Search results for: machine learning techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14195

Search results for: machine learning techniques

12875 Analysing Perceptions of Online Games-Based Learning: Case Study of the University of Northampton

Authors: Alison Power

Abstract:

Games-based learning aims to enhance students’ engagement with and enjoyment of learning opportunities using games-related principles to create a fun yet productive learning environment. Motivating students to learn in an online setting can be particularly challenging, so a cross-Faculty synchronous online session provided students with the opportunity to engage with ‘GAMING’: an interactive, flexible and scalable e-resource for students to work synchronously in groups to complete a series of e-tivities designed to enhance their skills of leadership, collaboration and negotiation. Findings from a post-session online survey found the majority of students had a positive learning experience, finding 'GAMING' to be an innovative and engaging e-resource which motivated their group to learn.

Keywords: collaboration, games-based learning, groupwork, synchronous online learning, teamwork

Procedia PDF Downloads 126
12874 A development of Innovator Teachers Training Curriculum to Create Instructional Innovation According to Active Learning Approach to Enhance learning Achievement of Private School in Phayao Province

Authors: Palita Sooksamran, Katcharin Mahawong

Abstract:

This research aims to offer the development of innovator teachers training curriculum to create instructional innovation according to active learning approach to enhance learning achievement. The research and development process is carried out in 3 steps: Step 1 The study of the needs necessary to develop a training curriculum: the inquiry was conducted by a sample of teachers in private schools in Phayao province that provide basic education at the level of education. Using a questionnaire of 176 people, the sample was defined using a table of random numbers and stratified samples, using the school as a random layer. Step 2 Training curriculum development: the tools used are developed training curriculum and curriculum assessments, with nine experts checking the appropriateness of the draft curriculum. The statistic used in data analysis is the average ( ) and standard deviation (S.D.) Step 3 study on effectiveness of training curriculum: one group pretest/posttest design applied in this study. The sample consisted of 35 teachers from private schools in Phayao province. The participants volunteered to attend on their own. The results of the research showed that: 1.The essential demand index needed with the list of essential needs in descending order is the choice and create of multimedia media, videos, application for learning management at the highest level ,Developed of multimedia, video and applications for learning management and selection of innovative learning management techniques and methods of solve the problem Learning , respectively. 2. The components of the training curriculum include principles, aims, scope of content, training activities, learning materials and resources, supervision evaluation. The scope of the curriculum consists of basic knowledge about learning management innovation, active learning, lesson plan design, learning materials and resources, learning measurement and evaluation, implementation of lesson plans into classroom and supervision and motoring. The results of the evaluation of quality of the draft training curriculum at the highest level. The Experts suggestion is that the purpose of the course should be used words that convey the results. 3. The effectiveness of training curriculum 1) Cognitive outcomes of the teachers in creating innovative learning management was at a high level of relative gain score. 2) The assessment results of learning management ability according to the active learning approach to enhance learning achievement by assessing from 2 education supervisor as a whole were very high , 3) Quality of innovation learning management based on active learning approach to enhance learning achievement of the teachers, 7 instructional Innovations were evaluated as outstanding works and 26 instructional Innovations passed the standard 4) Overall learning achievement of students who learned from 35 the sample teachers was at a high level of relative gain score 5) teachers' satisfaction towards the training curriculum was at the highest level.

Keywords: training curriculum, innovator teachers, active learning approach, learning achievement

Procedia PDF Downloads 55
12873 Prototype Development of ARM-7 Based Embedded Controller for Packaging Machine

Authors: Jeelka Ray

Abstract:

Survey of the papers revealed that there is no practical design available for packaging machine based on Embedded system, so the need arose for the development of the prototype model. In this paper, author has worked on the development of an ARM7 based Embedded Controller for controlling the sequence of packaging machine. The unit is made user friendly with TFT and Touch Screen implementing human machine interface (HMI). The different system components are briefly discussed, followed by a description of the overall design. The major functions which involve bag forming, sealing temperature control, fault detection, alarm, animated view on the home screen when the machine is working as per different parameters set makes the machine performance more successful. LPC2478 ARM 7 Embedded Microcontroller controls the coordination of individual control function modules. In back gone days, these machines were manufactured with mechanical fittings. Later on, the electronic system replaced them. With the help of ongoing technologies, these mechanical systems were controlled electronically using Microprocessors. These became the backbone of the system which became a cause for the updating technologies in which the control was handed over to the Microcontrollers with Servo drives for accurate positioning of the material. This helped to maintain the quality of the products. Including all, RS 485 MODBUS Communication technology is used for synchronizing AC Drive & Servo Drive. These all concepts are operated either manually or through a Graphical User Interface. Automatic tuning of heaters, sealers and their temperature is controlled using Proportional, Integral and Derivation loops. In the upcoming latest technological world, the practical implementation of the above mentioned concepts is really important to be in the user friendly environment. Real time model is implemented and tested on the actual machine and received fruitful results.

Keywords: packaging machine, embedded system, ARM 7, micro controller, HMI, TFT, touch screen, PID

Procedia PDF Downloads 275
12872 An Exploratory Study on the Integration of Neurodiverse University Students into Mainstream Learning and Their Performance: The Case of the Jones Learning Center

Authors: George Kassar, Phillip A. Cartwright

Abstract:

Based on data collected from The Jones Learning Center (JLC), University of the Ozarks, Arkansas, U.S., this study explores the impact of inclusive classroom practices on neuro-diverse college students’ and their consequent academic performance having participated in integrative therapies designed to support students who are intellectually capable of obtaining a college degree, but who require support for learning challenges owing to disabilities, AD/HD, or ASD. The purpose of this study is two-fold. The first objective is to explore the general process, special techniques, and practices of the (JLC) inclusive program. The second objective is to identify and analyze the effectiveness of the processes, techniques, and practices in supporting the academic performance of enrolled college students with learning disabilities following integration into mainstream university learning. Integrity, transparency, and confidentiality are vital in the research. All questions were shared in advance and confirmed by the concerned management at the JLC. While administering the questionnaire as well as conducted the interviews, the purpose of the study, its scope, aims, and objectives were clearly explained to all participants prior starting the questionnaire / interview. Confidentiality of all participants assured and guaranteed by using encrypted identification of individuals, thus limiting access to data to only the researcher, and storing data in a secure location. Respondents were also informed that their participation in this research is voluntary, and they may withdraw from it at any time prior to submission if they wish. Ethical consent was obtained from the participants before proceeding with videorecording of the interviews. This research uses a mixed methods approach. The research design involves collecting, analyzing, and “mixing” quantitative and qualitative methods and data to enable a research inquiry. The research process is organized based on a five-pillar approach. The first three pillars are focused on testing the first hypothesis (H1) directed toward determining the extent to the academic performance of JLC students did improve after involvement with comprehensive JLC special program. The other two pillars relate to the second hypothesis (H2), which is directed toward determining the extent to which collective and applied knowledge at JLC is distinctive from typical practices in the field. The data collected for research were obtained from three sources: 1) a set of secondary data in the form of Grade Point Average (GPA) received from the registrar, 2) a set of primary data collected throughout structured questionnaire administered to students and alumni at JLC, and 3) another set of primary data collected throughout interviews conducted with staff and educators at JLC. The significance of this study is two folds. First, it validates the effectiveness of the special program at JLC for college-level students who learn differently. Second, it identifies the distinctiveness of the mix of techniques, methods, and practices, including the special individualized and personalized one-on-one approach at JLC.

Keywords: education, neuro-diverse students, program effectiveness, Jones learning center

Procedia PDF Downloads 74
12871 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 229
12870 Condition Based Assessment of Power Transformer with Modern Techniques

Authors: Piush Verma, Y. R. Sood

Abstract:

This paper provides the information on the diagnostics techniques for condition monitoring of power transformer (PT). This paper deals with the practical importance of the transformer diagnostic in the Electrical Engineering field. The life of the transformer depends upon its insulation i.e paper and oil. The major testing techniques applies on transformer oil and paper i.e dissolved gas analysis, furfural analysis, radio interface, acoustic emission, infra-red emission, frequency response analysis, power factor, polarization spectrum, magnetizing currents, turn and winding ratio. A review has been made on the modern development of this practical technology.

Keywords: temperature, condition monitoring, diagnostics methods, paper analysis techniques, oil analysis techniques

Procedia PDF Downloads 433
12869 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 515
12868 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets

Authors: Debjit Ray

Abstract:

Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.

Keywords: genomics, pathogens, genome assembly, superbugs

Procedia PDF Downloads 197
12867 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods

Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer

Abstract:

The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.

Keywords: MMOG, decision tree, genetics, gaming-learning interaction

Procedia PDF Downloads 357
12866 Disparity of Learning Styles and Cognitive Abilities in Vocational Education

Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi, Tee Tze Kiong

Abstract:

This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education. Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. The study discovered that students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.

Keywords: learning styles, cognitive abilities, dimension of learning styles, learning preferences

Procedia PDF Downloads 402
12865 E–Learning System in Virtual Learning Environment to Develop Problem Solving Ability and Team Learning for Learners in Higher Education

Authors: Noawanit Songkram

Abstract:

This paper is a report on the findings of a study conducted on e–learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education. The methodology of this study was R&D research. The subjects were 18 undergraduate students in Faculty of Education, Chulalongkorn University in the academic year of 2013. The research instruments were a problem solving ability assessment, a team learning evaluation form, and an attitude questionnaire. The data was statistically analyzed using mean, standard deviation, one way repeated measure ANOVA and t–test. The research findings discovered the e –learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education consisted of five components:(1) online collaborative tools, (2) active learning activities, (3) creative thinking, (4) knowledge sharing process, (5) evaluation and nine processes which were (1) preparing in group working, (2) identifying interested topic, (3) analysing interested topic, (4) collecting data, (5) concluding idea (6) proposing idea, (7) creating workings, (8) workings evaluation, (9) sharing knowledge from empirical experience.

Keywords: e-learning system, problem solving ability, team leaning, virtual learning environment

Procedia PDF Downloads 438
12864 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias

Procedia PDF Downloads 85
12863 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 337
12862 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)

Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli

Abstract:

Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.

Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence

Procedia PDF Downloads 14
12861 Investigating Visual Statistical Learning during Aging Using the Eye-Tracking Method

Authors: Zahra Kazemi Saleh, Bénédicte Poulin-Charronnat, Annie Vinter

Abstract:

This study examines the effects of aging on visual statistical learning, using eye-tracking techniques to investigate this cognitive phenomenon. Visual statistical learning is a fundamental brain function that enables the automatic and implicit recognition, processing, and internalization of environmental patterns over time. Some previous research has suggested the robustness of this learning mechanism throughout the aging process, underscoring its importance in the context of education and rehabilitation for the elderly. The study included three distinct groups of participants, including 21 young adults (Mage: 19.73), 20 young-old adults (Mage: 67.22), and 17 old-old adults (Mage: 79.34). Participants were exposed to a series of 12 arbitrary black shapes organized into 6 pairs, each with different spatial configurations and orientations (horizontal, vertical, and oblique). These pairs were not explicitly revealed to the participants, who were instructed to passively observe 144 grids presented sequentially on the screen for a total duration of 7 min. In the subsequent test phase, participants performed a two-alternative forced-choice task in which they had to identify the most familiar pair from 48 trials, each consisting of a base pair and a non-base pair. Behavioral analysis using t-tests revealed notable findings. The mean score for the first group was significantly above chance, indicating the presence of visual statistical learning. Similarly, the second group also performed significantly above chance, confirming the persistence of visual statistical learning in young-old adults. Conversely, the third group, consisting of old-old adults, showed a mean score that was not significantly above chance. This lack of statistical learning in the old-old adult group suggests a decline in this cognitive ability with age. Preliminary eye-tracking results showed a decrease in the number and duration of fixations during the exposure phase for all groups. The main difference was that older participants focused more often on empty cases than younger participants, likely due to a decline in the ability to ignore irrelevant information, resulting in a decrease in statistical learning performance.

Keywords: aging, eye tracking, implicit learning, visual statistical learning

Procedia PDF Downloads 77
12860 The Link Between Knowledge Management, Organizational Learning and Collective Competence

Authors: Amira Khelil, Habib Affes

Abstract:

The XXIst century is characterized by promoting teamwork as one of the main drivers of firms` performance. Collective competence is becoming crucial in developing and maintaining a firm’s competitive advantage, as well as its contributions to organizational innovation. In other words, the improvement of collective competence for a firm is no longer a choice, but rather an obligation. Learning capabilities of a firm in the context of knowledge management are assumed to be the main drivers of collective competence. Although there are some efforts to consider these concepts together; they are mostly discussed separately in the management theory. Thus, this paper aims to offer a holistic approach for development collective competence on the basis of Knowledge Management and Organizational Learning Capabilities. A theoretical model that defines a relationship between knowledge management, organizational learning and collective competence is presented at the end of this paper.

Keywords: collective competence, exploitation learning, exploration learning, knowledge management, organizational learning capabilities

Procedia PDF Downloads 507
12859 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management

Authors: Chokri Slim

Abstract:

The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.

Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines

Procedia PDF Downloads 150
12858 Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review

Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen

Abstract:

Ubiquitous learning and the use of ubiquitous learning environments herald a new era in higher education. Ubiquitous environments fuse together authentic learning situations and digital learning spaces where students can seamlessly immerse themselves into the learning process. Definitions of ubiquitous learning are wide and vary in the previous literature and learning environments are not systemically described. The aim of this scoping review was to identify the criteria and the use of ubiquitous learning environments in higher education contexts. The objective was to provide a clear scope and a wide view for this research area. The original studies were collected from nine electronic databases. Seven publications in total were defined as eligible and included in the final review. An inductive content analysis was used for the data analysis. The reviewed publications described the use of ubiquitous learning environments (ULE) in higher education. Components, contents and outcomes varied between studies, but there were also many similarities. In these studies, the concept of ubiquitousness was defined as context-awareness, embeddedness, content-personalization, location-based, interactivity and flexibility and these were supported by using smart devices, wireless networks and sensing technologies. Contents varied between studies and were customized to specific uses. Measured outcomes in these studies were focused on multiple aspects as learning effectiveness, cost-effectiveness, satisfaction, and usefulness. This study provides a clear scope for ULE used in higher education. It also raises the need for transparent development and publication processes, and for practical implications of ubiquitous learning environments.

Keywords: higher education, learning environment, scoping review, ubiquitous learning, u-learning

Procedia PDF Downloads 263
12857 Effect of Hybrid Learning in Higher Education

Authors: A. Meydanlioglu, F. Arikan

Abstract:

In recent years, thanks to the development of information and communication technologies, the computer and internet have been used widely in higher education. Internet-based education is impacting traditional higher education as online components increasingly become integrated into face-to-face (FTF) courses. The goal of combined internet-based and traditional education is to take full advantage of the benefits of each platform in order to provide an educational opportunity that can promote student learning better than can either platform alone. Research results show that the use of hybrid learning is more effective than online or FTF models in higher education. Due to the potential benefits, an increasing number of institutions are interested in developing hybrid courses, programs, and degrees. Future research should evaluate the effectiveness of hybrid learning. This paper is designed to determine the impact of hybrid learning on higher education.

Keywords: e-learning, higher education, hybrid learning, online education

Procedia PDF Downloads 909
12856 Design Consideration of a Plastic Shredder in Recycling Processes

Authors: Tolulope A. Olukunle

Abstract:

Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.

Keywords: design, machine, plastic waste, recycling

Procedia PDF Downloads 321
12855 Diagnosis of Static Eccentricity in 400 kW Induction Machine Based on the Analysis of Stator Currents

Authors: Saleh Elawgali

Abstract:

Current spectrums of a four pole-pair, 400 kW induction machine were calculated for the cases of full symmetry and static eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. Zooms of the current spectrums, around the 50 Hz fundamental harmonic as well as of the main slot harmonic zone, were included. The spectrums included refer to both calculated and measured currents.

Keywords: diagnostic, harmonic, induction machine, spectrum

Procedia PDF Downloads 523
12854 Pros and Cons of Distance Learning in Europe and Perspective for the Future

Authors: Aleksandra Ristic

Abstract:

The Coronavirus Disease – 2019 hit Europe in February 2020, and infections took place in four waves. It left consequences and demanded changes for the future. More than half of European countries responded quickly by declaring a state of emergency and introducing various containment measures that have had a major impact on individuals’ lives in recent years. Closing public lives was largely achieved by limited access and/or closing public institutions and services, including the closure of educational institutions. Teaching in classrooms converted to distance learning. In the research, we used a quantitative study to analyze various factors of distance learning that influenced pupils in different segments: teachers’ availability, family support, entire online conference learning, successful distance learning, time for themselves, reliable sources, teachers’ feedback, successful distance learning, online participation classes, motivation and teachers’ communication and theoretical review of the importance of digital skills, e-learning Index, World comparison of e-learning in the past, digital education plans for the field of Europe. We have gathered recommendations and distance learning solutions to improve the learning process by strengthening teachers and creating more tiered strategies for setting and achieving learning goals by the children.

Keywords: availability, digital skills, distance learning, resources

Procedia PDF Downloads 102
12853 Design Approach for the Development of Format-Flexible Packaging Machines

Authors: G. Götz, P. Stich, J. Backhaus, G. Reinhart

Abstract:

The rising demand for format-flexible packaging machines is caused by current market changes. Increasing the formatflexibility is a new goal for the packaging machine manufacturers’ product development process. There are no methodical or designorientated tools for a comprehensive consideration of this target. This paper defines the term format-flexibility in the context of packaging machines and shows the state-of-the-art for improving the changeover of production machines. The requirements for a new approach and the concept itself will be introduced, and the method elements will be explained. Finally, the use of the concept and the result of the development of a format-flexible packaging machine will be shown.

Keywords: packaging machine, format-flexibility, changeover, design method

Procedia PDF Downloads 434
12852 Learning Environments in the Early Years: A Case Study of an Early Childhood Centre in Australia

Authors: Mingxi Xiao

Abstract:

Children’s experiences in the early years build and shape the brain. The early years learning environment plays a significantly important role in children’s development. A well-constructed environment will facilitate children’s physical and mental well-being. This case study used an early learning centre in Australia called SDN Hurstville as an example, describing the learning environment in the centre, as well as analyzing the functions of the affordances. In addition, this report talks about the sustainability of learning in the centre, and how the environment supports cultural diversity and indigenous learning. The early years for children are significant. Different elements in the early childhood centre should work together to help children develop better. This case study found that the natural environment and the artificial environment are both critical to children; only when they work together can children have better development in physical and mental well-being and have a sense of belonging when playing and learning in the centre.

Keywords: early childhood center, early childhood education, learning environment, Australia

Procedia PDF Downloads 242
12851 Predicting Emerging Agricultural Investment Opportunities: The Potential of Structural Evolution Index

Authors: Kwaku Damoah

Abstract:

The agricultural sector is characterized by continuous transformation, driven by factors such as demographic shifts, evolving consumer preferences, climate change, and migration trends. This dynamic environment presents complex challenges for key stakeholders including farmers, governments, and investors, who must navigate these changes to achieve optimal investment returns. To effectively predict market trends and uncover promising investment opportunities, a systematic, data-driven approach is essential. This paper introduces the Structural Evolution Index (SEI), a machine learning-based methodology. SEI is specifically designed to analyse long-term trends and forecast the potential of emerging agricultural products for investment. Versatile in application, it evaluates various agricultural metrics such as production, yield, trade, land use, and consumption, providing a comprehensive view of the evolution within agricultural markets. By harnessing data from the UN Food and Agricultural Organisation (FAOSTAT), this study demonstrates the SEI's capabilities through Comparative Exploratory Analysis and evaluation of international trade in agricultural products, focusing on Malaysia and Singapore. The SEI methodology reveals intricate patterns and transitions within the agricultural sector, enabling stakeholders to strategically identify and capitalize on emerging markets. This predictive framework is a powerful tool for decision-makers, offering crucial insights that help anticipate market shifts and align investments with anticipated returns.

Keywords: agricultural investment, algorithm, comparative exploratory analytics, machine learning, market trends, predictive analytics, structural evolution index

Procedia PDF Downloads 63
12850 The Construction of Research-Oriented/Practice-Oriented Engineering Testing and Measurement Technology Course under the Condition of New Technology

Authors: He Lingsong, Wang Junfeng, Tan Qiong, Xu Jiang

Abstract:

The paper describes efforts on reconstruction methods of engineering testing and measurement technology course by applying new techniques and applications. Firstly, flipped classroom was introduced. In-class time was used for in-depth discussions and interactions while theory concept teaching was done by self-study course outside of class. Secondly, two hands-on practices of technique applications, including the program design of MATLAB Signal Analysis and the measurement application of Arduino sensor, have been covered in class. Class was transformed from an instructor-centered teaching process into an active student-centered learning process, consisting of the pre-class massive open online course (MOOC), in-class discussion and after-class practice. The third is to change sole written homework to the research-oriented application practice assignments, so as to enhance the breadth and depth of the course.

Keywords: testing and measurement, flipped classroom, MOOC, research-oriented learning, practice-oriented learning

Procedia PDF Downloads 147
12849 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 218
12848 Harnessing the Opportunities of E-Learning and Education in Promoting Literacy in Nigeria

Authors: Victor Oluwaseyi Olowonisi

Abstract:

The paper aimed at presenting an overview on the concept of e-learning as it relates to higher education and how it provides opportunities for students, instructors and the government in developing the educational sector. It also touched on the benefits and challenges attached to e-learning as a new medium of reaching more students especially in the Nigerian context. The opportunities attributed to e-learning in the paper includes breaking boundaries barriers, reaching a larger number of students, provision of jobs for ICT experts, etc. In contrary, poor power supply, cost of implementation, poor computer literacy, technophobia (fear of technology), computer crime and system failure were some of the challenges of e-learning discussed in the paper. The paper proffered that the government can help the people gain more from e-learning through its financing. Also, it was stated that instructors/lecturers and students need to undergo training on computer application in order for e-learning to be more effective in developing higher education in Nigeria.

Keywords: e-learning, education, higher education, increasing literacy

Procedia PDF Downloads 268
12847 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 18
12846 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic

Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova

Abstract:

Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.

Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification

Procedia PDF Downloads 108