Search results for: energetic material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6814

Search results for: energetic material

5494 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center

Authors: Ira Irawati, Muhammad Rangga Sururi

Abstract:

The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.

Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation

Procedia PDF Downloads 259
5493 Effect of Aqueous Enzymatic Extraction Parameters on the Moringa oleifera Oil Yield and Formation of Emulsion

Authors: Masni Mat Yusoff, Michael H. Gordon, Keshavan Niranjan

Abstract:

The study reports on the effect of aqueous enzymatic extraction (AEE) parameters on the Moringa oleifera (MO) oil yield and the formation of emulsion at the end of the process. A mixture of protease and cellulase enzymes was used at 3:1 (w/w) ratio. The highest oil yield of 19% (g oil/g sample) was recovered with the use of a mixture of pH 6, 1:4 material/moisture ratio, and incubation temperature, time, and shaking speed of 50 ⁰C, 12.5 hr, and 300 stroke/min, respectively. The use of pH 6 and 8 resulted in grain emulsions, while solid-intact emulsion was observed at pH 4. Upon fixing certain parameters, higher oil yield was extracted with the use of lower material/moisture ratio and higher shaking speed. Longer incubation time of 24 hr resulted in significantly (p < 0.05) similar oil yield with that of 12.5 hr, and an incubation temperature of 50 ⁰C resulted in significantly (p < 0.05) higher oil yield than that of 60 ⁰C. In overall, each AEE parameter showed significant effects on both the MO oil yields and the emulsions formed. One of the major disadvantages of an AEE process is the formation of emulsions which require further de-emulsification step for higher oil recovery. Therefore, critical studies on the effect of each AEE parameter may assist in minimizing the amount of emulsions formed whilst extracting highest total MO oil yield possible.

Keywords: enzyme, emulsion, Moringa oleifera, oil yield

Procedia PDF Downloads 431
5492 Enhancement of Recycled Concrete Aggregates Properties by Mechanical Treatment and Verification in Concrete Mixes with Replacement up to 100%

Authors: Iveta Nováková, Martin-Andrè S. Husby, Boy-Arne Buyle

Abstract:

The building industry has one of the most significant contributions to global warming due to the production of building materials, transportation, building activities, and demolition of structures when they reach the end of their life. Implementation of circular material flow and circular economy can significantly reduce greenhouse gasses and simultaneously reduce the need for natural resources. The use of recycled concrete aggregates (RCA) is one of the possibilities for reducing the depletion of raw materials for concrete production. Concrete is the most used building material worldwide, and aggregates constitute 70% of its volume. RCA can replace a certain amount of natural aggregates (NA), and concrete will still perform as required. The aim of this scientific paper is to evaluate RCA properties with and without mechanical treatment. Analysis of RCA itself will be followed by compressive strength of concrete containing various amounts of treated and non-treated RCA. Results showed improvement in compressive strength of the mix with mechanically treated RCA compared to standard RCA, and even the strength of concrete with mechanically treated RCA in dose 50% of coarse aggregates was higher than the reference mix by 4%. Based on obtained results, it can be concluded that integration of RCA in industrial concrete production is feasible, at a replacement ratio of 50% for mechanically treated RCA and 30% if untreated RCA is used, without affecting the compressive strength negatively.

Keywords: recycled concrete aggregates, mechanical treatment, aggregate properties, compression strength

Procedia PDF Downloads 245
5491 Comparison of Homogeneous and Micro-Mechanical Modelling Approach for Paper Honeycomb Materials

Authors: Yiğit Gürler, Berkay Türkcan İmrağ, Taylan Güçkıran, İbrahim Şimşek, Alper Taşdemirci

Abstract:

Paper honeycombs, which is a sandwich structure, consists of two liner faces and one paper honeycomb core. These materials are widely used in the packaging industry due to their low cost, low weight, good energy absorption capabilities and easy recycling properties. However, to provide maximum protection to the products in cases such as the drop of the packaged products, the mechanical behavior of these materials should be well known at the packaging design stage. In this study, the necessary input parameters for the modeling study were obtained by performing compression tests in the through-thickness and in-plane directions of paper-based honeycomb sandwich structures. With the obtained parameters, homogeneous and micro-mechanical numerical models were developed in the Ls-Dyna environment. The material card used for the homogeneous model is MAT_MODIFIED_HONEYCOMB, and the material card used for the micromechanical model is MAT_PIECEWISE_LINEAR_PLASTICITY. As a result, the effectiveness of homogeneous and micromechanical modeling approaches for paper-based honeycomb sandwich structure was investigated using force-displacement curves. Densification points and peak points on these curves will be compared.

Keywords: environmental packaging, mechanical characterization, Ls-Dyna, sandwich structure

Procedia PDF Downloads 200
5490 Lattice Twinning and Detwinning Processes in Phase Transformation in Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape memory effect is a peculiar property exhibited by certain alloy systems and based on martensitic transformation, and shape memory properties are closely related to the microstructures of the material. Shape memory effect is linked with martensitic transformation, which is a solid state phase transformation and occurs with the cooperative movement of atoms by means of lattice invariant shears on cooling from high-temperature parent phase. Lattice twinning and detwinning can be considered as elementary processes activated during the transformation. Thermally induced martensite occurs as martensite variants, in self-accommodating manner and consists of lattice twins. Also, this martensite is called the twinned martensite or multivariant martensite. Deformation of shape memory alloys in martensitic state proceeds through a martensite variant reorientation. The martensite variants turn into the reoriented single variants with deformation, and the reorientation process has great importance for the shape memory behavior. Copper based alloys exhibit this property in metastable β- phase region, which has DO3 –type ordered lattice in ternary case at high temperature, and these structures martensiticaly turn into the layered complex structures with lattice twinning mechanism, on cooling from high temperature parent phase region. The twinning occurs as martensite variants with lattice invariant shears in two opposite directions, <110 > -type directions on the {110}- type plane of austenite matrix. Lattice invariant shear is not uniform in copper based ternary alloys and gives rise to the formation of unusual layered structures, like 3R, 9R, or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. The unit cell and periodicity are completed through 18 atomic layers in case of 18R-structure. On the other hand, the deformed material recovers the original shape on heating above the austenite finish temperature. Meanwhile, the material returns to the twinned martensite structures (thermally induced martensite structure) in one way (irreversible) shape memory effect on cooling below the martensite finish temperature, whereas the material returns to the detwinned martensite structure (deformed martensite) in two-way (reversible) shape memory effect. Shortly one can say that the microstructural mechanisms, responsible for the shape memory effect are the twinning and detwinning processes as well as martensitic transformation. In the present contribution, x-ray diffraction, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies were carried out on two copper-based ternary alloys, CuZnAl, and CuAlMn.

Keywords: shape memory effect, martensitic transformation, twinning and detwinning, layered structures

Procedia PDF Downloads 428
5489 Determining the Materiality of an Undisclosed Fact: An Onerous Duty on the Assured

Authors: Adekemi Adebowale

Abstract:

The duty of disclosure in Nigerian insurance law is in need of reform. The materiality of an undisclosed fact (notwithstanding that it was an honest and innocent non-disclosure) currently entitles insurers to avoid insurance policies, leaving an insured with an uncovered loss. While the test of materiality requires an insured to voluntarily disclose facts that will influence an insurer's decision without proper guidelines from the insurer, the insurer is only expected to prove that the undisclosed fact had influenced its judgment in fixing the premium or determining whether to accept the risk. This problem places an onerous duty on the assured to volunteer to the insurer every material fact even though the insured only has a slight idea about the mind of a hypothetical prudent insurer. This paper explores the modern approach to revisiting the problem of an insured’s pre-contractual obligation to determine material facts in Nigerian insurance law. The aim is to build upon the change in the structure of insurance contract obligations in other common law jurisdictions such as the United Kingdom. The doctrinal and comparative methodology captures the burden imposed on the insured under the existing Nigerian insurance law. It finds that the continued application of the law leaves the insured in the weakest position, and he stands to lose in a contract supposedly created for his benefit. It is apparent that if this problem remains unresolved, the over-all consequence will contribute to a significant decline in the insurance contract, which may affect the Nigerian economy. The paper aims to evaluate the risks of the continuous application of the traditional law, which does not keep with the pace of modern insurance practice. It will ultimately produce a legally compliant reform, along with a significant deviation from the archaic structure that exists in the Nigerian insurance law. This paper forms part of an on-going PhD research on "The insured’s pre-contractual duty of utmost of utmost good faith". The outcome from the research to date finds that the insured bears the burden of the obligation to act in utmost good faith where it concerns disclosure of material facts.

Keywords: disclosure, materiality, Nigeria, United Kingdom, utmost good faith

Procedia PDF Downloads 121
5488 Application of Mobile Aluminium Light Structure Housing System in Sustainable Building Process

Authors: Wang Haining, Zhang Hong

Abstract:

In China, rapid urbanization needs more and more buildings constructed for the growing population in cities. With the help of the methodology which contains investigation, contrastive analysis, design based on component with BIM and experiment before real construction, this research based on mobile light structure system, trying to the sustainable problems partly in present China by systematic study. The system cannot replace the permanent heavy structure completely. So the goal is the improvement of the whole building system by the addition of light structure. This house system uses modularized envelopes and standardized connections, which are pre-fabricated and assembled in factories and transported like containers. Aluminum is used as the structural material in this system, and inorganic thermal insulation material used in the envelope, which have high fireproof properties. The relationship between manufactory and construction of the system is progressive hierarchy. They exist as First Industrial, Second Industrial, Third Industrial and Site Assembly Stage. It could maximize the land usage capacity by fully exploit the area where normal permanent architecture can't take advantage of. Not only the building system itself especially the thermal isolated materials used and active solar photovoltaic system equipped can save energy, but also the way of product development is sustainable.

Keywords: aluminum house, light Structure, rapid assembly, repeat construction

Procedia PDF Downloads 492
5487 Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications.

Keywords: Cu-doped CeO₂, DFT, Wien2k, properties

Procedia PDF Downloads 255
5486 Investigating the Influence of the Ferro Alloys Consumption on the Slab Product Standard Cost with Different Grades Using Regression Analysis (A Case Study of Iran's Iron and Steel Industry)

Authors: Iman Fakhrian, Ali Salehi Manzari

Abstract:

Consistent Profitability is one of the most important priorities in manufacturing companies. One of the fundamental factors for increasing the companies profitability is cost management. Isfahan's mobarakeh steel company is one of the largest producers of the slab product grades in the middle east. Raw material cost constitutes about 70% of the company's expenditures. The costs of the ferro alloys have a remarkable contribution of the raw material costs. This research aims to determine the ferro alloys which have significant effect on the variability of the standard cost of the slab product grades. Used data in this study were collected from standard costing system of isfahan's mobarakeh steel company in 2022. The results of conducting the regression analysis model show that expense items: 03020, 03045, 03125, 03130 and 03150 have dominant role in variability of the standard cost of the slab product grades. In other words, the mentioned ferro alloys have noticeable and significant role in variability of the standard cost of the slab product grades.

Keywords: consistent profitability, ferro alloys, slab product grades, regression analysis

Procedia PDF Downloads 72
5485 Determining Inventory Replenishment Policy for Major Component in Assembly-to-Order of Cooling System Manufacturing

Authors: Tippawan Nasawan

Abstract:

The objective of this study is to find the replenishment policy in Assembly-to-Order manufacturing (ATO) which some of the major components have lead-time longer than customer lead-time. The variety of products, independent component demand, and long component lead-time are the difficulty that has resulted in the overstock problem. In addition, the ordering cost is trivial when compared to the cost of material of the major component. A conceptual design of the Decision Supporting System (DSS) has introduced to assist the replenishment policy. Component replenishment by using the variable which calls Available to Promise (ATP) for making the decision is one of the keys. The Poisson distribution is adopted to realize demand patterns in order to calculate Safety Stock (SS) at the specified Customer Service Level (CSL). When distribution cannot identify, nonparametric will be applied instead. The test result after comparing the ending inventory between the new policy and the old policy, the overstock has significantly reduced by 46.9 percent or about 469,891.51 US-Dollars for the cost of the major component (material cost only). Besides, the number of the major component inventory is also reduced by about 41 percent which helps to mitigate the chance of damage and keeping stock.

Keywords: Assembly-to-Order, Decision Supporting System, Component replenishment , Poisson distribution

Procedia PDF Downloads 127
5484 Fragile Mires as Living Heritage: Human-Nature Relations in Contemporary Digital Life

Authors: Kirsi Laurén, Tiina Seppä

Abstract:

This study focuses on human-mire relations in the context of digital aestheticization and the long-standing tradition of folklore concerning mires. The study concentrates on the Patvinsuo mire in Eastern Finland and the Viiankiaapa mire in Finnish Lapland. Patvinsuo is a national park, and Viiankiaapa is a protected mire area with hiking trails and other recreational infrastructure. Perceiving the environment through digital technology can help to notice aesthetic details in nature. In addition, sharing images and texts digitally through social media adds a sense of community to the relationship with nature and, at the same time, creates a different kind of living heritage where old and new traditions meet and mingle. People visiting and camping in these areas 'self-care' themselves through recreation in nature. However, these practices and digital aestheticization can sometimes lead to the erosion of fragile mires. The research focuses on understanding the impact of digital aestheticization, such as taking digital photos, on the relationship with nature for individuals moving and working in mires. Additionally, the study aims to explore the contemporary perception of the water environment in mires and its cultural heritage, including mythical and folkloric elements. The research material consists of senso-digital walking interviews and digital recordings (audio recordings, photographs, videos) made during the mire walks, as well as archival material from the Finnish Literature Society’s Archives on mire folklore. The analysis of the material relies centrally on theories from sensory anthropology on the relationship between sensory perception and culture. The modern-day interviewees include outdoor enthusiasts spending their leisure time in mires, artists treating mires in their art, and nature experts (scientists, civil servants, and nature guides). The senso-digital walking interviews were conducted in Patvinsuo and Viiankiaapa mires on a trail chosen by the interviewees themselves. The material selected from the archive consists mainly of folk beliefs and folk poetry from the 19th and 20th centuries that express the relationship of the narrator to the mires. The interview and archival materials date from different periods and are different in character, which has to be taken into account in the analysis. However, in the analysis of both materials, particular attention is paid to the descriptions of sensations that appear in them. Analyzing the materials in parallel is limited by the fact that they date from different periods, but on the other hand, it is their different ages that make it possible to perceive the changes in the cultural heritage of mires.

Keywords: mires, living heritage, digital aestheticization, folklore, sensory anthropology

Procedia PDF Downloads 99
5483 Continuous Dyeing of Graphene and Polyaniline on Textiles for Electromagnetic interference Shielding: An Application of Intelligent Fabrics

Authors: Mourad Makhlouf Sabrina Bouriche, Zoubir Benmaamar, Didier Villemin

Abstract:

Background: The increasing presence of electromagnetic interference (EMI) requires the development of effective protection solutions. Intelligent textiles offer a promising approach due to their wear ability and the possibility of integration into everyday clothing. In this study, the use of graphene and polyaniline for EMI shielding on cotton fabrics was examined. Methods: In this study, the continuous dyeing of recycled graphite-derived graphene and polyaniline was examined. Bottom-reforming technology was adopted to improve adhesion and achieve uniform distribution of conductive material on the fiber surface. The effect of material weight ratio on fabric performance and X-band EMI shielding effectiveness (SE) was evaluated. Significant Findings: The dyed cotton fabrics incorporating graphene, polyaniline, and their combination exhibited improved conductivity. Notably, these fabrics achieved EMI SE values ranging from 9 to 16 dB within the X-band frequency range (8-9 GHz). These findings demonstrate the potential of this approach for developing intelligent textiles with effective EMI shielding capabilities. Additionally, the utilization of recycled materials contributes to a more sustainable shielding solution.

Keywords: Intelligent textiles, graphene, polyaniline, electromagnetic shielding, conductivity, recycling

Procedia PDF Downloads 43
5482 A Damage-Plasticity Concrete Model for Damage Modeling of Reinforced Concrete Structures

Authors: Thanh N. Do

Abstract:

This paper addresses the modeling of two critical behaviors of concrete material in reinforced concrete components: (1) the increase in strength and ductility due to confining stresses from surrounding transverse steel reinforcements, and (2) the progressive deterioration in strength and stiffness due to high strain and/or cyclic loading. To improve the state-of-the-art, the author presents a new 3D constitutive model of concrete material based on plasticity and continuum damage mechanics theory to simulate both the confinement effect and the strength deterioration in reinforced concrete components. The model defines a yield function of the stress invariants and a compressive damage threshold based on the level of confining stresses to automatically capture the increase in strength and ductility when subjected to high compressive stresses. The model introduces two damage variables to describe the strength and stiffness deterioration under tensile and compressive stress states. The damage formulation characterizes well the degrading behavior of concrete material, including the nonsymmetric strength softening in tension and compression, as well as the progressive strength and stiffness degradation under primary and follower load cycles. The proposed damage model is implemented in a general purpose finite element analysis program allowing an extensive set of numerical simulations to assess its ability to capture the confinement effect and the degradation of the load-carrying capacity and stiffness of structural elements. It is validated against a collection of experimental data of the hysteretic behavior of reinforced concrete columns and shear walls under different load histories. These correlation studies demonstrate the ability of the model to describe vastly different hysteretic behaviors with a relatively consistent set of parameters. The model shows excellent consistency in response determination with very good accuracy. Its numerical robustness and computational efficiency are also very good and will be further assessed with large-scale simulations of structural systems.

Keywords: concrete, damage-plasticity, shear wall, confinement

Procedia PDF Downloads 169
5481 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method

Procedia PDF Downloads 347
5480 Guadua Bamboo as Eco-Friendly Element in Interior Design and Architecture

Authors: Sarah Noaman

Abstract:

Utilizing renewable resources has become extensive solution for most problems in Egypt nowadays. It plays role in environmental issues such as energy crisis, lake of natural resources and climate change. This paper focuses on the importance of working with the key concepts of creating eco-friendly spaces in Egypt by using traditional perennial plants, such as Guadua bamboo as renewable resources in structures manufacture. Egypt is in critical need to search for alternative raw materials. Thus, this paper focuses on studying the usage of neglected yet affordable materials, such as Guadua bamboo in light weight structures and digital fabrication. Guadua bamboo has been cultivated throughout in tropical and subtropical areas. In Egypt, they exist in many rural areas where people try to control their growth by using pesticides as it serves no economic purpose. This paper aims to discuss the usage of Guadua bamboo either in its original state or after fabrication in the context of interior design and architecture. The results will show the applicability of using perennial plants as complementary materials in the manufacturing processes; also the conclusion will focus the lights on the importance of re-forming shallow water plants in interior design and architecture.

Keywords: digital fabrication, Guadua bamboo, zero-waste material, sustainable material, interior architecture

Procedia PDF Downloads 152
5479 Wear and Mechanical Properties of Nodular Iron Modified with Copper

Authors: J. Ramos, V. Gil, A. F. Torres

Abstract:

The nodular iron is a material that has shown great advantages respect to other materials (steel and gray iron) in the production of machine elements. The engineering industry, especially automobile, are potential users of this material. As it is known, the alloying elements modify the properties of steels and castings. Copper has been investigated as a structural modifier of nodular iron, but studies of its mechanical and tribological implications still need to be addressed for industrial use. With the aim of improving the mechanical properties of nodular iron, alloying elements (Mn, Si, and Cu) are added in order to increase their pearlite (or ferrite) structure according to the percentage of the alloying element. In this research (using induction furnace process) nodular iron with three different percentages of copper (residual, 0,5% and 1,2%) was obtained. Chemical analysis was performed by optical emission spectrometry and microstructures were characterized by Optical Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM). The study of mechanical behavior was carried out in a mechanical test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99) was used to assess wear resistance. It is observed that copper increases the pearlite structure improving the wear behavior; tension behavior. This improvement is observed in higher proportion with 0,5% due to the fact that too much increase of pearlite leads to ductility loss.

Keywords: copper, mechanical properties, nodular iron, pearlite structure, wear

Procedia PDF Downloads 385
5478 Second Language Skill through M-Learning

Authors: Subramaniam Chandran, A. Geetha

Abstract:

This paper addresses three issues: how to prepare the instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in a preparatory program for bachelor’s degree. This program is designed for the disadvantaged learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India, nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where the conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.

Keywords: English language skill, disadvantaged learners, distance education, m-learning

Procedia PDF Downloads 426
5477 Serviceability of Fabric-Formed Concrete Structures

Authors: Yadgar Tayfur, Antony Darby, Tim Ibell, Mark Evernden, John Orr

Abstract:

Fabric form-work is a technique to cast concrete structures with a great advantage of saving concrete material of up to 40%. This technique is particularly associated with the optimized concrete structures that usually have smaller cross-section dimensions than equivalent prismatic members. However, this can make the structural system produced from these members prone to smaller serviceability safety margins. Therefore, it is very important to understand the serviceability issue of non-prismatic concrete structures. In this paper, an analytical computer-based model to optimize concrete beams and to predict load-deflection behaviour of both prismatic and non-prismatic concrete beams is presented. The model was developed based on the method of sectional analysis and integration of curvatures. Results from the analytical model were compared to load-deflection behaviour of a number of beams with different geometric and material properties from other researchers. The results of the comparison show that the analytical program can accurately predict the load-deflection response of concrete beams with medium reinforcement ratios. However, it over-estimates deflection values for lightly reinforced specimens. Finally, the analytical program acceptably predicted load-deflection behaviour of on-prismatic concrete beams.

Keywords: fabric-formed concrete, continuous beams, optimisation, serviceability

Procedia PDF Downloads 372
5476 Regulation of Transfer of 137cs by Polymeric Sorbents for Grow Ecologically Sound Biomass

Authors: A. H. Tadevosyan, S. K. Mayrapetyan, N. B. Tavakalyan, K. I. Pyuskyulyan, A. H. Hovsepyan, S. N. Sergeeva

Abstract:

Soil contamination with radiocesium has a long-term radiological impact due to its long physical half-life (30.1 years for 137Cs and 2 years for 134Cs) and its high biological availability. 137Cs causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. One of the important aspects of the problem of contaminated soils remediation is understand of protective actions aimed at the reduction of biological migration of radionuclides in soil-plant system. The most effective way to bind radionuclides is the use of selective sorbents. The proposed research mainly aims to achieve control on transfer of 137Cs in a system growing media–plant due to counter ions variation in the polymeric sorbents. As the research object, Japanese basil-Perilla frutescens was chosen. Productivity of plants depending on the presence (control-without presence of polymer) and type of polymer material, as well as content of 137Cs in plant material has been determined. The character of different polymers influences on the 137Cs migration in growing media–plant system as well as accumulation in the plants has been cleared up.

Keywords: radioceaseum, Japanese basil, polymer, soil-plant system

Procedia PDF Downloads 183
5475 Design of Raw Water Reservoir on Sandy Soil

Authors: Venkata Ramana Pamu

Abstract:

This paper is a case study of a 5310 ML capacity Raw Water Reservoir (RWR), situated in Indian state Rajasthan, which is a part of Rajasthan Rural Water Supply & Fluorosis Mitigation Project. This RWR embankment was constructed by locally available material on natural ground profile. Height of the embankment was varying from 2m to 10m.This is due to existing ground level was varying. Reservoir depth 9m including 1.5m free board and 1V:3H slopes were provided both upstream and downstream side. Proper soil investigation, tests were done and it was confirmed that the existing soil is sandy silt. The existing excavated earth was used as filling material for embankment construction, due to this controlling seepage from upstream to downstream be a challenging task. Slope stability and Seismic analysis of the embankment done by Conventional method for both full reservoir condition and rapid drawdown. Horizontal filter at toe level was provided along with upstream side PCC (Plain Cement Concrete) block and HDPE (High Density poly ethylene) lining as a remedy to control seepage. HDPE lining was also provided at storage area of the reservoir bed level. Mulching was done for downstream side slope protection.

Keywords: raw water reservoir, seepage, seismic analysis, slope stability

Procedia PDF Downloads 497
5474 Tool Wear Analysis in 3D Manufactured Ti6AI4V

Authors: David Downey

Abstract:

With the introduction of additive manufacturing (3D printing) to produce titanium (Ti6Al4V) components in the medical/aerospace and automotive industries, intricate geometries can be produced with virtually complete design freedom. However, the consideration of microstructural anisotropy resulting from the additive manufacturing process becomes necessary due to this design flexibility and the need to print a geometric shape that can consist of numerous angles, radii, and swept surfaces. A femoral knee implant serves as an example of a 3D-printed near-net-shaped product. The mechanical properties of the printed components, and consequently, their machinability, are affected by microstructural anisotropy. Currently, finish-machining operations performed on titanium printed parts using selective laser melting (SLM) utilize the same cutting tools employed for processing wrought titanium components. Cutting forces for components manufactured through SLM can be up to 70% higher than those for their wrought counterparts made of Ti6Al4V. Moreover, temperatures at the cutting interface of 3D printed material can surpass those of wrought titanium, leading to significant tool wear. Although the criteria for tool wear may be similar for both 3D printed and wrought materials, the rate of wear during the machining process may differ. The impact of these issues on the choice of cutting tool material and tool lifetimes will be discussed.

Keywords: additive manufacturing, build orientation, microstructural anisotropy, printed titanium Ti6Al4V, tool wear

Procedia PDF Downloads 91
5473 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment

Authors: B. A. Mir, Asim Malik

Abstract:

Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.

Keywords: bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization

Procedia PDF Downloads 259
5472 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food

Authors: Paulomi (Polly) Burey, Zoe Lynch

Abstract:

In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.

Keywords: chemistry, food science, future pedagogy, STEM Education

Procedia PDF Downloads 159
5471 Being Young in Times of Change: Transformative Aspects of Migration across Generations in South Wollo, Ethiopia

Authors: Adamnesh A. Bogale, Dorte Thorsen

Abstract:

This paper aims to learn how children/siblings left behind due to parental migration experience care and the effects of the separation. It also aims to unpack the experiences of youth migrants in rural Ethiopia. It focuses specifically on how children and youth are affected in order to highlight in which areas intervention can enhance or inadvertently undermine the development impact of migration on young people. Based on a qualitative study in South Wollo, Ethiopia, which was undertaken in three stages in 2017-19 and involved 34 households and a number of key informants, the analysis offers insights into how migration contributes to household sustainability and, in the process, alters intergenerational relationships and dynamics. Contemporary migration in Ethiopia is complex and highly gendered. For young women, the migration corridor from Ethiopia to the Middle East is the most important, whereas young men mostly engage in local migration or travel to South Africa or Sudan. Arguing that children and youths’ experience of migration must be understood in the context of the moral, affective, and material economies, the paper distinguishes between young people’s experiences of migration as children of migrants, as siblings of a migrant, and as migrants. The material shows that children and youths demonstrate different experiences in parental migration depending on age, care arrangement, and the ability to communicate with an absent mother. Migration has a different implication for younger siblings depending on their gender. The division of work and future responsibilities post marriage combine to disadvantage female siblings while male siblings are either unaffected or reaped the benefits of investments made with remittances. Finally, migration is a mechanism to change generational power relationships. As remitters, young migrants yield better recognition in the family, though not always to the degree that they can control the use of remittances. The power to make decisions is not tied only to material resources and the household; migration facilitates social change that opens space for young women to have more influence over their own lives.

Keywords: migration, youth, Ethiopia, generations

Procedia PDF Downloads 32
5470 Phase Optimized Ternary Alloy Material for Gas Turbines

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to Turbine Entry Temperatures in the range of 1500 to 1600°C, but in synchronization with other functional components, they must readily deliver efficient performance, whilst incurring minimal overhaul and repair costs during its service life up to 5 million flying miles. The blades rotate at very high rotation rates and remove significant amount of thermal power from the gas stream. At high temperatures the major component failure mechanism is creep. During its service over time under high temperatures and loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades. The proposed advanced Ti alloy material needs a process that provides strategic orientation of metallic ordering, uniformity in composition and high metallic strength. 25% Ta/(Al+Ta) ratio ensures TaAl3 phase formation, where as 51% Al/(Al+Ti) ratio ensures formation of α-Ti3Al and γ-TiAl mixed phases fand the three phase combination ensures minimal Al excess (~1.4% Al excess), unlike Ti-47Al-2Cr-2Nb which has significant excess Al (~5% Al excess) that could affect the service life of turbine blades. This presentation will involve the summary of additive manufacturing and heat treatment process conditions to fabricate turbine blade with Ti-43Al matrix alloyed with optimized amount of refractory Ta metal. Summary of thermo-mechanical test results such as high temperature tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness will be presented. Improvement in service temperature of the turbine blades and corrosion resistance dependence on coercivity of the alloy material will be reported. Phase compositions will be quantified, and a summary of its correlation with creep strain rate will be presented.

Keywords: gas turbine, aerospace, specific strength, creep, high temperature materials, alloys, phase optimization

Procedia PDF Downloads 181
5469 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)

Procedia PDF Downloads 325
5468 Factors Affecting Sustainability of a 3D Printed Object

Authors: Kadrefi Athanasia, Fronimaki Evgenia, Mavri Maria

Abstract:

3D Printing (3DP) is a distinct, disruptive technology that belongs to a wider group of manufacturing technologies, Additive Manufacturing (AM). In 3DP, a custom digital file turns into a solid object using a single computer and a 3D printer. Among multiple advantages, 3DP offers production with fewer steps compared to conventional manufacturing, lower production costs, and customizable designs. 3DP can be performed by several techniques, while the most common is Fused Deposition Modeling (FDM). FDM belongs to a wider group of AM techniques, material extrusion, where a digital file converts into a solid object using raw material (called filament) melted in high temperatures. As in most manufacturing procedures, environmental issues have been raised here, too. This study aims to review the literature on issues that determine technical and mechanical factors that affect the sustainability and resilience of a final 3D-printed object. The research focuses on the collection of papers that deal with 3D printing techniques and use keywords or phrases like ‘3D printed objects’, ‘factors of 3DP sustainability’, ‘waste materials,’ ‘infill patterns,’ and ‘support structures.’ After determining factors, a pilot survey will be conducted at the 3D Printing Lab in order to define the significance of each factor in the final 3D printed object.

Keywords: additive manufacturing, 3D printing, sustainable manufacturing, sustainable production

Procedia PDF Downloads 65
5467 Measuring Resource Recovery and Environmental Benefits of Global Waste Management System Using the Zero Waste Index

Authors: Atiq Uz Zaman

Abstract:

Sustainable waste management is one of the major global challenges that we face today. A poor waste management system not only symbolises the inefficiency of our society but also depletes valuable resources and emits pollutions to the environment. Presently, we extract more natural resources than ever before in order to meet the demand for constantly growing resource consumption. It is estimated that around 71 tonnes of ‘upstream’ materials are used for every tonne of MSW. Therefore, resource recovery from waste potentially offsets a significant amount of upstream resource being depleted. This study tries to measure the environmental benefits of global waste management systems by applying a tool called the Zero Waste Index (ZWI). The ZWI measures the waste management performance by accounting for the potential amount of virgin material that can be offset by recovering resources from waste. In addition, the ZWI tool also considers the energy, GHG and water savings by offsetting virgin materials and recovering energy from waste. This study analyses the municipal solid waste management system of 172 countries from all over the globe and the population covers in the study is 3.37 billion. This study indicates that we generated around 1.47 billion tonnes (436kg/cap/year) of municipal solid waste each year and the waste generation is increasing over time. This study also finds a strong and positive correlation (R2=0.29, p = < .001) between income (GDP/capita/year) and amount of waste generated (kg/capita/year). About 84% of the waste is collected globally and only 15% of the collected waste is recycled. The ZWI of the world is measured in this study of 0.12, which means that the current waste management system potentially offsets only 12% of the total virgin material substitution potential from waste. Annually, an average person saved around 219kWh of energy, emitted around 48kg of GHG and saved around 38l of water. Findings of this study are very important to measure the current waste management performance in a global context. In addition, the study also analysed countries waste management performance based on their income level.

Keywords: global performance, material substitution; municipal waste, resource recovery, waste management, zero waste index

Procedia PDF Downloads 244
5466 The Influence of C Element on the Phase Transformation in Weldment of Complex Stainless Steels 2507/316/316L

Authors: Lin Dong-Yih, Yang S. M., Huang B. W., Lian J. A.

Abstract:

Super duplex stainless steel has excellent mechanical properties and corrosion resistance. It becomes important structural material as its application has been extended to the fields such as renewable energy and the chemical industry because of its excellent properties. As examples are offshore wind power, solar cell machinery, and pipes in the chemical industry. The mechanical properties and corrosion resistance of super duplex stainless steel can be eliminated by welding due to the precipitation of the hard and brittle σ phase, which is rich of chromium, and molybdenum elements. This paper studies the influence of carbon element on the phase transformation of -ferrite and σ phase in 2507 super duplex stainless steel. The 2507 will be under argon gas protection welded with 316 and 316L extra low carbon stainless steel separately. The microstructural phases of stainless steels before and after welding, in fusion, heat affected zones, and base material will be studied via X-ray, OM, SEM, EPMA i.e. their quantity, size, distribution, and morphology. The influences of diffusion by carbon element will be compared according to the microstructures, hardness, and corrosion tests.

Keywords: complex stainless steel, welding, phase formation, carbon element, sigma phase, delta ferrite

Procedia PDF Downloads 99
5465 Iron Extraction from Bog Iron Ore in Early French Colonial America

Authors: Yves Monette, Brad Loewen, Louise Pothier

Abstract:

This study explores the first bog iron ore extraction activities which took place in colonial New France. Archaeological excavations carried on the founding site of Montreal in the last ten years have revealed the remains of Fort Ville-Marie erected in 1642. In a level related to the fort occupation between 1660 and 1680, kilos of scories, a dozen of half-finished iron artefacts and a light yellow clayey ore material have recovered that point to extractive metallurgy activities at the fort. Examples of scories, artefacts and of a possible bog iron ore were submitted to SEM-EDS analysis. The results clearly indicate that iron was extracted from local limonite ores in a bloomery. We discovered that the gangue material could be traced from the ore to the scories. However, some lime silicates and some accessory minerals found in the scories, like barite and celestine for example, were absent from the ore but present in dolomite fragments found in the same archaeological context. The tracing of accessory minerals suggests that the ironmaster introduced a lime flux in the bloomery charge to maximize the separation of the iron ore. Before the introduction of the blast furnace in Western Europe during the first half of the 18th Century, the use of fluxes in iron bloomery was not a common practice.

Keywords: bog iron ore, extractive metallurgy, French colonial America, Montreal, scanning electron microscopy (SEM)

Procedia PDF Downloads 354