Search results for: mechanical textile damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6354

Search results for: mechanical textile damage

5034 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters

Authors: B. SahaRoy, T. Medhi, S. C. Saha

Abstract:

To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.

Keywords: AA6061-T6, CFD modelling, friction stir welding, material flow

Procedia PDF Downloads 520
5033 Numerical Study of Two Mechanical Stirring Systems for Yield Stress Fluid

Authors: Amine Benmoussa, Mebrouk Rebhi, Rahmani Lakhdar

Abstract:

Mechanically agitated vessels are commonly used for various operations within a wide range process in chemical, pharmaceutical, polymer, biochemical, mineral, petroleum industries. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. In this paper, the laminar 2D agitation flow and power consumption of viscoplastic fluids with straight and circular gate impellers in a stirring tank is studied by using computational fluid dynamics (CFD), where the velocity profile, the velocity fields and power consumption was analyzed.

Keywords: CFD, mechanical stirring, power consumption, yield stress fluid

Procedia PDF Downloads 351
5032 Accelerated Ageing of Unidirectional Flax Fibers Reinforced Recycled Polypropylene Composites

Authors: Lara Alam, Laetitia Van-Schoors, Olivier Sicot, Benoit Piezel, Shahram Aivazzadeh

Abstract:

Over the last decades, worldwide environmental awareness has grown due to the depletion of raw material resources and global warming. This awareness has prompted the development of new products more environmentally friendly. Among these products are biocomposite materials reinforced with natural fibers. The main challenge in developing the use of biocomposites in exterior applications is the lack of knowledge about their durability and the evolution of their mechanical and physico-chemical properties in the long term. Few studies have been carried out on the photooxidation of unidirectional (UD) composites based on recycled matrix, which is the aim of this work. For this purpose, UD flax fiber composites based on recycled polypropylene were prepared by thermocompression. An accelerated aging test was carried out using a xenon arc WeatherOmeter. The consequences of UV exposure on the chemical composition and morphology of the surface of composites as well as on their tensile mechanical properties have been reported. The results showed that accelerated aging had a significant effect on the surface of these composites while it had little impact on their mechanical properties.

Keywords: flax fiber, photooxidation, physico-chemical properties, recycled polypropylene, tensile properties

Procedia PDF Downloads 196
5031 Radioprotective Effects of Selenium and Vitamin-E against 6Mv X-Rays in Human Volunteers Blood Lymphocytes by Micronuclei Assay

Authors: Vahid Changizi, Aram Rostami, Akbar Mosavi

Abstract:

Purpose of study: Critical macromolecules of cells such as DNA are in exposure to damage of free radicals that induced from interaction of ionizing radiation with biological systems. Selenium and vitamin-E are natural compound that has been shown to be a direct free radical scavenger. The aim of this study was to investigate the in vivo/in vitro radioprotective effect of selenium and vitamin-E separately and synergistically against genotoxicity induced by 6MV x-rays irradiation in cultured blood lymphocytes from 15 human volunteers. Methods: Fifteen volunteers were divided in three groups include A, B and C. These groups were given slenium(800 IU), vitamin-E(100 mg) and selenium(400 IU) + vitamin-E(50 mg), respectively. Peripheral blood samples were collected from each group before(0 hr) and 1, 2 and 3 hr after selenium and vitamin-E administration (separately and synergistically). Then the blood samples were irradiated to 200 cGy of 6 Mv x-rays. After that, lymphocyte samples were cultured with mitogenic stimulation to determine the chromosomal aberrations wih micronucleus assay in cytokinesis-blocked binucleated cells. Results: The lymphocytes in the blood samples collected at 1 hr after ingestion selenium and vitamin-E, exposed in vitro to x-rays exhibited a significant decrease in the incidence of micronuclei, compared with control group at 0 hr. The maximum protection and decrease in frequency of micronuclei(50%) was observed at 1 hr after administration of selenium and vitamin-E synergistically. Conclusion: The data suggest that ingestion of selenium and vitamin-E as a radioprotector substances before exposures may reduce genetic damage caused by x-rays irradiation.

Keywords: x-rays, selenium, vitamin-e, lymphocyte, micronuclei

Procedia PDF Downloads 267
5030 Study of Biocomposites Based of Poly(Lactic Acid) and Olive Husk Flour

Authors: Samra Isadounene, Amar Boukerrou, Dalila Hammiche

Abstract:

In this work, the composites were prepared with poly(lactic acid) (PLA) and olive husk flour (OHF) with different percentages (10, 20 and 30%) using extrusion method followed by injection molding. The morphological, mechanical properties and thermal behavior of composites were investigated. Tensile strength and elongation at break of composites showed a decreasing trend with increasing fiber content. On the other hand, Young modulus and storage modulus were increased. The addition of OHF resulted in a decrease in thermal stability of composites. The presence of OHF led to an increase in percentage of crystallinity (Xc) of PLA matrix.

Keywords: biopolymers, composites, mechanical properties, poly(lactic acid)

Procedia PDF Downloads 237
5029 Studying the Effect of Nanoclays on the Mechanical Properties of Polypropylene/Polyamide Nanocomposites

Authors: Benalia Kouini, Aicha Serier

Abstract:

Nanocomposites based on polypropylene/polyamide 66 (PP/PA66) nanoblends containing organophilic montmorillonite (OMMT) and maleic anhydride grafted polypropylene (PP-g-MAH) were prepared by melt compounding method followed by injection molding. Two different types of nanoclays were used in this work. DELLITE LVF is the untreated nanoclay and DELLITE 67G is the treated one. The morphology of the nanocomposites was studied using the XR diffraction (XRD). The results indicate that the incorporation of treated nanoclay has a significant effect on the impact strength of PP/PA66 nanocomposites. Furthermore, it was found that XRD results revealed the intercalation, exfoliation of nanaclays of nanocomposites.

Keywords: nNanoclay, Nanocomposites, Polypropylene, Polyamide, melt processing, mechanical properties.

Procedia PDF Downloads 354
5028 Impact Tensile Mechanical Properties of 316L Stainless Steel at Different Strain Rates

Authors: Jiawei Chen, Jia Qu, Dianwei Ju

Abstract:

316L stainless steel has good mechanical and technological properties, has been widely used in shipbuilding and aerospace manufacturing. In order to understand the effect of strain rate on the yield limit of 316L stainless steel and the constitutive relationship of the materials at different strain rates, this paper used the INSTRON-4505 electronic universal testing machine to study the mechanical properties of the tensile specimen under quasi-static conditions. Meanwhile, the Zwick-Roell RKP450 intelligent oscillometric impact tester was used to test the tensile specimens at different strain rates. Through the above two kinds of experimental researches, the relationship between the true stress-strain and the engineering stress-strain at different strain rates is obtained. The result shows that the tensile yield point of 316L stainless steel increases with the increase of strain rate, and the real stress-strain curve of the 316L stainless steel has a better normalization than that of the engineering stress-strain curve. The real stress-strain curves can be used in the practical engineering of impact stretch to improve its safety.

Keywords: impact stretch, 316L stainless steel, strain rate, real stress-strain, normalization

Procedia PDF Downloads 278
5027 Applications of Space Technology in Flood Risk Mapping in Parts of Haryana State, India

Authors: B. S. Chaudhary

Abstract:

The severity and frequencies of different disasters on the globe is increasing in recent years. India is also facing the disasters in the form of drought, cyclone, earthquake, landslides, and floods. One of the major causes of disasters in northern India is flood. There are great losses and extensive damage to the agricultural crops, property, human, and animal life. This is causing environmental imbalances at places. The annual global figures for losses due to floods run into over 2 billion dollar. India is a vast country with wide variations in climate and topography. Due to widespread and heavy rainfall during the monsoon months, floods of varying magnitude occur all over the country during June to September. The magnitude depends upon the intensity of rainfall, its duration and also the ground conditions at the time of rainfall. Haryana, one of the agriculturally dominated northern states is also suffering from a number of disasters such as floods, desertification, soil erosion, land degradation etc. Earthquakes are also frequently occurring but of small magnitude so are not causing much concern and damage. Most of the damage in Haryana is due to floods. Floods in Haryana have occurred in 1978, 1988, 1993, 1995, 1998, and 2010 to mention a few. The present paper deals with the Remote Sensing and GIS applications in preparing flood risk maps in parts of Haryana State India. The satellite data of various years have been used for mapping of flood affected areas. The Flooded areas have been interpreted both visually and digitally and two classes-flooded and receded water/ wet areas have been identified for each year. These have been analyzed in GIS environment to prepare the risk maps. This shows the areas of high, moderate and low risk depending on the frequency of flood witness. The floods leave a trail of suffering in the form of unhygienic conditions due to improper sanitation, water logging, filth littered in the area, degradation of materials and unsafe drinking water making the people prone to many type diseases in short and long run. Attempts have also been made to enumerate the causes of floods. The suggestions are given for mitigating the fury of floods and proper management issues related to evacuation and safe places nearby.

Keywords: flood mapping, GIS, Haryana, India, remote sensing, space technology

Procedia PDF Downloads 208
5026 Planning and Urban Climate Change Adaptation: Italian Literature Review

Authors: Mara Balestrieri

Abstract:

Climate change has long been the focus of attention for the growing impact of extreme weather events and global warming in many areas of the planet and the evidence of economic, social, and environmental damage caused by global warming. Nowadays, climate change is recognized as a critical global problem. Several initiatives have been undertaken over time to enhance the long theoretical debate and field experience in order to reduce Co2 emissions and contain climate alteration. However, the awareness that climate change is already taking place has led to a growing demand for adaptation. It is certainly a matter of anticipating the negative effects of climate change but, at the same time, implementing appropriate actions to prevent climate change-related damage, minimize the problems that may result, and also seize any opportunities that may arise. Consequently, adaptation has become a core element of climate policy and research. However, the attention to this issue has not developed in a uniform manner across countries. Some countries are further ahead than others. This paper examines the literature on climate change adaptation developed until 2018 in Italy, considering the urban dimension, to provide a framework for it, and to identify main topics and features. The papers were selected from Scopus and were analyzed through a matrix that we propose. Results demonstrate that adaptation to climate change studies attracted increasing attention from Italian scientific communities in the last years, although Italian scientific production is still quantitatively lower than in other countries and describes strengths and weaknesses in line with international panorama with respect to objectives, sectors, and problems.

Keywords: adaptation, bibliometric literature, climate change, urban studies

Procedia PDF Downloads 72
5025 A Numerical Study on Micromechanical Aspects in Short Fiber Composites

Authors: I. Ioannou, I. M. Gitman

Abstract:

This study focused on the contribution of micro-mechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model.

Keywords: effective properties, homogenization, representative volume element, short fiber reinforced composites

Procedia PDF Downloads 266
5024 Investigation of Film and Mechanical Properties of Poly(Lactic Acid)

Authors: Reyhan Özdoğan, Özgür Ceylan, Mehmet Arif Kaya, Mithat Çelebi

Abstract:

Food packaging is important for the food industry. Bioplastics have been used as food packaging materials. According to the European Bioplastics organization, bioplastics can be defined as plastics based on renewable resources (bio-based) or as plastics which are biodegradable and/or compostable. Poly(lactic acid) (PLA) has an industrially importance of bioplastic polymers. PLA is a family of biodegradable thermoplastic polyester made from renewable resources. It is produced by conversion of corn, or other carbohydrate sources, into dextrose, followed by fermentation into lactic acid through direct polycondensation of lactic acid monomers or through ring-opening polymerization of lactide. The processing possibilities of this transparent material are very wide, ranging from injection molding and extrusion over cast film extrusion to blow molding and thermoforming. In this study, PLA films were prepared by solution casting method. PLAs which are different molecular weights were plasticized with glycerol and the morphology of films was monitored by optical microscopy. Properties of mechanical and film of PLA were researched with the mechanical testing machine.

Keywords: biodegradable, bioplastics, morphology, solution casting, poly(lactic acid)

Procedia PDF Downloads 373
5023 Effects of Different Mechanical Treatments on the Physical and Chemical Properties of Turmeric

Authors: Serpa A. M., Gómez Hoyos C., Velásquez-Cock J. A., Ruiz L. F., Vélez Acosta L. M., Gañan P., Zuluaga R.

Abstract:

Turmeric (Curcuma Longa L) is an Indian rhizome known for its biological properties, derived from its active compounds such as curcuminoids. Curcumin, the main polyphenol in turmeric, only represents around 3.5% of the dehydrated rhizome and extraction yields between 41 and 90% have been reported. Therefore, for every 1000 tons of turmeric powder used for the extraction of curcumin, around 970 tons of residues are generated. The present study evaluates the effect of different mechanical treatments (waring blender, grinder and high-pressure homogenization) on the physical and chemical properties of turmeric, as an alternative for the transformation of the entire rhizome. Suspensions of turmeric (10, 20 y 30%) were processed by waring blender during 3 min at 12000 rpm, while the samples treated by grinder were processed evaluating two different Gaps (-1 and -1,5). Finally, the process by high-pressure homogenization, was carried out at 500 bar. According to the results, the luminosity of the samples increases with the severity of the mechanical treatment, due to the stabilization of the color associated with the inactivation of the oxidative enzymes. Additionally, according to the microstructure of the samples, the process by grinder (Gap -1,5) and by high-pressure homogenization allowed the largest size reduction, reaching sizes up to 3 m (measured by optical microscopy). This processes disrupts the cells and breaks their fragments into small suspended particles. The infrared spectra obtained from the samples using an attenuated total reflectance accessory indicates changes in the 800-1200 cm⁻¹ region, related mainly to changes in the starch structure. Finally, the thermogravimetric analysis shows the presence of starch, curcumin and some minerals in the suspensions.

Keywords: characterization, mechanical treatments, suspensions, turmeric rhizome

Procedia PDF Downloads 162
5022 Alpha-To-Omega Phase Transition in Bulk Nanostructured Ti and (α+β) Ti Alloys

Authors: Askar Kilmametov, Julia Ivanisenko, Boris Straumal, Horst Hahn

Abstract:

The high-pressure α- to ω-phase transition was discovered in elemental Ti and Zr fifty years ago using static high pressure and then observed to appear between 2 and 12 GPa at room temperature, depending on the experimental technique, the pressure environment, and the sample purity. The fact that ω-phase is retained in a metastable state in ambient condition after the removal of the pressure has been used to check the changes in magnetic and superconductive behavior, electron band structure and mechanical properties. However, the fundamental knowledge on a combination of both mechanical treatment and high applied pressure treatments for ω-phase formation in Ti alloys is currently lacking and has to be studied in relation to improved mechanical properties of bulk nanostructured states. In the present study, nanostructured (α+β) Ti alloys containing β-stabilizing elements such as Co, Fe, Cr, Nb were performed by severe plastic deformation, namely high pressure torsion (HPT) technique. HPT-induced α- to ω-phase transformation was revealed in dependence on applied pressure and shear strains by means of X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The transformation kinetics was compared with the kinetics of pressure-induced transition. Orientation relationship between α-, β- and ω-phases was taken into consideration and analyzed according to theoretical calculation proposed earlier. The influence of initial state before HPT appeared to be considerable for subsequent α- to ω-phase transition. Thermal stability of the HPT-induced ω-phase was discussed as well in the frame of mechanical behavior of Ti and Ti-based alloys produced by shear deformation under high applied pressure.

Keywords: bulk nanostructured materials, high pressure phase transitions, severe plastic deformation, titanium alloys

Procedia PDF Downloads 418
5021 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications

Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin

Abstract:

Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.

Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility

Procedia PDF Downloads 147
5020 Heat Setting of Polyester: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Heat setting is a commonly used technique in textile industry for treating synthetic fibers. In this study, we examined the effect of heat-setting process on the dyeing properties of polyester fabric. The heat setting conditions were varied, and these conditions would affect the dyeing results. The aim of this study is to illustrate the proper application method of heat setting process to polyester fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, heat setting, polyester, dyeing

Procedia PDF Downloads 246
5019 Influence of Modified and Unmodified Cow Bone on the Mechanical Properties of Reinforced Polyester Composites for Biomedical Applications

Authors: I. O. Oladele, J. A. Omotoyinbo, A. M. Okoro, A. G. Okikiola, J. L. Olajide

Abstract:

This work was carried out to investigate comparatively the effects of modified and unmodified cow bone particles on the mechanical properties of polyester matrix composites in order to investigate the suitability of the materials as biomaterial. Cow bones were procured from an abattoir, sun dried for 4 weeks and crushed. The crushed bones were divided into two, where one part was turned to ash while the other part was pulverized with laboratory ball mill before the two grades were sieved using 75 µm sieve size. Bone ash and bone particle reinforced tensile and flexural composite samples were developed from pre-determined proportions of 2, 4, 6, and 8 %. The samples after curing were stripped from the moulds and were allowed to further cure for 3 weeks before tensile and flexural tests were performed on them. The tensile test result showed that, 8 wt % bone particle reinforced polyester composites has higher tensile properties except for modulus of elasticity where 8 wt % bone ash particle reinforced composites has higher value while for flexural test, bone ash particle reinforced composites demonstrate the best flexural properties. The results show that these materials are structurally compatible.

Keywords: biomedical, composites, cow bone, mechanical properties, polyester, reinforcement

Procedia PDF Downloads 277
5018 Investigation of the Mechanical Performance of Hot Mix Asphalt Modified with Crushed Waste Glass

Authors: Ayman Othman, Tallat Ali

Abstract:

The successive increase of generated waste materials like glass has led to many environmental problems. Using crushed waste glass in hot mix asphalt paving has been though as an alternative to landfill disposal and recycling. This paper discusses the possibility of utilizing crushed waste glass, as a part of fine aggregate in hot mix asphalt in Egypt. This is done through evaluation of the mechanical properties of asphalt concrete mixtures mixed with waste glass and determining the appropriate glass content that can be adapted in asphalt pavement. Four asphalt concrete mixtures with various glass contents, namely; 0%, 4%, 8% and 12% by weight of total mixture were studied. Evaluation of the mechanical properties includes performing Marshall stability, indirect tensile strength, fracture energy and unconfined compressive strength tests. Laboratory testing had revealed the enhancement in both compressive strength and Marshall stability test parameters when the crushed glass was added to asphalt concrete mixtures. This enhancement was accompanied with a very slight reduction in both indirect tensile strength and fracture energy when glass content up to 8% was used. Adding more than 8% of glass causes a sharp reduction in both indirect tensile strength and fracture energy. Testing results had also shown a reduction in the optimum asphalt content when the waste glass was used. Measurements of the heat loss rate of asphalt concrete mixtures mixed with glass revealed their ability to hold heat longer than conventional mixtures. This can have useful application in asphalt paving during cold whether or when a long period of post-mix transportation is needed.

Keywords: waste glass, hot mix asphalt, mechanical performance, indirect tensile strength, fracture energy, compressive strength

Procedia PDF Downloads 308
5017 Enhanced Mechanical Properties and Corrosion Resistance of Fe-Based Thin Film Metallic Glasses via Pulsed Laser Deposition

Authors: Ali Obeydavi, Majid Rahimi

Abstract:

This study explores the synthesis and characterization of Fe-Cr-Mo-Co-C-B-Si thin film metallic glasses fabricated using the pulsed laser deposition (PLD) technique on silicon wafer and 304 stainless steel substrates. it systematically varied the laser pulse numbers (20,000; 30,000; 40,000) and energies (130, 165, 190 mJ) to investigate their effects on the microstructural, mechanical, and corrosion properties of the deposited films. Comprehensive characterization techniques, including grazing incidence X-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and transmission electron microscopy with selected area electron diffraction, were utilized to assess the amorphous structure and surface morphology. Results indicated that increased pulse numbers and laser energies led to enhanced deposition rates and film thicknesses. Nanoindentation tests demonstrated that the hardness and elastic modulus of the amorphous thin films significantly surpassed those of the 304 stainless steel substrate. Additionally, electrochemical polarization and impedance spectroscopy revealed that the Fe-based metallic glass coatings exhibited superior corrosion resistance compared to the stainless steel substrate. The observed improvements in mechanical and corrosion properties are attributed to the unique amorphous structure achieved through the PLD process, highlighting the potential of these materials for protective coatings in aggressive environments.

Keywords: thin film metallic glasses, pulsed laser deposition, mechanical properties, corrosion resistance

Procedia PDF Downloads 20
5016 Preparation and Properties of Self-Healing Polyurethanes Utilizing the Host-Guest Interaction between Cyclodextrin and Adamantane Moieties

Authors: Kaito Sugane, Mitsuhiro Shibata

Abstract:

Self-healing polymers have attracted attention because their physical damage and cracks can be effectively repaired, thereby extending the lifetime of the materials. Self-healing polymers using host-guest interaction have the advantage that they are quickly repaired under mild temperature conditions when compared with self-healing polymer using dynamic covalent bonds such as Diels-Alder (DA)/retro-DA and disulfide metathesis reactions. Especially, it is known that hydrogels utilizing the host-guest interaction between cyclodextrin and various guest molecules are repeatedly self-repaired at room temperature. However, most of the works deal with hydrogels, and little attention has been paid for thermosetting resins as polyurethane, epoxy and unsaturated polyester resins. In this study, polyetherurethane networks (PUN-CD-Ads) incorporating cyclodextrin and adamantane moieties were prepared by the crosslinking reactions of β-cyclodextrin (CD), 1-adamantanol (AdOH), glycerol ethoxylate (GCE) and hexamethylene diisocyanate (HDI), and thermal, mechanical and self-healing properties of the polymer network films were investigated. Our attention was focused on the influences of molar ratio of CD/AdOH, GCE/CD and OH/NCO on the properties. The FT-IR, and gel fraction analysis revealed that the urethanization reaction smoothly progress to form polyurethane networks. When two cut pieces of the films were contacted at the cross-section at room temperature for 30 seconds, the two pieces adhered to produce a self-healed film. Especially, the PUN-CD-Ad prepared at GCE/CD = 5/1, CD/AdOH = 1/1, and OH/NCO = 1/1 film exhibited the highest healing efficiency for tensile strength. Most of the PUN-CD-Ads were successfully self-healed at room temperature.

Keywords: host-guest interaction, network polymer, polyurethane, self-healing

Procedia PDF Downloads 186
5015 Effect of Milling Parameters on the Characteristics of Nanocrystalline TiAl Alloys Synthesized by Mechanical Alloying

Authors: Jinan B. Al-Dabbagh, Rozman Mohd Tahar, Mahadzir Ishak

Abstract:

TiAl alloy nano-powder was successfully produced by a mechanical alloying (MA) technique in a planetary ball mill. The influence of milling parameters, such as the milling duration, rotation speed, and balls-to-powder mass ratio, on the characteristics of the Ti50%Al powder, including the microstructure, crystallite size refinement, and phase formation, were investigated. It was found that MA of elemental Ti and Al powders promotes the formation of TiAl alloys, as Ti (Al) solid solution was formed after 5h of milling. Milling without the addition of process control agents led to a dramatic decrease in the crystallite size to 17.8 nm after 2h of milling. Higher rotation energy and a higher ball-to-powder weight ratio also accelerated the reduction in crystallite size. Subsequent heating up to 850°C resulted in the formation of a new intermetallic phase with a dominant TiAl3 phase plus minor γ-TiAl or α2-Ti3Al phase or both. A longer milling duration also exhibited a better effect on the micro-hardness of Ti50%Al powders.

Keywords: TiAl alloys, nanocrystalline materials, mechanical alloying, materials science

Procedia PDF Downloads 357
5014 State Forest Management Practices by Indigenous Peoples in Dharmasraya District, West Sumatra Province, Indonesia

Authors: Abdul Mutolib, Yonariza Mahdi, Hanung Ismono

Abstract:

The existence of forests is essential to human lives on earth, but its existence is threatened by forest deforestations and degradations. Forest deforestations and degradations in Indonesia is not only caused by the illegal activity by the company or the like, even today many cases in Indonesia forest damage caused by human activities, one of which cut down forests for agriculture and plantations. In West Sumatra, community forest management are the result supported the enactment of customary land tenure, including ownership of land within the forest. Indigenous forest management have a positive benefit, which gives the community an opportunity to get livelihood and income, but if forest management practices by indigenous peoples is not done wisely, then there is the destruction of forests and cause adverse effects on the environment. Based on intensive field works in Dhamasraya District employing some data collection techniques such as key informant interviews, household surveys, secondary data analysis, and satellite image interpretation. This paper answers the following questions; how the impact of forest management by local communities on forest conditions (foccus in Forest Production and Limited Production Forest) and knowledge of the local community on the benefits of forests. The site is a Nagari Bonjol, Dharmasraya District, because most of the forest in Dharmasraya located and owned by Nagari Bonjol community. The result shows that there is damage to forests in Dharmasraya because of forest management activities by local communities. Damage to the forest area of 33,500 ha in Dharmasraya because forests are converted into oil palm and rubber plantations with monocultures. As a result of the destruction of forests, water resources are also diminishing, and the community has experienced a drought in the dry season due to forest cut down and replaced by oil palm plantations. Knowledge of the local community on the benefits of low forest, the people considered that the forest does not have better benefits and cut down and converted into oil palm or rubber plantations. Local people do not understand the benefits of ecological and environmental services that forests. From the phenomena in Dharmasraya on land ownership, need to educate the local community about the importance of protecting the forest, and need a strategy to integrate forests management to keep the ecological functions that resemble the woods and counts the economic benefits for the welfare of local communities. One alternative that can be taken is to use forest management models agroforestry smallholders in accordance with the characteristics of the local community who still consider the economic, social and environmental.

Keywords: community, customary land, farmer plantations, and forests

Procedia PDF Downloads 334
5013 Utilization of Nanoclay to Reinforce Flax Fabric-Geopolymer Composites

Authors: H. S. Assaedi, F. U. A. Shaikh, I. M. Low

Abstract:

Geopolymer composites reinforced with flax fabrics and nano-clay are fabricated and studied for physical and mechanical properties using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Nanoclay platelets at a weight of 1.0%, 2.0%, and 3.0% were added to geopolymer pastes. Nanoclay at 2.0 wt.% was found to improve density and decrease porosity while improving flexural strength and post-peak toughness. A microstructural analysis indicated that nanoclay behaves as filler and as an activator supporting geopolymeric reaction while producing a higher content geopolymer gel improving the microstructure of binders. The process enhances adhesion between the geopolymer matrix and flax fibres.

Keywords: flax fibres, geopolymer, mechanical properties, nanoclay

Procedia PDF Downloads 244
5012 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation

Authors: Jeong-Won Kang

Abstract:

Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force vs deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.

Keywords: graphene, pressure sensor, circular graphene nanoflake, molecular dynamics

Procedia PDF Downloads 385
5011 Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement

Authors: Chao Xu

Abstract:

Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result.

Keywords: vulnerability, probability seismic demand analysis, ground motion intensity measure, sufficiency, efficiency, inelastic time history analysis

Procedia PDF Downloads 350
5010 Ni-B Coating Production on Magnesium Alloy by Electroless Deposition

Authors: Ferhat Bülbül

Abstract:

The use of magnesium alloys is limited due to their susceptibility to corrosion although they have many attractive physical and mechanical properties. To increase mechanical and corrosion properties of these alloys, many deposition method and coating types are used. Electroless Ni–B coatings have received considerable interest recently due to its unique properties such as cost-effectiveness, thickness uniformity, good wear resistance, lubricity, good ductility and corrosion resistance, excellent solderability and electrical properties and antibacterial property. In this study, electroless Ni-B coating could been deposited on AZ91 magnesium alloy. The obtained coating exhibited an amorphous and rougher structure.

Keywords: magnesium, electroless Ni–B, X-ray diffraction, amorphous

Procedia PDF Downloads 338
5009 Microglia Activity and Induction of Mechanical Allodynia after Mincle Receptor Ligand Injection in Rat Spinal Cord

Authors: Jihoon Yang, Jeong II Choi

Abstract:

Mincle is expressed in macrophages and is members of immunoreceptors induced after exposure to various stimuli and stresses. Mincle receptor activation promotes the production of these substances by increasing the transcription of inflammatory cytokines and chemokines. Cytokines, which play an important role in the initiation and maintenance of such inflammatory pain diseases, have a significant effect on sensory neurons in addition to their enhancement and inhibitory effects on immune and inflammatory cells as mediators of cell interaction. Glial cells in the central nervous system play a critical role in development and maintenance of chronic pain states. Microglia are tissue-resident macrophages in the central nervous system, and belong to a group of mononuclear phagocytes. In the central nervous system, mincle receptor is present in neurons and glial cells of the brain.This study was performed to identify the Mincle receptor in the spinal cord and to investigate the effect of Mincle receptor activation on nociception and the changes of microglia. Materials and Methods: C-type lectins(Mincle) was identified in spinal cord of Male Sprague–Dawley rats. Then, mincle receptor ligand (TDB), via an intrathecal catheter. Mechanical allodynia was measured using von Frey test to evaluate the effect of intrathecal injection of TDB. Result: The present investigation shows that the intrathecal administration of TDB in the rat produces a reliable and quantifiable mechanical hyperalgesia. In addition, The mechanical hyperalgesia after TDB injection gradually developed over time and remained until 10 days. Mincle receptor is identified in the spinal cord, mainly expressed in neuronal cells, but not in microglia or astrocyte. These results suggest that activation of mincle receptor pathway in neurons plays an important role in inducing activation of microglia and inducing mechanical allodynia.

Keywords: mincle, spinal cord, pain, microglia

Procedia PDF Downloads 158
5008 Allium Cepa Extract Provides Neuroprotection Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana, Alkem Laboratories, Baddi, Himachal Pradesh, India Chitkara University, Punjab, India

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min followed by 24 h reperfusion was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity was also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rise in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury, which may be attributed to its antioxidant properties.

Keywords: stroke, neuroprotection, ischemia reperfusion, herbal drugs

Procedia PDF Downloads 104
5007 The Fabrication and Characterization of Hierarchical Carbon Nanotube/Carbon Fiber/High-Density Polyethylene Composites via Twin-Screw Extrusion

Authors: Chao Hu, Xinwen Liao, Qing-Hua Qin, Gang Wang

Abstract:

The hierarchical carbon nanotube (CNT)/carbon fiber (CF)/high density polyethylene (HDPE) was fabricated via compound extrusion and injection molding, in which to author’s best knowledge CNT was employed as a nano-coatings on the surface of CF for the first time by spray coating technique. The CNT coatings relative to CF was set at 1 wt% and the CF content relative to the composites varied from 0 to 25 wt% to study the influence of CNT coatings and CF contents on the mechanical, thermal and morphological performance of this hierarchical composites. The results showed that with the rise of CF contents, the mechanical properties, including the tensile properties, flexural properties, and hardness of CNT/CF/HDPE composites, were effectively improved. Furthermore, the CNT-coated composites showed overall higher mechanical performance than the uncoated counterparts. It can be ascribed to the enhancement of interfacial bonding between the CF and HDPE via the incorporation of CNT, which was demonstrated by the scanning electron microscopy observation. Meanwhile, the differential scanning calorimetry data indicated that by the introduction of CNT and CF, the crystallization temperature and crystallinity of HDPE were affected while the melting temperature did not have an obvious alteration.

Keywords: carbon fibers, carbon nanotubes, extrusion, high density polyethylene

Procedia PDF Downloads 137
5006 Experimental and Computational Investigation of Flow Field and Thermal Behavior of a Mechanical Seal

Authors: Hossein Shokouhmand, Masoomeh Shadab, Rohallah Torabi

Abstract:

Turbulent flow inside the seal chamber of a pump operating at nearly high Reynolds number is investigated. A comparison of a 3-D computational model for flow and thermal analysis of a mechanical seal with experimental thermal results is presented. The computational model adequately predicts the flow field in the seal chamber and thermal characteristics with the rotating and stationary rings and the twister flow around the seal parts by solving N-S and energy equations in ANSYS-CFX software. The Reynolds stress model (RSM) is applied as a turbulence model for this purpose. Experimental work is discussed which quantifies the temperature of five different points of the working fluid in chamber, mass flow at inlet and the fluid pressure at inlet and outlet. Experimental measurements are combined with computational modeling to obtain local and average heat transfer characteristics. Numerical results of three cases including different flush rates are reported.

Keywords: mechanical seal, CFD_CFX, reynolds stress model, flow field, heat transfer analysis, stream line, heat transfer coefficient, heat flux, nusselt

Procedia PDF Downloads 439
5005 Effect of Cryogenic Treatment on Various Mechanical and Metallurgical Properties of Different Material: A Review

Authors: Prashant Dhiman, Viranshu Kumar, Pradeep Joshi

Abstract:

Lot of research is going on to study the effect of cryogenic treatment on materials. Cryogenic treatment is a heat treatment process which is used widely to enhance the mechanical and metallurgical properties of various materials whether the material is ferrous or non ferrous. In almost all ferrous metals, it is found that retained austenite is converted into martensite. Generally deep cryogenic treatment is done using liquid nitrogen having temperature of -195 ℃. The austenite is unstable at this stage and converts into martensite. In non ferrous materials there presents a microcavity and under the action of stress it becomes crack. When this crack propagates, fracture takes place. As the metal contract under low temperature, by doing cryogenic treatment these microcavities will be filled hence increases the soundness of the material. Properties which are enhanced by cryogenic treatment of both ferrous and non ferrous materials are hardness, tensile strength, wear rate, electrical and thermal conductivity, and others. Also there is decrease in residual stress. A large number of manufacturing process (EDM, CNC etc.) are using cryogenic treatment on different tools or workpiece to reduce their wear. In this Review paper the use of cryogenic heat treatment in different manufacturing has been shown along with their advantages.

Keywords: cyrogenic treatment, EDM (Electrical Discharge Machining), CNC (Computer Numeric Control), Mechanical and Metallurgical Properties

Procedia PDF Downloads 435