Search results for: ordinary concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2419

Search results for: ordinary concrete

1099 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach

Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.

Keywords: CO2 emissions, performance based design, optimization, sustainable design

Procedia PDF Downloads 400
1098 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil

Procedia PDF Downloads 301
1097 The Role of Team Efficacy and Coaching on the Relationships between Distributive and Procedural Justice and Job Engagement

Authors: Yoonhee Cho, Gye-Hoon Hong

Abstract:

This study focuses on the roles of distributive and procedural justice on job engagement. Additionally, the study focuses on whether situational factors such as team efficacy and team leaders’ coaching moderate the relationship between distributive and procedural justice and job engagement. Ordinary linear regression was used to analyze data from seven South Korean Companies (total N=346). Results confirmed the hypothesized model indicating that both distributive and procedural justices were positively related to job engagement of employees. Team efficacy and team leaders’ coaching moderated the relationship between distributive justice and job engagement whereas it brought non-significant result found for procedural justice. The facts that two types of justice and the interactive effects of two situational variables were different implied that different managerial strategies should be used when job engagement was to be enhanced.

Keywords: coaching, distributive justice, job engagement, procedural justice, team efficacy

Procedia PDF Downloads 543
1096 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations

Authors: Fuziyah Ishak, Siti Norazura Ahmad

Abstract:

Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.

Keywords: accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations

Procedia PDF Downloads 414
1095 Analyzing the Empirical Link between Islamic Finance and Growth of Real Output: A Time Series Application to Pakistan

Authors: Nazima Ellahi, Danish Ramzan

Abstract:

There is a growing trend among development economists regarding the importance of financial sector for economic development and growth activities. The development thus introduced, helps to promote welfare effects and poverty alleviation. This study is an attempt to find the nature of link between Islamic banking financing and development of output growth for Pakistan. Time series data set has been utilized for a time period ranging from 1990 to 2010. Following the Phillip Perron (PP) and Augmented Dicky Fuller (ADF) test of unit root this study applied Ordinary Least Squares (OLS) method of estimation and found encouraging results in favor of promoting the Islamic banking practices in Pakistan.

Keywords: Islamic finance, poverty alleviation, economic growth, finance, commerce

Procedia PDF Downloads 336
1094 Fields of Power, Visual Culture, and the Artistic Practice of Two 'Unseen' Women of Central Brazil

Authors: Carolina Brandão Piva

Abstract:

In our visual culture, images play a newly significant role in the basis of a complex dialogue between imagination, creativity, and social practice. Insofar as imagination has broken out of the 'special expressive space of art' to become a part of the quotidian mental work of ordinary people, it is pertinent to recognize that visual representation can no longer be assumed as if in a domain detached from everyday life or exclusively 'centered' within the limited frame of 'art history.' The approach of Visual Culture as a field of study is, in this sense, indispensable to comprehend that not only 'the image,' but also 'the imagined' and 'the imaginary' are produced in the plurality of social interactions; crucial enough, this assertion directs us to something new in contemporary cultural processes, namely both imagination and image production constitute a social practice. This paper starts off with this approach and seeks to examine the artistic practice of two women from the State of Goiás, Brazil, who are ordinary citizens with their daily activities and narratives but also dedicated to visuality production. With no formal training from art schools, branded or otherwise, Maria Aparecida de Souza Pires deploys 'waste disposal' of daily life—from car tires to old work clothes—as a trampoline for art; also adept at sourcing raw materials collected from her surroundings, she manipulates raw hewn wood, tree trunks, plant life, and various other pieces she collects from nature giving them new meaning and possibility. Hilda Freire works with sculptures in clay using different scales and styles; her art focuses on representations of women and pays homage to unprivileged groups such as the practitioners of African-Brazilian religions, blue-collar workers, poor live-in housekeepers, and so forth. Although they have never been acknowledged by any mainstream art institution in Brazil, whose 'criterion of value' still favors formally trained artists, Maria Aparecida de Souza Pires, and Hilda Freire have produced visualities that instigate 'new ways of seeing,' meriting cultural significance in many ways. Their artworks neither descend from a 'traditional' medium nor depend on 'canonical viewing settings' of visual representation; rather, they consist in producing relationships with the world which do not result in 'seeing more,' but 'at least differently.' From this perspective, the paper finally demonstrates that grouping this kind of artistic production under the label of 'mere craft' has much more to do with who is privileged within the fields of power in art system, who we see and who we do not see, and whose imagination of what is fed by which visual images in Brazilian contemporary society.

Keywords: visual culture, artistic practice, women's art in the Brazilian State of Goiás, Maria Aparecida de Souza Pires, Hilda Freire

Procedia PDF Downloads 139
1093 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks

Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed

Abstract:

This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.

Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)

Procedia PDF Downloads 63
1092 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading

Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth

Abstract:

The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.

Keywords: collapse load analysis, inelastic buckling, liquefaction, pile group

Procedia PDF Downloads 149
1091 Fundamental Natural Frequency of Chromite Composite Floor System

Authors: Farhad Abbas Gandomkar, Mona Danesh

Abstract:

This paper aims to determine Fundamental Natural Frequency (FNF) of a structural composite floor system known as Chromite. To achieve this purpose, FNFs of studied panels are determined by development of Finite Element Models (FEMs) in ABAQUS program. American Institute of Steel Construction (AISC) code in Steel Design Guide Series 11, presents a fundamental formula to calculate FNF of a steel framed floor system. This formula has been used to verify results of the FEMs. The variability in the FNF of the studied system under various parameters such as dimensions of floor, boundary conditions, rigidity of main and secondary beams around the floor, thickness of concrete slab, height of composite joists, distance between composite joists, thickness of top and bottom flanges of the open web steel joists, and adding tie beam perpendicular on the composite joists, is determined. The results show that changing in dimensions of the system, its boundary conditions, rigidity of main beam, and also adding tie beam, significant changes the FNF of the system up to 452.9%, 50.8%, -52.2%, %52.6%, respectively. In addition, increasing thickness of concrete slab increases the FNF of the system up to 10.8%. Furthermore, the results demonstrate that variation in rigidity of secondary beam, height of composite joist, and distance between composite joists, and thickness of top and bottom flanges of open web steel joists insignificant changes the FNF of the studied system up to -0.02%, -3%, -6.1%, and 0.96%, respectively. Finally, the results of this study help designer predict occurrence of resonance, comfortableness, and design criteria of the studied system.

Keywords: Fundamental Natural Frequency, Chromite Composite Floor System, Finite Element Method, low and high frequency floors, Comfortableness, resonance.

Procedia PDF Downloads 445
1090 A Study on Bonding Strength, Waterproofing and Flexibility of Environment Friendly, and Cost Effective Cementitious Grout Mixture for Tile Joints

Authors: Gowthamraj Vungarala

Abstract:

This paper presents the experimental investigation on the bond strength, waterproofing abilities and flexibility of tile joint when Ordinary Portland Cement (OPC) or White Portland Cement (WPC) CEM II A-LL 42.5N and porcelain powder graded between 200 microns and 75 microns is mixed with vinyl acetate monomer (VAM), hydroxypropyl methyl cellulose ether, ethylene co-polymer rubber powder and Styrene butyl rubber (SBR). Use of porcelain powder which is tough to decompose as a form of industrial refuse which helps environmental safety and waste usage.

Keywords: styrene butane rubber, hydroxypropyl methyl cellulose ether, vinyl acetate monomer, polymer modified cement, polyethylene, porcelain powder

Procedia PDF Downloads 85
1089 International Trade, Food Security, and Climate Change in an Era of Liberal Trade

Authors: M. Barsa

Abstract:

This paper argues that current liberal trade regimes have had the unfortunate effect of concentrating food production by area and by crop. While such hyper-specialization and standardization might be efficient under ordinary climate conditions, the increasing severity of climate shocks makes such a food production system especially vulnerable. Examining domestic US crop production, and the fact that similar patterns are evident worldwide, this paper explores the vulnerabilities of several major crops and suggests that the academic arguments surrounding increasing liberalization of trade are ill-suited to the climate challenges to come. Indeed, a case can be made that protectionist measures—especially by developing countries whose agricultural sectors are vulnerable to the cheap US and European exports—are increasingly necessary to scatter food production geographically and to retain a resilient diversity of crop varieties.

Keywords: climate change, crop resilience, diversity, international trade

Procedia PDF Downloads 119
1088 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste

Authors: Maciej Szelag

Abstract:

The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.

Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS

Procedia PDF Downloads 347
1087 Establishing the Optimum Location of a Single Tower Crane Using a Smart Mathematical Model

Authors: Yasser Abo El-Magd, Wael Fawzy Mohamed

Abstract:

Due to the great development in construction and building field, there are many projects and huge works appeared which consume many construction materials. Accordingly, that causes difficulty in handling traditional transportation means (ordinary cranes) due to their limited capacity; there is an urgent need to use high capacity cranes such as tower cranes. However, with regard to their high expense, we have to take into consideration selecting what type of cranes to be utilized which has been discussed by many researchers. In this research, a proposed technique was created to select the suitable type of crane and the best place for crane erection, in addition to minimum radius for requested crane in order to minimize cost. To fulfill that target, a computer program is designed to numerate these problems, demonstrating an example explaining how to apply program and the result donated the best place.

Keywords: tower crane, jib length, operating time, location, feasible area

Procedia PDF Downloads 208
1086 Study of the Diaphragm Flexibility Effect on the Inelastic Seismic Response of Thin Wall Reinforced Concrete Buildings (TWRCB): A Purpose to Reduce the Uncertainty in the Vulnerability Estimation

Authors: A. Zapata, Orlando Arroyo, R. Bonett

Abstract:

Over the last two decades, the growing demand for housing in Latin American countries has led to the development of construction projects based on low and medium-rise buildings with thin reinforced concrete walls. This system, known as Thin Walls Reinforced Concrete Buildings (TWRCB), uses walls with thicknesses from 100 to 150 millimetres, with flexural reinforcement formed by welded wire mesh (WWM) with diameters between 5 and 7 millimetres, arranged in one or two layers. These walls often have irregular structural configurations, including combinations of rectangular shapes. Experimental and numerical research conducted in regions where this structural system is commonplace indicates inherent weaknesses, such as limited ductility due to the WWM reinforcement and thin element dimensions. Because of its complexity, numerical analyses have relied on two-dimensional models that don't explicitly account for the floor system, even though it plays a crucial role in distributing seismic forces among the resilient elements. Nonetheless, the numerical analyses assume a rigid diaphragm hypothesis. For this purpose, two study cases of buildings were selected, low-rise and mid-rise characteristics of TWRCB in Colombia. The buildings were analyzed in Opensees using the MVLEM-3D for walls and shell elements to simulate the slabs to involve the effect of coupling diaphragm in the nonlinear behaviour. Three cases are considered: a) models without a slab, b) models with rigid slabs, and c) models with flexible slabs. An incremental static (pushover) and nonlinear dynamic analyses were carried out using a set of 44 far-field ground motions of the FEMA P-695, scaled to 1.0 and 1.5 factors to consider the probability of collapse for the design base earthquake (DBE) and the maximum considered earthquake (MCE) for the model, according to the location sites and hazard zone of the archetypes in the Colombian NSR-10. Shear base capacity, maximum displacement at the roof, walls shear base individual demands and probabilities of collapse were calculated, to evaluate the effect of absence, rigid and flexible slabs in the nonlinear behaviour of the archetype buildings. The pushover results show that the building exhibits an overstrength between 1.1 to 2 when the slab is considered explicitly and depends on the structural walls plan configuration; additionally, the nonlinear behaviour considering no slab is more conservative than if the slab is represented. Include the flexible slab in the analysis remarks the importance to consider the slab contribution in the shear forces distribution between structural elements according to design resistance and rigidity. The dynamic analysis revealed that including the slab reduces the collapse probability of this system due to have lower displacements and deformations, enhancing the safety of residents and the seismic performance. The strategy of including the slab in modelling is important to capture the real effect on the distribution shear forces in walls due to coupling to estimate the correct nonlinear behaviour in this system and the adequate distribution to proportionate the correct resistance and rigidity of the elements in the design to reduce the possibility of damage to the elements during an earthquake.

Keywords: thin wall reinforced concrete buildings, coupling slab, rigid diaphragm, flexible diaphragm

Procedia PDF Downloads 65
1085 The Ordinary Way of the Appeal in Penalty Part

Authors: Abdelkadir Elhaouari

Abstract:

The priciest thing in human life since his birth is his freedom, basing on this idea, the conflict exists till now, the fight against oppression, injustice, tyranny and slavery, searching for freedom and political resistances, and this makes the freedom is deeply related to the defense for its existence all over years. This project attempts using any way to preserve this freedom, and building and maintaining bases and rules to organize this life. Appeal is a one of the most important method that human uses to protect his freedom, and we will mention in this thesis our attempt to clarify this aspect to the individual. We can say that the law does not know just one color or one logic, and is not based on one rule to be taken by heart, but the law is neutrality, the diversity, abstraction and diligence diversity. The penal law is a valued law and it deserves to be studied and searched more… so that to attempt to master it. Our thesis is just a brief explanation of an important point in this law, where we attempt to clarify and simplify the image to the normal person, so that he can preserve his rights, and we hope that we had succeeded to choose the right topic for that.

Keywords: appeal, penalization, judgement, criminal

Procedia PDF Downloads 276
1084 Regularization of Gene Regulatory Networks Perturbed by White Noise

Authors: Ramazan I. Kadiev, Arcady Ponosov

Abstract:

Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.

Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities

Procedia PDF Downloads 187
1083 Formulation of Corrector Methods from 3-Step Hybid Adams Type Methods for the Solution of First Order Ordinary Differential Equation

Authors: Y. A. Yahaya, Ahmad Tijjani Asabe

Abstract:

This paper focuses on the formulation of 3-step hybrid Adams type method for the solution of first order differential equation (ODE). The methods which was derived on both grid and off grid points using multistep collocation schemes and also evaluated at some points to produced Block Adams type method and Adams moulton method respectively. The method with the highest order was selected to serve as the corrector. The convergence was valid and efficient. The numerical experiments were carried out and reveal that hybrid Adams type methods performed better than the conventional Adams moulton method.

Keywords: adam-moulton type (amt), corrector method, off-grid, block method, convergence analysis

Procedia PDF Downloads 616
1082 Seismic Vulnerability Analysis of Arch Dam Based on Response Surface Method

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong

Abstract:

Earthquake is one of the main loads threatening dam safety. Once the dam is damaged, it will bring huge losses of life and property to the country and people. Therefore, it is very important to research the seismic safety of the dam. Due to the complex foundation conditions, high fortification intensity, and high scientific and technological content, it is necessary to adopt reasonable methods to evaluate the seismic safety performance of concrete arch dams built and under construction in strong earthquake areas. Structural seismic vulnerability analysis can predict the probability of structural failure at all levels under different intensity earthquakes, which can provide a scientific basis for reasonable seismic safety evaluation and decision-making. In this paper, the response surface method (RSM) is applied to the seismic vulnerability analysis of arch dams, which improves the efficiency of vulnerability analysis. Based on the central composite test design method, the material-seismic intensity samples are established. The response surface model (RSM) with arch crown displacement as performance index is obtained by finite element (FE) calculation of the samples, and then the accuracy of the response surface model (RSM) is verified. To obtain the seismic vulnerability curves, the seismic intensity measure ??(?1) is chosen to be 0.1~1.2g, with an interval of 0.1g and a total of 12 intensity levels. For each seismic intensity level, the arch crown displacement corresponding to 100 sets of different material samples can be calculated by algebraic operation of the response surface model (RSM), which avoids 1200 times of nonlinear dynamic calculation of arch dam; thus, the efficiency of vulnerability analysis is improved greatly.

Keywords: high concrete arch dam, performance index, response surface method, seismic vulnerability analysis, vector-valued intensity measure

Procedia PDF Downloads 234
1081 The Impact of Corporate Social Responsibility on Brand Equity of the Telecommunication Industry in South Africa

Authors: Keitumetse Gaesirwe

Abstract:

This study investigated the effect of corporate social responsibility (CSR) on brand equity. Specific objectives include examining the connections between ethics and philanthropic constructs of CSR and brand loyalty in the telecommunication industry in South Africa. A convenience sampling technique was used, and closed-ended questionnaires were administered to 800 research participants across the nine provinces of South Africa. Data collected from the field was analyzed using inferential statistics (Ordinary Least Squares regression and correlation analysis) as well as descriptive statistics. Findings show positive and significant connections between the constructs of CSR and brand loyalty. The implications of the findings indicate that keeping ethical and philanthropy standards can be a source of competitive advantage and guarantee brand loyalty for telecommunication companies in South Africa.

Keywords: CSR, brand awareness, telecommunication industry, COVID-19, South Africa

Procedia PDF Downloads 102
1080 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood

Authors: B. Selma, S. Chouraqui

Abstract:

The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.

Keywords: modeling, algorithm, regulation, glucose-insulin, blood, control system

Procedia PDF Downloads 171
1079 Modification of Newton Method in Two Point Block Backward Differentiation Formulas

Authors: Khairil I. Othman, Nur N. Kamal, Zarina B. Ibrahim

Abstract:

In this paper, we present modified Newton method as a new strategy for improving the efficiency of Two Point Block Backward Differentiation Formulas (BBDF) when solving stiff systems of ordinary differential equations (ODEs). These methods are constructed to produce two approximate solutions simultaneously at each iteration The detailed implementation of the predictor corrector BBDF with PE(CE)2 with modified Newton are discussed. The proposed modification of BBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing Block Backward Differentiation Formula. Numerical results show the advantage of using the new strategy for solving stiff ODEs in improving the accuracy of the solution.

Keywords: newton method, two point, block, accuracy

Procedia PDF Downloads 344
1078 Partial Replacement for Cement and Coarse Aggregate in Concrete by Using Egg Shell Powder and Coconut Shell

Authors: A. K. Jain, M. C. Paliwal

Abstract:

The production of cement leads to the emission of large amounts of carbon-dioxide gas into the atmosphere which is a major contributor for the greenhouse effect and the global warming; hence it is mandatory either to quest for another material or partly replace it with some other material. According to the practical demonstrations and reports, Egg Shell Powder (ESP) can be used as a binding material for different field applications as it contains some of the properties of lime. It can partially replace the cement and further; it can be used in different proportion for enhancing the performance of cement. It can be used as a first-class alternative, for material reuse and waste recycling practices. Eggshell is calcium rich and analogous to limestone in chemical composition. Therefore, use of eggshell waste for partial replacement of cement in concrete is feasible. Different studies reveal that plasticity index of the soil can be improved by adding eggshell wastes in all the clay soil and it has wider application in construction projects including earth canals and earthen dams. The scarcity of aggregates is also increasing nowadays. Utilization of industrial waste or secondary materials is increasing in different construction applications. Coconut shell was successfully used in the construction industry for partial or full replacement for coarse aggregates. The use of coconut shell gives advantage of using waste material to partially replace the coarse aggregate. Studies carried on coconut shell indicate that it can partially replace the aggregate. It has good strength and modulus properties along with the advantage of high lignin content. It absorbs relatively low moisture due to its low cellulose content. In the paper, study carried out on eggshell powder and coconut shell will be discussed. Optimum proportions of these materials to be used for partial replacement of cement and aggregate will also be discussed.

Keywords: greenhouse, egg shell powder, binding material, aggregates, coconut shell, coarse aggregates

Procedia PDF Downloads 237
1077 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation

Procedia PDF Downloads 391
1076 When Change Is the Only Constant: The Impact of Change Frequency and Diversity on Change Appraisal

Authors: Danika Pieters

Abstract:

Due to changing societal and economic demands, organizational change has become increasingly prevalent in work life. While a long time change research has focused on the effects of single discrete change events on different employee outcomes such as job satisfaction and organizational commitment, a nascent research stream has begun to look into the potential cumulative effects of change in the context of continuous intense reforms. This case study of a large Belgian public organization aims to add to this growing literature by examining how the frequency and diversity of past changes impact employees’ appraisals of a newly introduced change. Twelve hundred survey results were analyzed using standard ordinary least squares regression. Results showed a correlation between high past change frequency and diversity and a negative appraisal of the new change. Implications for practitioners and future research are discussed.

Keywords: change frequency, change diversity, organizational changes, change appraisal, change evaluation

Procedia PDF Downloads 123
1075 Optimizing Bridge Deck Construction: A Deep Neural Network Approach for Limiting Exterior Grider Rotation

Authors: Li Hui, Riyadh Hindi

Abstract:

In the United States, bridge construction often employs overhang brackets to support the deck overhang, the weight of fresh concrete, and loads from construction equipment. This approach, however, can lead to significant torsional moments on the exterior girders, potentially causing excessive girder rotation. Such rotations can result in various safety and maintenance issues, including thinning of the deck, reduced concrete cover, and cracking during service. Traditionally, these issues are addressed by installing temporary lateral bracing systems and conducting comprehensive torsional analysis through detailed finite element analysis for the construction of bridge deck overhang. However, this process is often intricate and time-intensive, with the spacing between temporary lateral bracing systems usually relying on the field engineers’ expertise. In this study, a deep neural network model is introduced to limit exterior girder rotation during bridge deck construction. The model predicts the optimal spacing between temporary bracing systems. To train this model, over 10,000 finite element models were generated in SAP2000, incorporating varying parameters such as girder dimensions, span length, and types and spacing of lateral bracing systems. The findings demonstrate that the deep neural network provides an effective and efficient alternative for limiting the exterior girder rotation for bridge deck construction. By reducing dependence on extensive finite element analyses, this approach stands out as a significant advancement in improving safety and maintenance effectiveness in the construction of bridge decks.

Keywords: bridge deck construction, exterior girder rotation, deep learning, finite element analysis

Procedia PDF Downloads 55
1074 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing

Authors: Daniel M. Muntean, Viorel Ungureanu

Abstract:

More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.

Keywords: adaptive building, energy efficiency, retrofitting, residential buildings, smart grid

Procedia PDF Downloads 289
1073 The Phenomenon of Rockfall in the Traceca Corridor and the Choice of Engineering Measures to Combat It

Authors: I. Iremashvili, I. Pirtskhalaishvili, K. Kiknadze, F. Lortkipanidze

Abstract:

The paper deals with the causes of rockfall and its possible consequences on slopes adjacent to motorways and railways. A list of measures is given that hinder rockfall; these measures are directed at protecting roads from rockfalls, and not preventing them. From the standpoint of local stability of slopes the main effective measure is perhaps strengthening their surface by the method of filling, which will check or end (or both) the process of deformation, local slipping off, sliding off and development of erosion.

Keywords: rockfall, concrete spraying, heliodevices, railways

Procedia PDF Downloads 366
1072 Damage-Based Seismic Design and Evaluation of Reinforced Concrete Bridges

Authors: Ping-Hsiung Wang, Kuo-Chun Chang

Abstract:

There has been a common trend worldwide in the seismic design and evaluation of bridges towards the performance-based method where the lateral displacement or the displacement ductility of bridge column is regarded as an important indicator for performance assessment. However, the seismic response of a bridge to an earthquake is a combined result of cyclic displacements and accumulated energy dissipation, causing damage to the bridge, and hence the lateral displacement (ductility) alone is insufficient to tell its actual seismic performance. This study aims to propose a damage-based seismic design and evaluation method for reinforced concrete bridges on the basis of the newly developed capacity-based inelastic displacement spectra. The capacity-based inelastic displacement spectra that comprise an inelastic displacement ratio spectrum and a corresponding damage state spectrum was constructed by using a series of nonlinear time history analyses and a versatile, smooth hysteresis model. The smooth model could take into account the effects of various design parameters of RC bridge columns and correlates the column’s strength deterioration with the Park and Ang’s damage index. It was proved that the damage index not only can be used to accurately predict the onset of strength deterioration, but also can be a good indicator for assessing the actual visible damage condition of column regardless of its loading history (i.e., similar damage index corresponds to similar actual damage condition for the same designed columns subjected to very different cyclic loading protocols as well as earthquake loading), providing a better insight into the seismic performance of bridges. Besides, the computed spectra show that the inelastic displacement ratio for far-field ground motions approximately conforms to the equal displacement rule when structural period is larger than around 0.8 s, but that for near-fault ground motions departs from the rule in the whole considered spectral regions. Furthermore, the near-fault ground motions would lead to significantly greater inelastic displacement ratio and damage index than far-field ground motions and most of the practical design scenarios cannot survive the considered near-fault ground motion when the strength reduction factor of bridge is not less than 5.0. Finally, the spectrum formula is presented as a function of structural period, strength reduction factor, and various column design parameters for far-field and near-fault ground motions by means of the regression analysis of the computed spectra. And based on the developed spectrum formula, a design example of a bridge is presented to illustrate the proposed damage-based seismic design and evaluation method where the damage state of the bridge is used as the performance objective.

Keywords: damage index, far-field, near-fault, reinforced concrete bridge, seismic design and evaluation

Procedia PDF Downloads 119
1071 Semiconductor Variable Wavelength Generator of Near-Infrared-to-Terahertz Regions

Authors: Isao Tomita

Abstract:

Power characteristics are obtained for laser beams of near-infrared and terahertz wavelengths when produced by difference-frequency generation with a quasi-phase-matched (QPM) waveguide made of gallium phosphide (GaP). A refractive-index change of the QPM GaP waveguide is included in computations with Sellmeier’s formula for varying input wavelengths, where optical loss is also included. Although the output power decreases with decreasing photon energy as the beam wavelength changes from near-infrared to terahertz wavelengths, the beam generation with such greatly different wavelengths, which is not achievable with an ordinary laser diode without the replacement of semiconductor material with a different bandgap one, can be made with the same semiconductor (GaP) by changing the QPM period, where a way of changing the period is provided.

Keywords: difference-frequency generation, gallium phosphide, quasi-phase-matching, waveguide

Procedia PDF Downloads 107
1070 The Influence of Concrete Pictorial Abstract Teaching Approach on Students' Concepts Understanding and Retention in Mathematics in Rwandan Lower Secondary Schools

Authors: Emmanuel Iyamuremye, Irenee Ndayambaje

Abstract:

This study investigated the influence of Concrete Pictorial Abstract (CPA) teaching approach on mathematics achievement based on a sample of eighth-grade students (N = 10,345) from the Rwandan Lower Secondary School quasi-experimental study with pre-test and post-test control group of 2019 (RLSQES19). Key aspects studied included mathematics concept understanding and mathematics concept retention and how these are influenced by teacher's teaching approach. Specifically, the study aimed to a.) investigate students' concept understanding and concept retention in mathematics when exposed to CPA approach and to those exposed to non-CPA approach before and after the intervention, and b.) ascertain the significant difference between the performance of the students exposed to CPA approach and those exposed to non-CPA approach in terms of post-test scores and retention test scores. Two groups (control and experimental) undergone pre-test, post-test, and retention test. The assignment of control and experimental group among senior two classes from 10 schools was done randomly. The materials used to determine the performance of the students is a teacher-made test. Descriptive statistics and ANCOVA were used for the analysis of the study. For determining the improvement in concept understanding of mathematics, Hakes methods of calculating gain were used to analyze the pre-test and post test score. The level of performance of the two groups in the pre-test is below average level. During the post-test and retention test, the performance of students in non-CPA group is on average level, and students in CPA group are on above average level. Hakes methods of calculating gain revealed higher significant performance in the post-test and retention test of CPA group of students than non-CPA group of students.

Keywords: concept understanding, concept retention, performance, teaching approach

Procedia PDF Downloads 112