Search results for: cooling effect
1918 Synthesis, Characterization and Biological Properties of Half-Sandwich Complexes of Ruthenium(II), Rhodium(II) and Iridium(III)
Authors: A. Gilewska, J. Masternak, K. Kazimierczuk, L. Turlej, J. Wietrzyk, B. Barszcz
Abstract:
Platinum-based drugs are now widely used as chemotherapeutic agents. However the platinum complexes show the toxic side-effects: i) the development of platinum resistance; ii) the occurrence of severe side effects, such as nephro-, neuro- and ototoxicity; iii) the high toxicity towards human fibroblast. Therefore the development of new anticancer drugs containing different transition-metal ions, for example, ruthenium, rhodium, iridium is a valid strategy in cancer treatment. In this paper, we reported the synthesis, spectroscopic, structural and biological properties of complexes of ruthenium, rhodium, and iridium containing N,N-chelating ligand (2,2’-bisimidazole). These complexes were characterized by elemental analysis, UV-Vis and IR spectroscopy, X-ray diffraction analysis. These complexes exhibit a typical pseudotetrahedral three-legged piano-stool geometry, in which the aromatic arene ring forms the seat of the piano-stool, while the bidentate 2,2’-bisimidazole (ligand) and the one chlorido ligand form the three legs of the stool. The spectroscopy data (IR, UV-Vis) and elemental analysis correlate very well with molecular structures. Moreover, the cytotoxic activity of the complexes was carried out on human cancer cell lines: LoVo (colorectal adenoma), MV-4-11 (myelomonocytic leukaemia), MCF-7 (breast adenocarcinoma) and normal healthy mouse fibroblast BALB/3T3 cell lines. To predict a binding mode, a potential interaction of metal complexes with calf thymus DNA (CT-DNA) and protein (BSA) has been explored using UV absorption and circular dichroism (CD). It is interesting to note that the investigated complexes show no cytotoxic effect towards the normal BALB/3T3 cell line, compared to cisplatin, which IC₅₀ values was determined as 2.20 µM. Importantly, Ru(II) displayed the highest activity against HL-60 (IC₅₀ 4.35 µM). The biological studies (UV-Vis and circular dichroism) suggest that arene-complexes could interact with calf thymus DNA probably via an outside binding mode and interact with protein (BSA).Keywords: ruthenium(II) complex, rhodium(III) complex, iridium(III) complex, biological activity
Procedia PDF Downloads 1411917 The Impact of Intestinal Ischaemia-Reperfusion Injury upon the Biological Function of Mesenteric Lymph
Authors: Beth Taylor, Kojima Mituaki, Atsushi Senda, Koji Morishita, Yasuhiro Otomo
Abstract:
Intestinal ischaemia-reperfusion injury drives systemic inflammation and organ failure following trauma/haemorrhagic shock (T/HS), through the release of pro-inflammatory mediators into the mesenteric lymph (ML). However, changes in the biological function of ML are not fully understood, and therefore, a specific model of intestinal ischaemia-reperfusion injury is required to obtain ML for the study of its biological function upon inflammatory cells. ML obtained from a model of intestinal ischaemia-reperfusion injury was used to assess biological function upon inflammatory cells and investigate changes in the biological function of individual ML components. An additional model was used to determine the effect of vagal nerve stimulation (VNS) upon biological function. Rat ML was obtained by mesenteric lymphatic duct cannulation before and after occlusion of the superior mesenteric artery (SMAO). ML was incubated with human polymorphonuclear neutrophils (PMNs), monocytes and lymphocytes, and the biological function of these cells was assessed. ML was then separated into supernatant, exosome and micro-vesicle components, and biological activity was compared in monocytes. A model with an additional VNS phase was developed, in which the right cervical vagal nerve was exposed and stimulated, and ML collected for comparison of biological function with the conventional model. The biological function of ML was altered by intestinal ischaemia-reperfusion injury, increasing PMN activation, monocyte activation, and lymphocyte apoptosis. Increased monocyte activation was only induced by the exosome component of ML, with no significant changes induced by the supernatant or micro-vesicle components. VNS partially attenuated monocyte activation, but no attenuation of PMN activation was observed. Intestinal ischaemia-reperfusion injury induces changes in the biological function of ML upon both innate and adaptive inflammatory cells, supporting the role of intestinal ischaemia-reperfusion injury in driving systemic inflammation following T/HS. The exosome component of ML appears to be critical to the transport of pro-inflammatory mediators in ML. VNS partially attenuates changes in innate inflammatory cell biological activity observed, presenting possibilities for future novel treatment development in multiple organ failure patients.Keywords: exosomes, inflammation, intestinal ischaemia, mesenteric lymph, vagal stimulation
Procedia PDF Downloads 1381916 Iron Supplementation for Patients Undergoing Cardiac Surgery: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials
Authors: Matthew Cameron, Stephen Yang, Latifa Al Kharusi, Adam Gosselin, Anissa Chirico, Pouya Gholipour Baradari
Abstract:
Background: Iron supplementation has been evaluated in several randomized controlled trials (RCTs) for the potential to increase baseline hemoglobin and decrease the incidence of red blood cell (RBC) transfusion during cardiac surgery. This study's main objective was to evaluate the evidence for iron administration in cardiac surgery patients for its effect on the incidence of perioperative RBC transfusion. Methods: This systematic review protocol was registered with PROSPERO (CRD42020161927) on Dec. 19th, 2019, and was prepared as per the PRISMA guidelines. MEDLINE, EMBASE, CENTRAL, Web of Science databases, and Google Scholar were searched for RCTs evaluating perioperative iron administration in adult patients undergoing cardiac surgery. Each abstract was independently reviewed by two reviewers using predefined eligibility criteria. The primary outcome was perioperative RBC transfusion, with secondary outcomes of the number of RBC units transfused, change in ferritin level, reticulocyte count, hemoglobin, and adverse events, after iron administration. The risk of bias was assessed with the Cochrane Collaboration Risk of Bias Tool, and the primary and secondary outcomes were analyzed with a random-effects model. Results: Out of 1556 citations reviewed, five studies (n = 554 patients) met the inclusion criteria. The use of iron demonstrated no difference in transfusion incidence (RR 0.86; 95% CI 0.65 to 1.13). There was a low heterogeneity between studies (I²=0%). The trial sequential analysis suggested an optimal information size of 1132 participants, which the accrued information size did not reach. Conclusion: The current literature does not support the routine use of iron supplementation before cardiac surgery; however, insufficient data is available to draw a definite conclusion. A critical knowledge gap has been identified, and more robust RCTs are required on this topic.Keywords: cardiac surgery, iron, iron supplementation, perioperative medicine, meta-analysis, systematic review, randomized controlled trial
Procedia PDF Downloads 1341915 Evaluation of Relationship between Job Stress Dimensions with Occupational Accidents in Industrial Factories in Southwest of Iran
Authors: Ali Ahmadi, Maryam Abbasi, Mohammad Mehdi Parsaei
Abstract:
Background: Stress in the workplace today is one of the most important public health concerns and a serious threat to the health of the workforce worldwide. Occupational stress can cause occupational events and reduce quality of life. As a result, it has a very undesirable impact on the performance of organizations, companies, and their human resources. This study aimed to evaluate the relationship between job stress dimensions and occupational accidents in industrial factories in Southwest Iran. Materials and Methods: This cross-sectional study was conducted among 200 workers in the summer of 2023 in the Southwest of Iran. To select participants, we used a convenience sampling method. The research tools in this study were the Health and Safety Executive (HSE) stress questionnaire with 35 questions and 7 dimensions and demographic information. A high score on this questionnaire indicates that there is low job stress and pressure. All workers completed the informed consent form. Univariate analysis was performed using chi-square and T-test. Multiple regression analysis was used to estimate the odds ratios (OR) and 95% confidence interval (CI) for the association of stress-related factors with job accidents in participants. Stata 14.0 software was used for analysis. Results: The mean age of the participants was 39.81(6.36) years. The prevalence of job accidents was 28.0% (95%CI: 21.0, 34.0). Based on the results of the multiple logistic regression with the adjustment of the effect of the confounding variables, one increase in the score of the demand dimension had a protective impact on the risk of job accidents(aOR=0.91,95%CI:0.85-0.95). Additionally, an increase in one of the scores of the managerial support (aOR=0.89, 95% CI: 0.83-0.95) and peer support (aOR=0.76, 95%CI: 0.67-87) dimensions was associated with a lower number of job accidents. Among dimensions, an increase in the score of relationship (aOR=0.89, 95%CI: 0.80-0.98) and change (aOR=0.86, 95%CI: 0.74-0.96) reduced the odds of the accident's occurrence among the workers by 11% and 16%, respectively. However, there was no significant association between role and control dimensions and the job accident (p>0.05). Conclusions: The results show that the prevalence of job accidents was alarmingly high. Our results suggested that an increase in scores of dimensions HSE questioners is significantly associated with a decrease the accident occurrence in the workplace. Therefore, planning to address stressful factors in the workplace seems necessary to prevent occupational accidents.Keywords: HSE, Iran, job stress occupational accident, safety, occupational health
Procedia PDF Downloads 741914 Interference of Mild Drought Stress on Estimation of Nitrogen Status in Winter Wheat by Some Vegetation Indices
Authors: H. Tavakoli, S. S. Mohtasebi, R. Alimardani, R. Gebbers
Abstract:
Nitrogen (N) is one of the most important agricultural inputs affecting crop growth, yield and quality in rain-fed cereal production. N demand of crops varies spatially across fields due to spatial differences in soil conditions. In addition, the response of a crop to the fertilizer applications is heavily reliant on plant available water. Matching N supply to water availability is thus essential to achieve an optimal crop response. The objective of this study was to determine effect of drought stress on estimation of nitrogen status of winter wheat by some vegetation indices. During the 2012 growing season, a field experiment was conducted at the Bundessortenamt (German Plant Variety Office) Marquardt experimental station which is located in the village of Marquardt about 5 km northwest of Potsdam, Germany (52°27' N, 12°57' E). The experiment was designed as a randomized split block design with two replications. Treatments consisted of four N fertilization rates (0, 60, 120 and 240 kg N ha-1, in total) and two water regimes (irrigated (Irr) and non-irrigated (NIrr)) in total of 16 plots with dimension of 4.5 × 9.0 m. The indices were calculated using readings of a spectroradiometer made of tec5 components. The main parts were two “Zeiss MMS1 nir enh” diode-array sensors with a nominal rage of 300 to 1150 nm with less than 10 nm resolutions and an effective range of 400 to 1000 nm. The following vegetation indices were calculated: NDVI, GNDVI, SR, MSR, NDRE, RDVI, REIP, SAVI, OSAVI, MSAVI, and PRI. All the experiments were conducted during the growing season in different plant growth stages including: stem elongation (BBCH=32-41), booting stage (BBCH=43), inflorescence emergence, heading (BBCH=56-58), flowering (BBCH=65-69), and development of fruit (BBCH=71). According to the results obtained, among the indices, NDRE and REIP were less affected by drought stress and can provide reliable wheat nitrogen status information, regardless of water status of the plant. They also showed strong relations with nitrogen status of winter wheat.Keywords: nitrogen status, drought stress, vegetation indices, precision agriculture
Procedia PDF Downloads 3241913 Revealing Single Crystal Quality by Insight Diffraction Imaging Technique
Authors: Thu Nhi Tran Caliste
Abstract:
X-ray Bragg diffraction imaging (“topography”)entered into practical use when Lang designed an “easy” technical setup to characterise the defects / distortions in the high perfection crystals produced for the microelectronics industry. The use of this technique extended to all kind of high quality crystals, and deposited layers, and a series of publications explained, starting from the dynamical theory of diffraction, the contrast of the images of the defects. A quantitative version of “monochromatic topography” known as“Rocking Curve Imaging” (RCI) was implemented, by using synchrotron light and taking advantage of the dramatic improvement of the 2D-detectors and computerised image processing. The rough data is constituted by a number (~300) of images recorded along the diffraction (“rocking”) curve. If the quality of the crystal is such that a one-to-onerelation between a pixel of the detector and a voxel within the crystal can be established (this approximation is very well fulfilled if the local mosaic spread of the voxel is < 1 mradian), a software we developped provides, from the each rocking curve recorded on each of the pixels of the detector, not only the “voxel” integrated intensity (the only data provided by the previous techniques) but also its “mosaic spread” (FWHM) and peak position. We will show, based on many examples, that this new data, never recorded before, open the field to a highly enhanced characterization of the crystal and deposited layers. These examples include the characterization of dislocations and twins occurring during silicon growth, various growth features in Al203, GaNand CdTe (where the diffraction displays the Borrmannanomalous absorption, which leads to a new type of images), and the characterisation of the defects within deposited layers, or their effect on the substrate. We could also observe (due to the very high sensitivity of the setup installed on BM05, which allows revealing these faint effects) that, when dealing with very perfect crystals, the Kato’s interference fringes predicted by dynamical theory are also associated with very small modifications of the local FWHM and peak position (of the order of the µradian). This rather unexpected (at least for us) result appears to be in keeping with preliminary dynamical theory calculations.Keywords: rocking curve imaging, X-ray diffraction, defect, distortion
Procedia PDF Downloads 1331912 Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method
Authors: Ali Rahnamoun, Adri van Duin
Abstract:
The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability.Keywords: spacecraft materials, hypervelocity impact, reactive molecular dynamics simulation, amorphous silica
Procedia PDF Downloads 4211911 Therapeutic Effects of Guar Gum Nanoparticles in Oxazolone-Induced Atopic Dermatitis
Authors: Nandita Ghosh, Shinjini Mitra, Ena Ray Banerjee
Abstract:
Atopic dermatitis (AD) is a chronic disease of the skin, involving itchy, reddish, and scaly lesions. It mainly affects children and has a high prevalence in developing countries. The AD may occur due to environmental or genetic factors. There is no permanent cure for the AD. Currently, all therapeutic strategies involve methods to simply alleviate the symptoms, and include lotions and corticosteroids, which have adverse effects. Use of phytochemicals and natural products has not yet been exploited fully. The particle used in this study is derived from Cyamopsis tetragonoloba, an edible polysaccharide with a galactomannan component. The mannose component mainly increases its specificity towards cellular uptake by mannose receptors, highly expressed by the macrophage. The aim of this study was to determine the therapeutic effect of guar gum nanoparticles (GN) in vitro and in vivo in the AD. To assess the wound healing capacity of the guar gum nanoparticle (GN), we first treated adherent NIH3T3 cells, with a scratch injury, with GN. GN successfully healed the wound caused by the scratch. In the in vivo experiment, Balb/c mice ear were topically treated with oxazolone (oxa) to induce AD and then were topically treated with GN. The ear thickness was increased significantly till day 28 on the treatment of Oxa. The GN application showed a significant decrease in the thickness as assessed on day 28. The total cell count of skin cells showed fold increase when treated with oxa, was again decreased on topical application of GN on the affected skin. The eosinophil count, as assessed by Giemsa staining was also increased when treated with oxa, GN application led to a significant decrease. The IgE level was assessed in the serum samples which showed that GN helped in restoring the alleviated IgE level. The T helper cells and the macrophage population showed increased percentage when treated with oxa, the GN application. This was examined by flow cytometry. The H&E staining of the ear tissue showed epidermal thickness in the oxa treated mice, GN application showed reduced cellular filtration followed by epidermal thickness. Thus our assays showed that GN was successful in alleviating the disease caused by Oxa when administered topically.Keywords: allergen, inflammation, nanodrug, wound
Procedia PDF Downloads 2431910 Monetary Policy and Assets Prices in Nigeria: Testing for the Direction of Relationship
Authors: Jameelah Omolara Yaqub
Abstract:
One of the main reasons for the existence of central bank is that it is believed that central banks have some influence on private sector decisions which will enable the Central Bank to achieve some of its objectives especially that of stable price and economic growth. By the assumption of the New Keynesian theory that prices are fully flexible in the short run, the central bank can temporarily influence real interest rate and, therefore, have an effect on real output in addition to nominal prices. There is, therefore, the need for the Central Bank to monitor, respond to, and influence private sector decisions appropriately. This thus shows that the Central Bank and the private sector will both affect and be affected by each other implying considerable interdependence between the sectors. The interdependence may be simultaneous or not depending on the level of information, readily available and how sensitive prices are to agents’ expectations about the future. The aim of this paper is, therefore, to determine whether the interdependence between asset prices and monetary policy are simultaneous or not and how important is this relationship. Studies on the effects of monetary policy have largely used VAR models to identify the interdependence but most have found small effects of interaction. Some earlier studies have ignored the possibility of simultaneous interdependence while those that have allowed for simultaneous interdependence used data from developed economies only. This study, therefore, extends the literature by using data from a developing economy where information might not be readily available to influence agents’ expectation. In this study, the direction of relationship among variables of interest will be tested by carrying out the Granger causality test. Thereafter, the interaction between asset prices and monetary policy in Nigeria will be tested. Asset prices will be represented by the NSE index as well as real estate prices while monetary policy will be represented by money supply and the MPR respectively. The VAR model will be used to analyse the relationship between the variables in order to take account of potential simultaneity of interdependence. The study will cover the period between 1980 and 2014 due to data availability. It is believed that the outcome of the research will guide monetary policymakers especially the CBN to effectively influence the private sector decisions and thereby achieve its objectives of price stability and economic growth.Keywords: asset prices, granger causality, monetary policy rate, Nigeria
Procedia PDF Downloads 2281909 Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display
Authors: Uttam Kumar Ghorai, Madhupriya Samanta, Subhajit Saha, Swati Das, Nilesh Mazumder, Kalyan Kumar Chattopadhyay
Abstract:
Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications.Keywords: organic semiconductor, phthalocyanine, nanowires, nanotubes, field emission
Procedia PDF Downloads 5051908 Exercise Training for Management Hypertensive Patients: A Systematic Review and Meta-Analysis
Authors: Noor F. Ilias, Mazlifah Omar, Hashbullah Ismail
Abstract:
Exercise training has been shown to improve functional capacity and is recommended as a therapy for management of blood pressure. Our purpose was to establish whether different exercise capacity produces different effect size for Cardiorespiratory Fitness (CRF), systolic (SBP) and diastolic (DBP) blood pressure in patients with hypertension. Exercise characteristic is required in order to have optimal benefit from the training, but optimal exercise capacity is still unwarranted. A MEDLINE search (1985 to 2015) was conducted for exercise based rehabilitation trials in hypertensive patients. Thirty-seven studies met the selection criteria. Of these, 31 (83.7%) were aerobic exercise and 6 (16.3%) aerobic with additional resistance exercise, providing a total of 1318 exercise subjects and 819 control, the total of subjects was 2137. We calculated exercise volume and energy expenditure through the description of exercise characteristics. 4 studies (18.2%) were 451kcal - 900 kcal, 12 (54.5%) were 900 kcal – 1350 kcal and 6 (27.3%) >1351kcal per week. Peak oxygen consumption (peak VO2) increased by mean difference of 1.44 ml/kg/min (95% confidence interval [CI]: 1.08 to 1.79 ml/kg/min; p = 0.00001) with weighted mean 21.2% for aerobic exercise compare to aerobic with additional resistance exercise 4.50 ml/kg/min (95% confidence interval [CI]: 3.57 to 5.42 ml/kg/min; p = 0.00001) with weighted mean 14.5%. SBP was clinically reduce for both aerobic and aerobic with resistance training by mean difference of -4.66 mmHg (95% confidence interval [CI]: -5.68 to -3.63 mmHg; p = 0.00001) weighted mean 6% reduction and -5.06 mmHg (95% confidence interval [CI]: -7.32 to -2.8 mmHg; p = 0.0001) weighted mean 5% reduction respectively. Result for DBP was clinically reduce for aerobic by mean difference of -1.62 mmHg (95% confidence interval [CI]: -2.09 to -1.15 mmHg; p = 0.00001) weighted mean 4% reduction and aerobic with resistance training reduce by mean difference of -3.26 mmHg (95% confidence interval [CI]: -4.87 to -1.65 mmHg; p = 0.0001) weighted mean 6% reduction. Optimum exercise capacity for 451 kcal – 900 kcal showed greater improvement in peak VO2 and SBP by 2.76 ml/kg/min (95% confidence interval [CI]: 1.47 to 4.05 ml/kg/min; p = 0.0001) with weighted mean 40.6% and -16.66 mmHg (95% confidence interval [CI]: -21.72 to -11.60 mmHg; p = 0.00001) weighted mean 9.8% respectively. Our data demonstrated that aerobic exercise with total volume of 451 kcal – 900 kcal/ week energy expenditure may elicit greater changes in cardiorespiratory fitness and blood pressure in hypertensive patients. Higher exercise capacity weekly does not seem better result in management hypertensive patients.Keywords: blood Pressure, exercise, hypertension, peak VO2
Procedia PDF Downloads 2831907 In vitro Antioxidant, Anticancer Properties and Probiotic Characteristics of Selected Lactic Acid Bacteria Strains
Authors: M. G. Shehata, S. A. El Sohaimy, Marwa M. Abu-Serie, Nourhan M. Abd El-Aziz
Abstract:
Probiotic strains can potentially be used as bio-preservatives and functional food supplement. Eight lactic acid bacteria strains (LAB) Lactobacillus brevis NRRL B-4527; Streptococcus thermophilus BLM 58; Pediococcusacidilactici ATCC 8042; Lactobacillus rhamnosus CCUG 1452; Lactobacillus curvatus ATCC 51436; Lactococcuslactis sub sp. lactisDSM 20481; Lactobacillus plantarum DMSZ 20079 and Lactobacillus plantarumTF103 were selected to screen the antioxidant, anticancer potential and probiotic properties. LAB strains exhibited good probiotic, antioxidant properties and showed antagonistic activity against food-borne pathogenic (Bacillus subtilis DB 100 host; Candida albicans ATCCMYA-2876; Clostridium botulinum ATCC 3584; Escherichia coli BA 12296; Klebsiellapneumoniae ATCC12296; Salmonella senftenberg ATCC 8400 and Staphylococcus aureus NCTC 10788). Further, in vitro probiotic properties of eight strains displayed excellent acid tolerance, bile tolerance, simulated gastrointestinal juice tolerance, in vitro adhesion ability for HT-29 cell line. The antioxidant effect of intracellular and cell-free extract of lactic acid bacteria strains was evaluated by various antioxidant assays, namely, resistance to hydrogen peroxide, DPPH radical scavenging, ABTS radical scavenging, and hydroxyl radical scavenging (HRS). The results showed that intracellular and cell-free supernatant of S. Thermophilus BLM 58, L. lactissubsp.lactis DSM 20481, P. acidilactici ATCC 8042, L. brevis NRRL B-4527 strains possess excellent antioxidant capacity. The intracellular of S. Thermophilus BLM 58 and P. acidilactici ATCC 8042 also showed excellent anticancer activity against Caco-2, MCF-7, HepG-2, and PC-3. Antioxidative property of selected lactic acid bacteria strains would be useful in the functional food manufacturing industry. They could beneficially affect the consumer by providing dietary source of antioxidants.Keywords: anticancer activity, antioxidant activity, functional food, lactic acid bacteria, probiotic
Procedia PDF Downloads 2261906 Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement
Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha
Abstract:
Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism.Keywords: brake inertia dynamometer, copper fabric, non-asbestos organic (NAO) friction materials, thermal conductivity enhancement
Procedia PDF Downloads 1331905 A Diurnal Light Based CO₂ Elevation Strategy for Up-Scaling Chlorella sp. Production by Minimizing Oxygen Accumulation
Authors: Venkateswara R. Naira, Debasish Das, Soumen K. Maiti
Abstract:
Achieving high cell densities of microalgae under obligatory light-limiting and high light conditions of diurnal (low-high-low variations of daylight intensity) sunlight are further limited by CO₂ supply and dissolved oxygen (DO) accumulation in large-scale photobioreactors. High DO levels cause low growth due to photoinhibition and/or photorespiration. Hence, scalable elevated CO₂ levels (% in air) and their effect on DO accumulation in a 10 L cylindrical membrane photobioreactor (a vertical tubular type) are studied in the present study. The CO₂ elevation strategies; biomass-based, pH control based (types II & I) and diurnal light based, were explored to study the growth of Chlorella sp. FC2 IITG under single-sided LED lighting in the laboratory, mimicking diurnal sunlight. All the experiments were conducted in fed-batch mode by maintaining N and P sources at least 50% of initial concentrations of the optimized BG-11 medium. It was observed that biomass-based (2% - 1st day, 2.5% - 2nd day and 3% - thereafter) and well-known pH control based, type-I (5.8 pH throughout) strategies were found lethal for FC2 growth. In both strategies, the highest peak DO accumulation of 150% air saturation was resulted due to high photosynthetic activity caused by higher CO₂ levels. In the pH control based type-I strategy, automatically resulted CO₂ levels for pH control were recorded so high (beyond the inhibition range, 5%). However, pH control based type-II strategy (5.8 – 2 days, 6.3 – 3 days, 6.7 – thereafter) showed final biomass titer up to 4.45 ± 0.05 g L⁻¹ with peak DO of 122% air saturation; high CO₂ levels beyond 5% (in air) were recorded thereafter. Thus, it became sustainable for obtaining high biomass. Finally, a diurnal light based (2% - low light, 2.5 % - medium light and 3% - high light) strategy was applied on the basis of increasing/decreasing photosynthesis due to increase/decrease in diurnal light intensity. It has resulted in maximum final biomass titer of 5.33 ± 0.12 g L⁻¹, with total biomass productivity of 0.59 ± 0.01 g L⁻¹ day⁻¹. The values are remarkably higher than constant 2% CO₂ level (final biomass titer: 4.26 ± 0.09 g L⁻¹; biomass productivity: 0.27 ± 0.005 g L⁻¹ day⁻¹). However, 135% air saturation of peak DO was observed. Thus, the diurnal light based elevation should be further improved by using CO₂ enriched N₂ instead of air. To the best of knowledge, the light-based CO₂ elevation strategy is not reported elsewhere.Keywords: Chlorella sp., CO₂ elevation strategy, dissolved oxygen accumulation, diurnal light based CO₂ elevation, high cell density, microalgae, scale-up
Procedia PDF Downloads 1251904 The Role of Twitter Bots in Political Discussion on 2019 European Elections
Authors: Thomai Voulgari, Vasilis Vasilopoulos, Antonis Skamnakis
Abstract:
The aim of this study is to investigate the effect of the European election campaigns (May 23-26, 2019) on Twitter achieving with artificial intelligence tools such as troll factories and automated inauthentic accounts. Our research focuses on the last European Parliamentary elections that took place between 23 and 26 May 2019 specifically in Italy, Greece, Germany and France. It is difficult to estimate how many Twitter users are actually bots (Echeverría, 2017). Detection for fake accounts is becoming even more complicated as AI bots are made more advanced. A political bot can be programmed to post comments on a Twitter account for a political candidate, target journalists with manipulated content or engage with politicians and artificially increase their impact and popularity. We analyze variables related to 1) the scope of activity of automated bots accounts and 2) degree of coherence and 3) degree of interaction taking into account different factors, such as the type of content of Twitter messages and their intentions, as well as the spreading to the general public. For this purpose, we collected large volumes of Twitter accounts of party leaders and MEP candidates between 10th of May and 26th of July based on content analysis of tweets based on hashtags while using an innovative network analysis tool known as MediaWatch.io (https://mediawatch.io/). According to our findings, one of the highest percentage (64.6%) of automated “bot” accounts during 2019 European election campaigns was in Greece. In general terms, political bots aim to proliferation of misinformation on social media. Targeting voters is a way that it can be achieved contribute to social media manipulation. We found that political parties and individual politicians create and promote purposeful content on Twitter using algorithmic tools. Based on this analysis, online political advertising play an important role to the process of spreading misinformation during elections campaigns. Overall, inauthentic accounts and social media algorithms are being used to manipulate political behavior and public opinion.Keywords: artificial intelligence tools, human-bot interactions, political manipulation, social networking, troll factories
Procedia PDF Downloads 1441903 An Agile, Intelligent and Scalable Framework for Global Software Development
Authors: Raja Asad Zaheer, Aisha Tanveer, Hafza Mehreen Fatima
Abstract:
Global Software Development (GSD) is becoming a common norm in software industry, despite of the fact that global distribution of the teams presents special issues for effective communication and coordination of the teams. Now trends are changing and project management for distributed teams is no longer in a limbo. GSD can be effectively established using agile and project managers can use different agile techniques/tools for solving the problems associated with distributed teams. Agile methodologies like scrum and XP have been successfully used with distributed teams. We have employed exploratory research method to analyze different recent studies related to challenges of GSD and their proposed solutions. In our study, we had deep insight in six commonly faced challenges: communication and coordination, temporal differences, cultural differences, knowledge sharing/group awareness, speed and communication tools. We have established that each of these challenges cannot be neglected for distributed teams of any kind. They are interlinked and as an aggregated whole can cause the failure of projects. In this paper we have focused on creating a scalable framework for detecting and overcoming these commonly faced challenges. In the proposed solution, our objective is to suggest agile techniques/tools relevant to a particular problem faced by the organizations related to the management of distributed teams. We focused mainly on scrum and XP techniques/tools because they are widely accepted and used in the industry. Our solution identifies the problem and suggests an appropriate technique/tool to help solve the problem based on globally shared knowledgebase. We can establish a cause and effect relationship using a fishbone diagram based on the inputs provided for issues commonly faced by organizations. Based on the identified cause, suitable tool is suggested, our framework suggests a suitable tool. Hence, a scalable, extensible, self-learning, intelligent framework proposed will help implement and assess GSD to achieve maximum out of it. Globally shared knowledgebase will help new organizations to easily adapt best practices set forth by the practicing organizations.Keywords: agile project management, agile tools/techniques, distributed teams, global software development
Procedia PDF Downloads 3241902 Multi-omics Integrative Analysis with Genome-Scale Metabolic Model Simulation Reveals Reaction Essentiality data in Human Astrocytes Under the Lipotoxic Effect of Palmitic Acid
Authors: Janneth Gonzalez, Andres Pinzon Velasco, Maria Angarita, Nicolas Mendoza
Abstract:
Astrocytes play an important role in various processes in the brain, including pathological conditions such as neurodegenerative diseases. Recent studies have shown that the increase in saturated fatty acids such as palmitic acid (PA) triggers pro-inflammatory pathways in the brain. The use of synthetic neurosteroids such as tibolone has demonstrated neuro-protective mechanisms. However, there are few studies on the neuro-protective mechanisms of tibolone, especially at the systemic (omic) level. In this study, we performed the integration of multi-omic data (transcriptome and proteome) into a human astrocyte genomic scale metabolic model to study the astrocytic response during palmitate treatment. We evaluated metabolic fluxes in three scenarios (healthy, induced inflammation by PA, and tibolone treatment under PA inflammation). We also use control theory to identify those reactions that control the astrocytic system. Our results suggest that PA generates a modulation of central and secondary metabolism, showing a change in energy source use through inhibition of folate cycle and fatty acid β-oxidation and upregulation of ketone bodies formation.We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory scenario but not in the protective tibolone one. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a fundamental role in the (de)regulation in metabolic pathways that increase neurotoxicity and represent potential treatment targets. Finally, this study framework facilitates the understanding of metabolic regulation strategies, andit can be used for in silico exploring the mechanisms of astrocytic cell regulation, directing a more complex future experimental work in neurodegenerative diseases.Keywords: astrocytes, data integration, palmitic acid, computational model, multi-omics, control theory
Procedia PDF Downloads 1241901 Observationally Constrained Estimates of Aerosol Indirect Radiative Forcing over Indian Ocean
Authors: Sofiya Rao, Sagnik Dey
Abstract:
Aerosol-cloud-precipitation interaction continues to be one of the largest sources of uncertainty in quantifying the aerosol climate forcing. The uncertainty is increasing from global to regional scale. This problem remains unresolved due to the large discrepancy in the representation of cloud processes in the climate models. Most of the studies on aerosol-cloud-climate interaction and aerosol-cloud-precipitation over Indian Ocean (like INDOEX, CAIPEEX campaign etc.) are restricted to either particular to one season or particular to one region. Here we developed a theoretical framework to quantify aerosol indirect radiative forcing using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products of 15 years (2000-2015) period over the Indian Ocean. This framework relies on the observationally constrained estimate of the aerosol-induced change in cloud albedo. We partitioned the change in cloud albedo into the change in Liquid Water Path (LWP) and Effective Radius of Clouds (Reff) in response to an aerosol optical depth (AOD). Cloud albedo response to an increase in AOD is most sensitive in the range of LWP between 120-300 gm/m² for a range of Reff varying from 8-24 micrometer, which means aerosols are most sensitive to this range of LWP and Reff. Using this framework, aerosol forcing during a transition from indirect to semi-direct effect is also calculated. The outcome of this analysis shows best results over the Arabian Sea in comparison with the Bay of Bengal and the South Indian Ocean because of heterogeneity in aerosol spices over the Arabian Sea. Over the Arabian Sea during Winter Season the more absorbing aerosols are dominating, during Pre-monsoon dust (coarse mode aerosol particles) are more dominating. In winter and pre-monsoon majorly the aerosol forcing is more dominating while during monsoon and post-monsoon season meteorological forcing is more dominating. Over the South Indian Ocean, more or less same types of aerosol (Sea salt) are present. Over the Arabian Sea the Aerosol Indirect Radiative forcing are varying from -5 ± 4.5 W/m² for winter season while in other seasons it is reducing. The results provide observationally constrained estimates of aerosol indirect forcing in the Indian Ocean which can be helpful in evaluating the climate model performance in the context of such complex interactions.Keywords: aerosol-cloud-precipitation interaction, aerosol-cloud-climate interaction, indirect radiative forcing, climate model
Procedia PDF Downloads 1831900 The Effect of Durability and Pathogen Strains on the Wheat Induced Resistance against Zymoseptoria tritici as a Response to Paenibacillus sp. Strain B2
Authors: E. Samain, T. Aussenac, D. van Tuinen, S. Selim
Abstract:
Plant growth promoting rhizobacteria are known as potential biofertilizers and plant resistance inducers. The present work aims to study the durability of the resistance induced as a response to wheat seeds inoculation with PB2 and its influence by Z. tritici strains. The internal and external roots colonization have been determined in vitro, seven days post inoculation, by measuring the colony forming unit (CFU). In planta experimentations were done under controlled conditions included four wheat cultivars with different levels of resistance against Septoria Leaf Blotch (SLB) and four Z. tritici strains with high aggressiveness and resistance levels to fungicides. Plantlets were inoculated with PB2 at sowing and infected with Z. tritici at 3 leaves or tillering growth stages. The infection level with SLB was evaluated at 17 days post inoculation using real-time quantitative polymerase chain reaction (PCR). Results showed that PB2 has a high potential of wheat root external colonization (> 10⁶ CFU/g of root). However, the internal colonization seems to be cultivar dependent. Indeed, PB2 has not been observed as endophytic for one cultivar but has a high level of internal colonization with more than 104 CFU/g of root concerning the three others. Two wheat cultivars (susceptible and moderated resistant) were used to investigate PB2-induced resistance (PB2-IR). After the first infection with Z. tritici, results showed that PB2-IR has conferred a high protection efficiency (40-90%) against SLB in the two tested cultivars. Whereas the PB2-IR was effective against all tested strains with the moderate resistant cultivar, it was higher with the susceptible cultivar (> 64%) but against three of the four tested strains. Concerning the durability of the PB2-IR, after the second infection timing, it has been observed a significant decrease (10-59%) depending strains in the moderate resistant cultivar. Contrarily, the susceptible cultivar showed a stable and high protection level (76-84%) but against three of the four tested strains and interestingly, the strain that overcame PB2-IR was not the same as that of the first infection timing. To conclude, PB2 induces a high and durable resistance against Z. tritici. The PB2-IR is pathogen strain, plant growth stage and genotype dependent. These results may explain the loss of the induced resistance effectiveness under field conditions.Keywords: induced resistance, Paenibacillus sp. strain B2, wheat genotypes, Zymoseptoria tritici
Procedia PDF Downloads 1531899 Evolution of Nettlespurge Oil Mud for Drilling Mud System: A Comparative Study of Diesel Oil and Nettlespurge Oil as Oil-Based Drilling Mud
Authors: Harsh Agarwal, Pratikkumar Patel, Maharshi Pathak
Abstract:
Recently the low prices of Crude oil and increase in strict environmental regulations limit limits the use of diesel based muds as these muds are relatively costlier and toxic, as a result disposal of cuttings into the eco-system is a major issue faced by the drilling industries. To overcome these issues faced by the Oil Industry, an attempt has been made to develop oil-in-water emulsion mud system using nettlespurge oil. Nettlespurge oil could be easily available and its cost is around ₹30/litre which is about half the price of diesel in India. Oil-based mud (OBM) was formulated with Nettlespurge oil extracted from Nettlespurge seeds using the Soxhlet extraction method. The formulated nettlespurge oil mud properties were analysed with diesel oil mud properties. The compared properties were rheological properties, yield point and gel strength, and mud density and filtration loss properties, fluid loss and filter cake. The mud density measurement showed that nettlespurge OBM was slightly higher than diesel OBM with mud density values of 9.175 lb/gal and 8.5 lb/gal, respectively, at barite content of 70 g. Thus it has a higher lubricating property. Additionally, the filtration loss test results showed that nettlespurge mud fluid loss volumes, oil was 11 ml, compared to diesel oil mud volume of 15 ml. The filtration loss test indicated that the nettlespurge oil mud with filter cake thickness of 2.2 mm had a cake characteristic of thin and squashy while the diesel oil mud resulted in filter cake thickness of 2.7 mm with cake characteristic of tenacious, rubbery and resilient. The filtration loss test results showed that nettlespurge oil mud fluid loss volumes was much less than the diesel based oil mud. The filtration loss test indicated that the nettlespurge oil mud filter cake thickness less than the diesel oil mud filter cake thickness. So Low formation damage and the emulsion stability effect was analysed with this experiment. The nettlespurge oil-in-water mud system had lower coefficient of friction than the diesel oil based mud system. All the rheological properties have shown better results relative to the diesel based oil mud. Therefore, with all the above mentioned factors and with the data of the conducted experiment we could conclude that the Nettlespurge oil based mud is economically and well as eco-logically much more feasible than the worn out and shabby diesel-based oil mud in the Drilling Industry.Keywords: economical feasible, ecological feasible, emulsion stability, nettle spurge oil, rheological properties, soxhlet extraction method
Procedia PDF Downloads 2071898 Phytoextraction of Some Heavy Metals from Artificially Polluted soil
Authors: Kareem Kalo Qassim, Hassan A. M. Mezori
Abstract:
The bioaccumulation of heavy metals in the environment has become a matter of public interest because it persists in the soil longer than other components of the biosphere. Bioremediation has emerged as the ideal alternative environmentally friendly and ecological sound technology for removing pollutants from polluted sites. Phytoremediation is an attractive remediation technology that makes use of plants to remove contaminants from the environment. A pot experiment was conducted under lath house conditions to evaluate the ability of plants (H. Annuus, S. Bicolor, and Z. Mays) to phytoextract heavy metals from artificially polluted soils by different concentrations of Cadmium, Lead, and Copper (0, 100, 200, 200 + EDTA). The Seed germination was influenced by the presence of heavy metals and inhibition increased by increasing the heavy metals concentration. A significant difference was observed in the effect of lead and copper. Generally, the length of root, shoot, and intact plant was reduced by all the concentrations used in the experiments. The root system was affected more than the shoot system of the same plants. All heavy metals concentrations caused a reduction in the dry weight and chlorophyll content of all tested plant species; the reduction was increased by increasing the concentration of all heavy metals, especially when EDTA was added. The Bioaccumulation of heavy metals concentration of all the tested plants increased by increasing the concentration. The highest accumulation of cadmium was (81.77mg kg⁻¹), and copper was ( 65.07 mg kg⁻¹) in S. bicolor, while lead-in H. annuus was (60.74 mg kg⁻¹). The order of accumulation of heavy metals in all the tested plant species in the root system and the intact plant was as follows: H. annuus ˃ S. bicolor ˃ Z. mays and shoot system was: H. annuus ˃ Z. mays ˃ S. bicolor. The highest TF of cadmium was (0.41) in H. annuus; lead was (0.72) in Z. mays and S. bicolor, and copper was (0.44) in Z. mays. The tested plant species varied in their response to the heavy metals and the inhibition was concentration depended. In general, the roots system was more affected by heavy metals toxicity than the shoots system; the roots system accumulated more heavy metals in the roots than the shoots system. The addition of EDTA to the last concentration of heavy metals facilitated the availably and absorption of heavy metals from the polluted soil by all tested plant species.Keywords: phytoextyraction, phytoremediation, translocation, heavy metals, soil pollution
Procedia PDF Downloads 1531897 The Climate Change and Soil Degradation in the Czech Republic
Authors: Miroslav Dumbrovsky
Abstract:
The paper deals with impacts of climate change with the main emphasis on land degradation, agriculture and forestry management in the landscape. Land degradation, due to adverse effect of farmers activities, as a result of inappropriate conventional technologies, was a major issue in the Czech Republic during the 20th century and will remain for solving in the 21st century. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Land degradation through soil degradation is causing losses on crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water-holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Water erosion occurs on fields with row crops (maize, sunflower), especially during the rainfall period from April to October. Recently there is a serious problem of greatly expanded production of biofuels and bioenergy from field crops. The result is accelerated soil degradation. The damages (on and off- site) are greater than the benefits. An effective soil conservation requires an appropriate complex system of measures in the landscape. They are also important to continue to develop new sophisticated methods and technologies for decreasing land degradation. The system of soil conservation solving land degradation depend on the ability and the willingness of land users to apply them. When we talk about land degradation, it is not just a technical issue but also an economic and political issue. From a technical point of view, we have already made many positive steps, but for successful solving the problem of land degradation is necessary to develop suitable economic and political tools to increase the willingness and ability of land users to adopt conservation measures.Keywords: land degradation, soil erosion, soil conservation, climate change
Procedia PDF Downloads 3771896 Thinking about the Loss of Social Networking Sites May Expand the Distress of Social Exclusion
Authors: Wen-Bin Chiou, Hsiao-Chiao Weng
Abstract:
Social networking sites (SNS) such as Facebook and Twitter are low-cost tools that can promote the creation of social connections by providing a convenient platform that can be accessed at any time. In the current research, a laboratory experiment was conducted test the hypothesis that reminders of losing SNS would alter the impact of social events, especially those involving social exclusion. Specifically, this study explored whether losing SNS would intensify perceived social distress induced by exclusionary bogus feedback. Eighty-eight Facebook users (46 females, 42 males; mean age = 22.6 years, SD = 3.1 years) were recruited via campus posters and flyers at a national university in southern Taiwan. After participants provided consent, they were randomly assigned to a 2 (SNS non-use vs. neutral) between-subjects experiment. Participants completed an ostensible survey about online social networking in which we included an item about the time spent on SNS per day. The last question was used to manipulate thoughts about losing SNS access. Participants under the non-use condition were asked to record three conditions that would render them unable to use SNS (e.g., a network adaptor problem, malfunctioning cable modem, or problems with Internet service providers); participants under the neutral condition recorded three conditions that would render them unable to log onto the college website (e.g., server maintenance, local network or firewall problems). Later, this experiment employed a bogus-feedback paradigm to induce social exclusion. Participants then rated their social distress on a four-item scale, identical to that of Experiment 1 (α = .84). The results showed that thoughts of losing SNS intensified distress caused by social exclusion, suggesting that the loss of SNS has a similar effect to the loss of a primary source for social reconnections. Moreover, the priming effects of SNS on perceived distress were more prominent for heavy users. The demonstrated link between the idea of losing SNS use and increased pain of social exclusion manifests the importance of SNS as a crucial gateway for acquiring and rebuilding social connections. Use of online social networking appears to be a two-edged sword for coping with social exclusion in human lives in the e-society.Keywords: online social networking, perceived distress, social exclusion, SNS
Procedia PDF Downloads 4241895 Effect of Nicorandil, Bone Marrow-Derived Mesenchymal Stem Cells and Their Combination in Isoproterenol-Induced Heart Failure in Rats
Authors: Sarah Elsayed Mohammed, Lamiaa Ahmed Ahmed, Mahmoud Mohammed Khattab
Abstract:
Aim: The aim of the present study was to investigate whether combined nicorandil and bone marrow-derived mesenchymal stem cells (BMDMSC) treatment could offer an additional benefit in ameliorating isoproterenol (ISO)-induced heart failure in rats. Methods: ISO (85 and 170 mg/kg/day) was injected subcutaneously for 2 successive days, respectively. By day 3, electrocardiographic changes were recorded and serum was separated for determination of CK-MB level for confirmation of myocardial damage. Nicorandil (3 mg/kg/day) was then given orally with or without a single i.v. BMDMSC administration. Electrocardiography and echocardiography were recorded 2 weeks after beginning of treatment. Rats were then sacrificed and ventricles were isolated for estimation of vascular endothelial growth factor (VEGF), tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) contents, caspase-3 activity as well as inducible nitric oxide synthase (iNOS) and connexin-43 protein expressions. Moreover, histological analysis of myocardial fibrosis was performed and cryosections were done for estimation of homing of BMDMSC. Results: ISO induced a significant increase in ventricles/body weight ratio, left ventricular end diastolic (LVEDD) and systolic dimensions (LVESD), ST segment and QRS duration. Moreover, myocardial fibrosis as well as VEGF, TNF-α and TGF-β contents were significantly increased. On the other hand, connexin-43 protein expression was significantly decreased, while caspase-3 and iNOS protein expressions were significantly increased. Combined therapy provided additional improvement compared to cell treatment alone towards reducing cardiac hypertrophy, fibrosis and inflammation. Furthermore, combined therapy induced significant increase in angiogenesis and BMDMSC homing and prevented ISO induced changes in iNOS, connexin-43 and caspase-3 protein expressions. Conclusion: Combined nicorandil/BMDMSC treatment was superior to BMDMSC alone towards preventing ISO-induced heart failure in rats.Keywords: fibrosis, isoproterenol, mesenchymal stem cells, nicorandil
Procedia PDF Downloads 5341894 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution
Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary
Abstract:
The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.Keywords: chemical deposition, CdS, optical properties, surface, thin film
Procedia PDF Downloads 1671893 Numerical Investigation of Embankments for Protecting Rock Fall
Authors: Gökhan Altay, Cafer Kayadelen
Abstract:
Rock fall is a movement of huge rock blocks from dip slopes due to physical effects. It generally occurs where loose tuffs lying under basalt flow or stringcourse is being constituted by limestone layers which stand on clay. By corrosion of some parts, big cracks occur on layers and these cracks continue to grow with the effect of freezing-thawing. In this way, the breaking rocks fall down from these dip slopes. Earthquakes which can induce lots of rock movements is another reason for rock fall events. In Turkey, we have a large number of regions prone to the earthquake as in the World so this increases the possibility of rock fall events. A great number of rock fall events take place in Turkey as in the World every year. The rock fall events occurring in urban areas cause serious damages in houses, roads and workplaces. Sometimes it also hinders transportation and furthermore it maybe kills people. In Turkey, rock fall events happen mostly in Spring and Winter because of freezing- thawing of water in rock cracks frequently. In mountain and inclined areas, rock fall is risky for engineering construction and environment. Some countries can invest significant money for these risky areas. For instance, in Switzerland, approximately 6.7 million dollars is spent annually for a distance of 4 km, to the systems to prevent rock fall events. In Turkey, we have lots of urban areas and engineering structure that have the rock fall risk. The embankments are preferable for rock fall events because of its low maintenance and repair costs. Also, embankments are able to absorb much more energy according to other protection systems. The current design method of embankments is only depended on field tests results so there are inadequate studies about this design method. In this paper, the field test modeled in three dimensions and analysis are carried out with the help of ANSYS programme. By the help of field test from literature the numerical model validated. After the validity of numerical models additional parametric studies performed. Changes in deformation of embankments are investigated by the changes in, geometry, velocity and impact height of falling rocks.Keywords: ANSYS, embankment, impact height, numerical analysis, rock fall
Procedia PDF Downloads 5111892 Antimicrobial Effects and Phytochemical Analysis of Chrysophyllum Albidum Plant Parts (Leaves, Roots and Seeds) Extracts on Bacterial Isolates from Urinary Catheters
Authors: Ebere Christian Ugochukwu, Okafor Josephine, Oyawoye Tomisin
Abstract:
The occurrence of multidrug resistance patterns that have been developed by bacteria has made it difficult to properly treat infections using standard clinical medications. Hence, the use of herbs as an alternative source of therapy is considered cheap and easily accessible to locals. This research explored the antimicrobial effects of aqueous and ethanolic extracts obtained from Chrysophyllum albidum (commonly called ‘Agbalumo’ in southwest Nigeria and ‘Udara’ in the eastern and southern parts of Nigeria) plant parts (leaves, roots and seeds) against bacteria isolated from urinary catheter tips. The following isolates were obtained; Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Klebsiella aerogenes. The agar well diffusion method was used. The average percentages of antimicrobial resistance of the isolates to gentamycin were 45.5% for P. aeruginosa, 42.1% for E. coli, 46.9% for K. aerogenes, and ˃90% for other isolates. Qualitative phytochemical screening of the plant parts extracts was done using chemical test for the screening and identification of bioactive chemical constituents. The ethanolic extract mixtures (leaf, root and seed) had the greatest effect on all the isolates, with inhibition zones (IZs) ranging from 8-26 mm and MICs ranging from <16-32 mg/ml. The Potencies of the C. albidum extracts based on the IZ and MIC values were greater in the extract mixtures, followed by those in the roots. Phytochemical screening revealed that all the extracts contained phenol except for the seeds while tannins were present in all the extracts except the leaves. The activity of the ethanolic extracts of each part at high and low concentrations was greater than that of the aqueous extracts at the same concentrations (p<0.05). The acute toxicity results showed that the LD50 of the extracts was ˃5000 mg/body weight, indicating no toxicity. The antibacterial activities of the extract mixtures and roots on the isolates confirmed the use of C. albidum in folk medicine for the treatment of CAUTIs, hence indicating its antibacterial potential for use in novel antibiotic production.Keywords: antimicrobials, susceptibility, minimum inhibitory concentration, extracts
Procedia PDF Downloads 371891 Chemically Enhanced Primary Treatment: Full Scale Trial Results Conducted at a South African Wastewater Works
Authors: Priyanka Govender, S. Mtshali, Theresa Moonsamy, Zanele Mkwanazi, L. Mthembu
Abstract:
Chemically enhanced primary treatment (CEPT) can be used at wastewater works to improve the quality of the final effluent discharge, provided that the plant has spare anaerobic digestion capacity. CEPT can transfer part of the organic load to the digesters thereby effectively relieving the hydraulic loading on the plant and in this way can allow the plant to continue operating long after the hydraulic capacity of the plant has been exceeded. This can allow a plant to continue operating well beyond its original design capacity, requiring only fairly simple and inexpensive modifications to the primary settling tanks as well as additional chemical costs, thereby delaying or even avoiding the need for expensive capital upgrades. CEPT can also be effective at plants where high organic loadings prevent the wastewater discharge from meeting discharge standards, especially in the case of COD, phosphates and suspended solids. By increasing removals of these pollutants in the primary settling tanks, CEPT can enable the plant to conform to specifications without the need for costly upgrades. Laboratory trials were carried out recently at the Umbilo WWTW in Durban and these were followed by a baseline assessment of the current plant performance and a subsequent full scale trial on the Conventional plant i.e. West Plant. The operating conditions of the plant are described and the improvements obtained in COD, phosphate and suspended solids, are discussed. The PST and plant overall suspended solids removal efficiency increased by approximately 6% during the trial. Details regarding the effect that CEPT had on sludge production and the digesters are also provided. The cost implications of CEPT are discussed in terms of capital costs as well as operation and maintenance costs and the impact of Ferric chloride on the infrastructure was also studied and found to be minimal. It was concluded that CEPT improves the final quality of the discharge effluent, thereby improving the compliance of this effluent with the discharge license. It could also allow for a delay in upgrades to the plant, allowing the plant to operate above its design capacity. This will be elaborated further upon presentation.Keywords: chemically enhanced, ferric, wastewater, primary
Procedia PDF Downloads 3041890 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis
Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc
Abstract:
Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation
Procedia PDF Downloads 2221889 Hands on Tools to Improve Knowlege, Confidence and Skill of Clinical Disaster Providers
Authors: Lancer Scott
Abstract:
Purpose: High quality clinical disaster medicine requires providers working collaboratively to care for multiple patients in chaotic environments; however, many providers lack adequate training. To address this deficit, we created a competency-based, 5-hour Emergency Preparedness Training (EPT) curriculum using didactics, small-group discussion, and kinetic learning. The goal was to evaluate the effect of a short course on improving provider knowledge, confidence and skills in disaster scenarios. Methods: Diverse groups of medical university students, health care professionals, and community members were enrolled between 2011 and 2014. The course consisted of didactic lectures, small group exercises, and two live, multi-patient mass casualty incident (MCI) scenarios. The outcome measures were based on core competencies and performance objectives developed by a curriculum task force and assessed via trained facilitator observation, pre- and post-testing, and a course evaluation. Results: 708 participants completed were trained between November 2011 and August 2014, including 49.9% physicians, 31.9% medical students, 7.2% nurses, and 11% various other healthcare professions. 100% of participants completed the pre-test and 71.9% completed the post-test, with average correct answers increasing from 39% to 60%. Following didactics, trainees met 73% and 96% of performance objectives for the two small group exercises and 68.5% and 61.1% of performance objectives for the two MCI scenarios. Average trainee self-assessment of both overall knowledge and skill with clinical disasters improved from 33/100 to 74/100 (overall knowledge) and 33/100 to 77/100 (overall skill). The course assessment was completed by 34.3% participants, of whom 91.5% highly recommended the course. Conclusion: A relatively short, intensive EPT course can improve the ability of a diverse group of disaster care providers to respond effectively to mass casualty scenarios.Keywords: clinical disaster medicine, training, hospital preparedness, surge capacity, education, curriculum, research, performance, training, student, physicians, nurses, health care providers, health care
Procedia PDF Downloads 195