dominates the motion of the particles, creating particle-particle interactions, with most of these interactions taking place at locations close to the channel walls and in regions of high turbulence where their agglomeration is aided both by the high levels of turbulence and the high concentration of particles. A positive relationship between particle surface energy, concentration, size and density, and agglomeration was observed. Moreover, the results derived for the three Reynolds numbers considered show that the rate of agglomeration is strongly influenced for high surface energy particles by, and increases with, the intensity of the flow turbulence. In contrast, for lower surface energy particles, the rate of agglomeration diminishes with an increase in flow turbulence intensity.Keywords: agglomeration, channel flow, DEM, LES, turbulence
Procedia PDF Downloads 3171632 Establishment of High-Temperature Simultaneous Saccharification and Fermentation Process by Co-Culturing of Thermally Adapted Thermosensitive Saccharomyces Cerevisiae and Bacillus amyloliquefaciens
Authors: Ali Azam Talukder, Jamsheda Ferdous Tuli, Tanzina Islam Reba, Shuvra Kanti Dey, Mamoru Yamada
Abstract:
Recent global warming created by various pollutants prompted us to find new energy sources instead of fossil fuels. Fossil fuels are one of the key factors to emit various toxic gases in this planet. To solve this problem, along with the scarcity of the worldwide energy crisis, scientists are looking for various alternative options to mitigate the necessity of required future fuels. In this context, bioethanol can be one of the most suitable alternative energy sources. Bioethanol is a renewable, environment-friendly and carbon-neutral sustainable energy. In our previous study, we identified several bioethanol-producing microbes from the natural fermented sources of Bangladesh. Among them, the strain 4C encoded Saccharomyces cerevisiae produced maximum bioethanol when the fermentation temperature was 25˚C. In this study, we have established high-temperature simultaneous saccharification and fermentation process (HTSSF) by co-culturing of thermally adapted thermosensitive 4C as a fermenting agent and Bacillus amyloliquefaciens (C7), as a saccharifying agent under various physiological conditions or treatments. Conventional methods were applied for cell culture, media preparation and other experimental purposes. High-temperature adaptation of strain 4C was made from 30-42ᵒC, using either YPD or YPS media. In brief, for thermal adaptation, the temperature was periodically increased by 2ᵒC, 1ᵒC and 0.5ᵒC when medium growth temperatures were 30-36ᵒC, 36-40ᵒC, and 40-42ᵒC, respectively, where applicable. Amylase activity and bioethanol content were measured by DNS (3, 5-dinitrosalicylic acid) and solvent extraction and dichromate oxidation method, respectively. Among the various growth parameters like temperatures (30˚C, 37˚C and 42˚C), pHs (5.0, 6.0 and 7.0), carbon sources (5.0-10.0%) and ethanol stress tolerance (0.0-12.0%) etc. were tested, maximum Amylase activity (4.0 IU/ml/min) was recorded for Bacillus amyloliquefaciens (C7) at 42˚C, pH 6.0 and 10% starch. On the other hand, 4.10% bioethanol content was recorded when the thermally adapted strain 4C was co-cultured with C7 at 37ᵒC, pH 6.0 and 10.0% starch for 72 hours at HTSSF process. On the other hand, thermally non-adapted strains gave only 0.5-2.0% bioethanol content under the same physiological conditions. The thermally adapted strain 4C and strain C7, both can tolerate ethanol stress up to 12%. Altogether, a comparative study revealed that our established HTSSF process may be suitable for pilot scale and subsequently at industrial level bioethanol production.Keywords: bioethanol, co-culture, fermentation, saccharification
Procedia PDF Downloads 851631 White Wine Discrimination Based on Deconvoluted Surface Enhanced Raman Spectroscopy Signals
Authors: Dana Alina Magdas, Nicoleta Simona Vedeanu, Ioana Feher, Rares Stiufiuc
Abstract:
Food and beverages authentication using rapid and non-expensive analytical tools represents nowadays an important challenge. In this regard, the potential of vibrational techniques in food authentication has gained an increased attention during the last years. For wines discrimination, Raman spectroscopy appears more feasible to be used as compared with IR (infrared) spectroscopy, because of the relatively weak water bending mode in the vibrational spectroscopy fingerprint range. Despite this, the use of Raman technique in wine discrimination is in an early stage. Taking this into consideration, the wine discrimination potential of surface-enhanced Raman scattering (SERS) technique is reported in the present work. The novelty of this study, compared with the previously reported studies, concerning the application of vibrational techniques in wine discrimination consists in the fact that the present work presents the wines differentiation based on the individual signals obtained from deconvoluted spectra. In order to achieve wines classification with respect to variety, geographical origin and vintage, the peaks intensities obtained after spectra deconvolution were compared using supervised chemometric methods like Linear Discriminant Analysis (LDA). For this purpose, a set of 20 white Romanian wines from different viticultural Romanian regions four varieties, was considered. Chemometric methods applied directly to row SERS experimental spectra proved their efficiency, but discrimination markers identification found to be very difficult due to the overlapped signals as well as for the band shifts. By using this approach, a better general view related to the differences that appear among the wines in terms of compositional differentiation could be reached.Keywords: chemometry, SERS, variety, wines discrimination
Procedia PDF Downloads 1601630 Investigating the Key Success Factors of Supplier Collaboration Governance in the Aerospace Industry
Authors: Maria Jose Granero Paris, Ana Isabel Jimenez Zarco, Agustin Pablo Alvarez Herranz
Abstract:
In the industrial sector collaboration with suppliers is key to the development of innovations in the field of processes. Access to resources and expertise that are not available in the business, obtaining a cost advantage, or the reduction of the time needed to carry out innovation are some of the benefits associated with the process. However, the success of this collaborative process is compromised, when from the beginning not clearly rules have been established that govern the relationship. Abundant studies developed in the field of innovation emphasize the strategic importance of the concept of “Governance”. Despite this, there have been few papers that have analyzed how the governance process of the relationship must be designed and managed to ensure the success of the collaboration process. The lack of literature in this area responds to the wide diversity of contexts where collaborative processes to innovate take place. Thus, in sectors such as the car industry there is a strong collaborative tradition between manufacturers and suppliers being part of the value chain. In this case, it is common to establish mechanisms and procedures that fix formal and clear objectives to regulate the relationship, and establishes the rights and obligations of each of the parties involved. By contrast, in other sectors, collaborative relationships to innovate are not a common way of working, particularly when their aim is the development of process improvements. It is in this case, it is when the lack of mechanisms to establish and regulate the behavior of those involved, can give rise to conflicts, and the failure of the cooperative relationship. Because of this the present paper analyzes the similarities and differences in the processes of governance in collaboration with suppliers in the European aerospace industry With these ideas in mind, we present research is twofold: Understand the importance of governance as a key element of the success of the collaboration in the development of product and process innovations, Establish the mechanisms and procedures to ensure the proper management of the processes of collaboration. Following the methodology of the case study, we analyze the way in which manufacturers and suppliers cooperate in the development of new products and processes in two industries with different levels of technological intensity and collaborative tradition: the automotive and aerospace. The identification of those elements playing a key role to establish a successful governance and relationship management and the compression of the mechanisms of regulation and control in place at the automotive sector can be use to propose solutions to some of the conflicts that currently arise in aerospace industry. The paper concludes by analyzing the strategic implications for the aerospace industry entails the adoption of some of the practices traditionally used in other industrial sectors. Finally, it is important to highlight that in this paper are presented the first results of a research project currently in progress describing a model of governance that explains the way to manage outsourced services to suppliers in the European aerospace industry, through the analysis of companies in the sector located in Germany, France and Spain.Keywords: supplier collaboration, supplier relationship governance, innovation management, product innovation, process innovation
Procedia PDF Downloads 4591629 Substitution of Phosphate with Liquid Smoke as a Binder on the Quality of Chicken Nugget
Authors: E. Abustam, M. Yusuf, M. I. Said
Abstract:
One of functional properties of the meat is decrease of water holding capacity (WHC) during rigor mortis. At the time of pre-rigor, WHC is higher than post-rigor. The decline of WHC has implication to the other functional properties such as decreased cooking lost and yields resulting in lower elasticity and compactness of processed meat product. In many cases, the addition of phosphate in the meat will increase the functional properties of the meat such as WHC. Furthermore, liquid smoke has also been known in increasing the WHC of fresh meat. For food safety reasons, liquid smoke in the present study was used as a substitute to phosphate in production of chicken nuggets. This study aimed to know the effect of substitution of phosphate with liquid smoke on the quality of nuggets made from post-rigor chicken thigh and breast. The study was arranged using completely randomized design of factorial pattern 2x3 with three replications. Factor 1 was thigh and breast parts of the chicken, and factor 2 was different levels of liquid smoke in substitution to phosphate (0%, 50%, and 100%). The thigh and breast post-rigor broiler aged 40 days were used as the main raw materials in making nuggets. Auxiliary materials instead of meat were phosphate, liquid smoke at concentration of 10%, tapioca flour, salt, eggs and ice. Variables measured were flexibility, shear force value, cooking loss, elasticity level, and preferences. The results of this study showed that the substitution of phosphate with 100% liquid smoke resulting high quality nuggets. Likewise, the breast part of the meat showed higher quality nuggets than thigh part. This is indicated by high elasticity, low shear force value, low cooking loss, and a high level of preference of the nuggets. It can be concluded that liquid smoke can be used as a binder in making nuggets of chicken post-rigor.Keywords: liquid smoke, nugget quality, phosphate, post-rigor
Procedia PDF Downloads 2411628 In Response to Worldwide Disaster: Academic Libraries’ Functioning During COVID-19 Pandemic Without a Policy
Authors: Dalal Albudaiwi, Mike Allen, Talal Alhaji, Shahnaz Khadimehzadah
Abstract:
As a pandemic, COVID-19 has impacted the whole world since November 2019. In other words, every organization, industry, and institution has been negatively affected by the Coronavirus. The uncertainty of how long the pandemic will last caused chaos at all levels. As with any other institution, public libraries were affected and transmitted into online services and resources. As internationally, have been witnessed that some public libraries were well-prepared for such disasters as the pandemic, and therefore, collections, users, services, technologies, staff, and budgets were all influenced. Public libraries’ policies did not mention any plan regarding such a pandemic. Instead, there are several rules in the guidelines about disasters in general, such as natural disasters. In this pandemic situation, libraries have been involved in different uneasy circumstances. However, it has always been apparent to public libraries the role they play in serving their communities in excellent and critical times. It dwells into the traditional role public libraries play in providing information services and sources to satisfy their information-based community needs. Remarkably increasing people’s awareness of the importance of informational enrichment and enhancing society’s skills in dealing with information and information sources. Under critical circumstances, libraries play a different role. It goes beyond the traditional part of information providers to the untraditional role of being a social institution that serves the community with whatever capabilities they have. This study takes two significant directions. The first focuses on investigating how libraries have responded to COVID-19 and how they manage disasters within their organization. The second direction focuses on how libraries help their communities to act during disasters and how to recover from the consequences. The current study examines how libraries prepare for disasters and the role of public libraries during disasters. We will also propose “measures” to be a model that libraries can use to evaluate the effectiveness of their response to disasters. We intend to focus on how libraries responded to this new disaster. Therefore, this study aims to develop a comprehensive policy that includes responding to a crisis such as Covid-19. An analytical lens inside the libraries as an organization and outside the organization walls will be documented based on analyzing disaster-related literature published in the LIS publication. The study employs content analysis (CA) methodology. CA is widely used in the library and information science. The critical contribution of this work is to propose solutions it provides to libraries and planers to prepare crisis management plans/ policies, specifically to face a new global disaster such as the COVID-19 pandemic. Moreover, the study will help library directors to evaluate their strategies and to improve them properly. The significance of this study lies in guiding libraries’ directors to enhance the goals of the libraries to guarantee crucial issues such as: saving time, avoiding loss, saving budget, acting quickly during a crisis, maintaining libraries’ role during pandemics, finding out the best response to disasters, and creating plan/policy as a sample for all libraries.Keywords: Covid-19, policy, preparedness, public libraries
Procedia PDF Downloads 801627 Evaluating the Dosimetric Performance for 3D Treatment Planning System for Wedged and Off-Axis Fields
Authors: Nashaat A. Deiab, Aida Radwan, Mohamed S. Yahiya, Mohamed Elnagdy, Rasha Moustafa
Abstract:
This study is to evaluate the dosimetric performance of our institution's 3D treatment planning system for wedged and off-axis 6MV photon beams, guided by the recommended QA tests documented in the AAPM TG53; NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Ten tests were applied on solid water equivalent phantom along with 2D array dose detection system. The calculated doses using 3D treatment planning system PrecisePLAN were compared with measured doses to make sure that the dose calculations are accurate for simple situations such as square and elongated fields, different SSD, beam modifiers e.g. wedges, blocks, MLC-shaped fields and asymmetric collimator settings. The QA results showed dosimetric accuracy of the TPS within the specified tolerance limits. Except for large elongated wedged field, the central axis and outside central axis have errors of 0.2% and 0.5%, respectively, and off- planned and off-axis elongated fields the region outside the central axis of the beam errors are 0.2% and 1.1%, respectively. The dosimetric investigated results yielded differences within the accepted tolerance level as recommended. Differences between dose values predicted by the TPS and measured values at the same point are the result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.Keywords: quality assurance, dose calculation, wedged fields, off-axis fields, 3D treatment planning system, photon beam
Procedia PDF Downloads 4461626 Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines
Authors: Eliza. E. Camaso, Guiller. B. Damian, Miguelito. F. Isip, Ronaldo T. Alberto
Abstract:
Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline.Keywords: aerial image, landcover, LiDAR, soil fertility degradation
Procedia PDF Downloads 2521625 Subsurface Exploration for Soil Geotechnical Properties and its Implications for Infrastructure Design and Construction in Victoria Island, Lagos, Nigeria
Authors: Sunday Oladele, Joseph Oluwagbeja Simeon
Abstract:
Subsurface exploration, integrating methods of geotechnics and geophysics, of a planned construction site in the coastal city of Lagos, Nigeria has been carried out with the aim of characterizing the soil properties and their implication for the proposed infrastructural development. Six Standard Penetration Tests (SPT), fourteen Dutch Cone Penetrometer Tests (DCPT) and 2D Electrical Resistivity Imaging employing Dipole-dipole and Pole-dipole arrays were implemented on the site. The topsoil (0 - 4m) consists of highly compacted sandy lateritic clay(10 to 5595Ωm) to 1.25m in some parts and dense sand in other parts to 5.50m depth. This topsoil was characterized as a material of very high shear strength (≤ 150kg/m2) and allowable bearing pressure value of 54kN/m2 to 85kN/m2 and a safety factor of 2.5. Soft amorphous peat/peaty clay (0.1 to 11.4Ωm), 3-6m thick, underlays the lateritic clay to about 18m depth. Grey, medium dense to very dense sand (0.37 to 2387Ωm) with occasional gravels underlies the peaty clay down to 30m depth. Within this layer, the freshwater bearing zones are characterized by high resistivity response (83 to 2387Ωm), while the clayey sand/saline water intruded sand produced subdued resistivity output (0.37 to 40Ωm). The overall ground-bearing pressure for the proposed structure would be 225kN/m2. Bored/cast-in-place pile at 18.00m depth with any of these diameters and respective safe working loads 600mm/1,140KN, 800mm/2,010KN and 1000mm/3,150KN is recommended for the proposed multi-story structure.Keywords: subsurface exploration, Geotechnical properties, resistivity imaging, pile
Procedia PDF Downloads 931624 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements
Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga
Abstract:
Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform
Procedia PDF Downloads 386