Search results for: carbon fiber reinforced polymer composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6999

Search results for: carbon fiber reinforced polymer composite

5679 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation

Authors: Huanru Wang, Jianzhun Jiang

Abstract:

At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.

Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts

Procedia PDF Downloads 102
5678 Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition

Authors: Abdelrahman Zkria, Tsuyoshi Yoshitake

Abstract:

Diamond is one of the most interesting semiconducting carbon materials owing to its unique physical and chemical properties, yet its application in electronic devices is limited due to the difficulty of realizing n-type conduction by nitrogen doping. In contrast Ultrananocrystalline diamond with diamond grains of about 3–5 nm in diameter have attracted much attention for device-oriented applications because they may enable the realization of n-type doping with nitrogen. In this study, nitrogen-doped Ultra-Nanocrystalline diamond films were prepared by coaxial arc plasma deposition (CAPD) method, the nitrogen content was estimated by X-ray photoemission spectroscopy (XPS). The electrical conductivity increased with increasing nitrogen contents. Heterojunction diodes with p-type Si were fabricated and evaluated based on current–voltage (I–V) and capacitance–voltage (C–V) characteristics measured in dark at room temperature.

Keywords: heterojunction diodes, hopping conduction mechanism, nitrogen-doping, ultra-nanocrystalline diamond

Procedia PDF Downloads 285
5677 Strengthening of Reinforced Concrete Beams Using Steel Plates

Authors: Ghusen al-Kafri, Mohammed Ali Abdallah Elsageer, Ahmed Mohamed Hadya Alsdaai, Abdeimanam Salhien Salih Khalifa

Abstract:

In this paper, external reinforcement to enhance a reinforced concrete structure performance has been done using externally bonded steel plate. This technique has been reported effective in enhancing the strength of reinforced concrete beam, a study to determine the effectiveness of steel plate as an external reinforcement was carried out. A total of two groups of beams and one group content five beams, each 750 mm long, 150 mm wide, and 150 mm deep were cast, strengthened and tested till failure under two point loads. One beam was act as a control beam without strengthening and other four beams were strengthened with steel plate at a different arrangement. Other group beams were strengthened with steel plate in shear zone and also strengthened at bottom as first group. The behaviours of the strengthened beams were studied through their load-deflection characteristic upon bending, cracking and mode of failure. The results confirmed that all steel plate arrangements enhanced the strength of the reinforced concrete beam, the positioning of the steel plate affect the moment carrying capacity of the beam.

Keywords: beams, bending, beflection, steel plates

Procedia PDF Downloads 391
5676 Using Fly Ash as a Reinforcement to Increase Wear Resistance of Pure Magnesium

Authors: E. Karakulak, R. Yamanoğlu, M. Zeren

Abstract:

In the current study, fly ash obtained from a thermal power plant was used as reinforcement in pure magnesium. The composite materials with different fly ash contents were produced with powder metallurgical methods. Powder mixtures were sintered at 540oC under 30 MPa pressure for 15 minutes in a vacuum assisted hot press. Results showed that increasing ash content continuously increases hardness of the composite. On the other hand, minimum wear damage was obtained at 2 wt. % ash content. Addition of higher level of fly ash results with formation of cracks in the matrix and increases wear damage of the material.

Keywords: Mg composite, fly ash, wear, powder metallurgy

Procedia PDF Downloads 352
5675 Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems

Authors: Lei Zhang

Abstract:

The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale.

Keywords: classification system, land cover, ecosystem, carbon storage, object based

Procedia PDF Downloads 46
5674 Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films

Authors: M. Emami, R. Tarighi, R. Goodarzi

Abstract:

Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (εr' and εr") and permeability (µr' and µr") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering.

Keywords: absorbing, carbon, carbon nickel, frequency, thicknesses

Procedia PDF Downloads 168
5673 Valorization of Industrial Wastes on Hybrid Low Embodied Carbon Cement Based Mortars

Authors: Z. Abdollahnejad, M. Mastali, F. Pacheco-Torgal

Abstract:

Waste reuse is crucial in a context of circular economy and zero waste sustainable needs. Some wastes deserve further studies by the scientific community not only because they are generated in high amount but also because they have a low reuse rate. This paper reports results of 32 hybrid cement mortars based on fly ash and waste glass. They allow to explore the influence of mix design on the cost and on the embodied carbon of the hybrid cement mortars. The embodied carbon data for all constituents were taken from the database Ecoinvent. This study led to the development of a mixture with just 70 kg CO2e.

Keywords: waste reuse, fly ash, waste glass, hybrid cements, cost, embodied carbon

Procedia PDF Downloads 316
5672 Nuclear Powered UAV for Surveillances and Aerial Photography

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.

Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line

Procedia PDF Downloads 398
5671 Experimental Device for Fluorescence Measurement by Optical Fiber Combined with Dielectrophoretic Sorting in Microfluidic Chips

Authors: Jan Jezek, Zdenek Pilat, Filip Smatlo, Pavel Zemanek

Abstract:

We present a device that combines fluorescence spectroscopy with fiber optics and dielectrophoretic micromanipulation in PDMS (poly-(dimethylsiloxane)) microfluidic chips. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, or even from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence. The device is combined with dielectrophoretic sorting on a chip for sorting of micro-droplets according to their fluorescence intensity. The electrodes are created by lift-off technology on a glass substrate, or by using channels filled with a soft metal alloy or an electrolyte. This device found its use in screening of enzymatic reactions and sorting of individual fluorescently labelled microorganisms. The authors acknowledge the support from the Grant Agency of the Czech Republic (GA16-07965S) and Ministry of Education, Youth and Sports of the Czech Republic (LO1212) together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017).

Keywords: dielectrophoretic sorting, fiber optics, laser, microfluidic chips, microdroplets, spectroscopy

Procedia PDF Downloads 697
5670 Evaluation of Vine Stem Waste as a Filler Material for High Density Polyethylene

Authors: Y. Seki, A. Ç. Kılıç, M. Atagür, O. Özdemir, İ. Şen, K. Sever, Ö. Seydibeyoğlu, M. Sarikanat, N. Küçükdoğan

Abstract:

Cheap and abundant waste materials have been investigated as filler materials in thermoplastic polymers instead of wood- based materials because of deforestation. Vine stem, as an agricultural waste, was used as a filler material for a thermoplastic polymer, high-density polyethylene (HDPE) in this study. Agricultural waste of vine stem was collected from Manisa region, Turkey. Vine stem at different rations was used to reinforce HDPE. The effect of vine stem loading on tensile strength and Young’s modulus of composites were obtained. It was clearly observed that tensile strength and Young’s modulus of HDPE was increased by vine stem loading. Thermal stabilities of composites were obtained by using thermogravimetric analysis. Water absorption behavior of HDPE was improved by loading vine stem into HDPE. The crystallinity index values of neat HDPE and vine stem loaded HDPE composites were investigated byX-ray diffraction analysis. From this study, it was inferred that vine stem, as an agricultural waste, can be used as a filler material for HDPE.

Keywords: waste filler, high density polyethylene, composite, composite materials

Procedia PDF Downloads 499
5669 Damage Assessment of Reinforced Concrete Slabs Subjected to Blast Loading

Authors: W. Badla

Abstract:

A numerical investigation has been carried out to examine the behaviour of reinforced concrete slabs to uniform blast loading. The aim of this work is to determine the effects of various parameters on the results. Finite element simulations were performed in the non linear dynamic range using an elasto-plastic damage model. The main parameters considered are: the negative phase of blast loading, time duration, equivalent weight of TNT, distance of the explosive and slab dimensions. Numerical modelling has been performed using ABAQUS/Explicit. The results obtained in terms of displacements and propagation of damage show that the above parameters influence considerably the nonlinear dynamic behaviour of reinforced concrete slabs under uniform blast loading.

Keywords: blast loading, reinforced concrete slabs, elasto-plastic damage model, negative phase, time duration, equivalent weight of TNT, explosive distance, slab dimensions

Procedia PDF Downloads 505
5668 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: finite element analysis, new composite structural system, seismic performance evaluation, static pushover analysis

Procedia PDF Downloads 114
5667 Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh

Authors: Ali M. Babalghaith, Hamad A. Alsoliman, Abdulrahman S. Al-Suhaibani

Abstract:

Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ).

Keywords: polymer modified asphalt, rheological properties, SBS, crumb rubber, EE-2

Procedia PDF Downloads 269
5666 Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides

Authors: Tzu-Wen Liu, Yi-Feng Lin, Yu-Shao Chen

Abstract:

CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction.

Keywords: magnesium oxide, catalyst, cycloaddition, spinning disk reactor, carbon dioxide

Procedia PDF Downloads 273
5665 Experimental Work to Estimate the Strength of Ferrocement Slabs Incorporating Silica Fume and Steel Fibre

Authors: Mohammed Mashrei

Abstract:

Ferrocement is a type of thin reinforced concrete made of cement-sand matrix with closely spaced relatively small diameter wire meshes, with or without steel bars of small diameter called skeletal steel. This work concerns on the behavior of square ferrocement slabs of dimensions (500) mm x (500) mm and 30 mm subjected to a central load. This study includes testing thirteen ferrocement slabs. The main variables considered in the experimental work are the number of wire mesh layers, percentage of silica fume and the presence of steel fiber. The effects of these variables on the behavior and load carrying capacity of tested slabs under central load were investigated. From the experimental results, it is found that by increasing the percentage of silica fume from (0 to 1.5, 3, 4.5 and 6) of weight of cement the ultimate loads are affected. Also From this study, it is observed that the load carrying capacity increases with the presence of steel fiber reinforcement, the ductility is high in the case of steel fibers. The increasing wire mesh layer from six to ten layers increased the load capacity by 76%. Also, a reduction in width of crack with increasing in number of cracks in the samples that content on steel fibers comparing with samples without steel fibers was observed from the results.

Keywords: ferrocement, fibre, silica fume, slab, strength

Procedia PDF Downloads 212
5664 Combined Use of Microbial Consortia for the Enhanced Degradation of Type-IIx Pyrethroids

Authors: Parminder Kaur, Chandrajit B. Majumder

Abstract:

The unrestrained usage of pesticides to meet the burgeoning demand of enhanced crop productivity has led to the serious contamination of both terrestrial and aquatic ecosystem. The remediation of mixture of pesticides is a challenging affair regarding inadvertent mixture of pesticides from agricultural lands treated with various compounds. Global concerns about the excessive use of pesticides have driven the need to develop more effective and safer alternatives for their remediation. We focused our work on the microbial degradation of a mixture of three Type II-pyrethroids, namely Cypermethrin, Cyhalothrin and Deltamethrin commonly applied for both agricultural and domestic purposes. The fungal strains (Fusarium strain 8-11P and Fusarium sp. zzz1124) had previously been isolated from agricultural soils and their ability to biotransform this amalgam was studied. In brief, the experiment was conducted in two growth systems (added carbon and carbon-free) enriched with variable concentrations of pyrethroids between 100 to 300 mgL⁻¹. Parameter optimization (pH, temperature, concentration and time) was done using a central composite design matrix of Response Surface Methodology (RSM). At concentrations below 200 mgL⁻¹, complete removal was observed; however, degradation of 95.6%/97.4 and 92.27%/95.65% (in carbon-free/added carbon) was observed for 250 and 300 mgL⁻¹ respectively. The consortium has been shown to degrade the pyrethroid mixture (300 mg L⁻¹) within 120 h. After 5 day incubation, the residual pyrethroids concentration in unsterilized soil were much lower than in sterilized soil, indicating that microbial degradation predominates in pyrethroids elimination with the half-life (t₁/₂) of 1.6 d and R² ranging from 0.992-0.999. Overall, these results showed that microbial consortia might be more efficient than single degrader strains. The findings will complement our current understanding of the bioremediation of mixture of Type II pyrethroids with microbial consortia and potentially heighten the importance for considering bioremediation as an effective alternative for the remediation of such pollutants.

Keywords: bioremediation, fungi, pyrethroids, soil

Procedia PDF Downloads 127
5663 Investigation on 3D Printing of Calcium silicate Bioceramic Slurry for Bone Tissue Engineering

Authors: Amin Jabbari

Abstract:

The state of the art in major 3D printing technologies, such as powder-based and slurry based, has led researchers to investigate the ability to fabricate bone scaffolds for bone tissue engineering using biomaterials. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures that match their functional properties. Polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics, and non-porous bioceramics are among the materials that can be investigated for bone scaffold printing. Furthermore, it was shown that the introduction of high-density micropores into the sparingly dissolvable CSiMg10 and dissolvable CSiMg4 shell layer inevitably leads to a nearly 30% reduction in compressive strength, but such micropores can easily influence the ion release behavior of the scaffolds. Also, biocompatibility tests such as cytotoxicity, hemocompatibility and genotoxicity were tested on printed parts. The printed part was tested in vitro, and after 24-26 h for cytotoxicity, and 4h for hemocompatibility test, the CSiMg4@CSiMg10-p scaffolds were found to have significantly higher osteogenic capability than the other scaffolds of implantation. Overall, these experimental studies demonstrate that 3D printed, additively-manufactured bioceramic calcium (Ca)-silicate scaffolds with appropriate pore dimensions are promising to guide new bone ingrowth.

Keywords: AM, 3D printed implants, bioceramic, tissue engineering

Procedia PDF Downloads 59
5662 Waste Heat Recovery Using Spiral Heat Exchanger

Authors: Parthiban S. R.

Abstract:

Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5 kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger.

Keywords: spiral heat exchanger, polymer based materials, fouling factor, heat load

Procedia PDF Downloads 369
5661 Producing of Amorphous-Nanocrystalline Composite Powders

Authors: K. Tomolya, D. Janovszky, A. Sycheva, M. Sveda, A. Roosz

Abstract:

CuZrAl amorphous alloys have attracted high interest due to unique physical and mechanical properties, which can be enhanced by adding of Ni and Ti elements. It is known that this properties can be enhanced by crystallization of amorphous alloys creating nanocrystallines in the matrix. The present work intends to produce nanosized crystalline parti-cle reinforced amorphous matrix composite powders by crystallization of amorphous powders. As the first step the amorphous powders were synthe-tized by ball-milling of crystalline powders. (Cu49Zr45Al6) 80Ni10Ti10 and (Cu49Zr44Al7) 80Ni10Ti10 (at%) alloys were ball-milled for 12 hours in order to reach the fully amorphous structure. The impact en-ergy of the balls during milling causes the change of the structure in the powders. Scanning electron microscopical (SEM) images shows that the phases mixed first and then changed into a fully amorphous matrix. Furthermore, nanosized particles in the amorphous matrix were crystallized by heat treatment of the amorphous powders that was confirmed by TEM measurement. It was of importance to define the tem-perature when the amorphous phase starts to crystal-lize. Amorphous alloys have a special heating curve and characteristic temperatures, which can be meas-ured by differential scanning calorimetry (DSC). A typical DSC curve of an amorphous alloy exhibits an endothermic event characteristic of the equilibrium glass transition (Tg) and a distinct undercooled liquid region, followed by one or two exothermic events corresponding to crystallization processes (Tp). After measuring the DSC traces of the amorphous powders, the annealing temperatures should be determined between Tx and Tp. In our experiments several temperatures from the annealing temperature range were selected and de-pendency of crystallized nanoparticles fraction on their hardness was investigated.

Keywords: amorphous structure, composite, mechanical milling, powder, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electronmocroscopy (TEM)

Procedia PDF Downloads 428
5660 The Role of the Stud’s Configuration in the Structural Response of Composite Bridges

Authors: Mohammad Mahdi Mohammadi Dehnavi, Alessandra De Angelis, Maria Rosaria Pecce

Abstract:

This paper deals with the role of studs in the structural response of steel-concrete composite beams. A tri-linear slip-shear strength law is assumed according to literature and codes provisions for developing a finite element (FE) model of a case study of a composite deck. The variation of the strength and ductility of the connection is implemented in the numerical model carrying out nonlinear analyses. The results confirm the utility of the model to evaluate the importance of the studs capacity, ductility and strength on the global response (ductility and strength) of the structures but also to analyze the trend of slip and shear at interface along the beams.

Keywords: stud connectors, finite element method, slip, shear load, steel-concrete composite bridge

Procedia PDF Downloads 126
5659 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study

Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq

Abstract:

Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.

Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study

Procedia PDF Downloads 302
5658 Anlaytical Studies on Subgrade Soil Using Jute Geotextile

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural geotextile material obtained from gunny bags was used due to its vast local availability. Construction of flexible pavement on weaker soil such as clay soils is a significant problem in construction as well as in design due to its expansive characteristics. Jute geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to an economical design. California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples, CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen. JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 419
5657 Protein-Thiocyanate Composite as a Sensor for Iron III Cations

Authors: Hosam El-Sayed, Amira Abou El-Kheir, Salwa Mowafi, Marwa Abou Taleb

Abstract:

Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Proteinium thiocyanate (PTC) composite was prepared by reaction of a regenerated film with potassium thiocyanate in acid medium. In another experiment, the said acidified proteins were reacted with potassium thiocyante before dissolution and regeneration in a form of PTC composite. The possibility of using PTC composite for determination of the concentration of iron III ions in domestic as well as industrial water was examined. The concentration of iron III cations in water was determined spectrophotometrically by measuring the intensity of blood red colour of iron III thiocyanate obtained by interaction of PTC with iron III cation in the tested water sample.

Keywords: iron III cations, protein, sensor, thiocyanate, water

Procedia PDF Downloads 406
5656 Labview-Based System for Fiber Links Events Detection

Authors: Bo Liu, Qingshan Kong, Weiqing Huang

Abstract:

With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.

Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising

Procedia PDF Downloads 108
5655 Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed

Authors: Femy M. Makkar, S. Chandrakaran, N. Sankar

Abstract:

The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing.

Keywords: 3D reinforcing elements, bearing capacity, heavy, settlement

Procedia PDF Downloads 281
5654 Estimation of Carbon Sequestration and Air Quality of Terrestrial Ecosystems Using Remote Sensing Techniques

Authors: Kanwal Javid, Shazia Pervaiz, Maria Mumtaz, Muhammad Ameer Nawaz Akram

Abstract:

Forests and grasslands ecosystems play an important role in the global carbon cycle. Land management activities influence both ecosystems and enable them to absorb and sequester carbon dioxide (CO2). Similarly, in Pakistan, these terrestrial ecosystems are well known to mitigate carbon emissions and have a great source to supply a variety of services such as clean air and water, biodiversity, wood products, wildlife habitat, food, recreation and carbon sequestration. Carbon sequestration is the main agenda of developed and developing nations to reduce the impacts of global warming. But the amount of carbon storage within these ecosystems can be affected by many factors related to air quality such as land management, land-use change, deforestation, over grazing and natural calamities. Moreover, the long-term capacity of forests and grasslands to absorb and sequester CO2 depends on their health, productivity, resilience and ability to adapt to changing conditions. Thus, the main rationale of this study is to monitor the difference in carbon amount of forests and grasslands of Northern Pakistan using MODIS data sets and map results using Geographic Information System. Results of the study conclude that forests ecosystems are more effective in reducing the CO2 level and play a key role in improving the quality of air.

Keywords: carbon sequestration, grasslands, global warming, climate change.

Procedia PDF Downloads 166
5653 Parameter Study for TPU Nanofibers Fabricated via Centrifugal Spinning

Authors: Yasin Akgül, Yusuf Polat, Emine Canbay, Ali Kılıç

Abstract:

Electrospinning is the most common method to produce nanofibers. However, low production rate is still a big challenge for industrial applications of this method. In this study, morphology of nanofibers obtained from namely centrifugal spinning was investigated. Dominant process parameters acting on the fiber diameter and fiber orientation were discussed.

Keywords: centrifugal spinning, electrospinning, nanofiber, TPU nanofibers

Procedia PDF Downloads 428
5652 Poly(Butadiene-co-Acrylonitrile)-Polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] Blends for Corrosion Inhibition of Carbon Steel

Authors: Kok-Chong Yong

Abstract:

Poly(butadiene-co-acrylonitrile)-polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] blends with useful electrical conductivity (up to 0.1 S/cm) were prepared and their corrosion inhibiting behaviours for carbon steel were successfully assessed for the first time. The level of compatibility between NBR and PAni.DBSA was enhanced through the introduction of 1.0 wt % hydroquinone. As found from both total immersion and electrochemical corrosion tests, NBR-PAni.DBSA blends with 10.0-30.0 wt% of PAni.DBSA content exhibited the best corrosion inhibiting behaviour for carbon steel, either in acid or artificial brine environment. On the other hand, blends consisting of very low and very high PAni.DBSA contents (i.e. ≤ 5.0 wt % and ≥ 40.0 wt %) showed significantly poorer corrosion inhibiting behaviour for carbon steel.

Keywords: conductive rubber, nitrile rubber, polyaniline, carbon steel, corrosion inhibition

Procedia PDF Downloads 436
5651 Solid Polymer Electrolyte Prepared From Nostoc Commune Cyanobacteria Exopolysaccharides

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

A wide range of bacteria synthesizes and secretes polymeric substances composed of a mixture of high-molecular-mass heteropolysaccharides. Nostoc commune cyanobacteria grow in colonial spherules of 10-20 mm in diameter. These spherules are filled with an internal gel made from a variety of polysaccharides known as Nostoc commune exopolysaccharides (NCE). In this paper, we report the use of these exopolysaccharides as a raw material for the preparation of a solid polymer electrolyte. Ammonium iodide and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) salts were used to provide NCE films with ionic conductivity. In addition, a carboxymethylation treatment was used to further increase the conductivity of NCE films. The structural characterization of the NCE films was assessed by FTIR, XRD, and DSC tests. Broadband dielectric spectroscopy (BDS) and dielectric thermal analysis (DETA) were used to evaluate the ionic conductivity of the samples. The results showed that NCE can be used to prepare solid polymer electrolyte films and that carboxymethylation improves their ionic conductivity. These NCE films can be used in the development of novel energy storage devices such as flat batteries or supercapacitors.

Keywords: polymer electrolyte, Nostoc commune, cyanobacteria, exopolysaccharides

Procedia PDF Downloads 191
5650 Effect of the Accelerated Carbonation in Fibercement Composites Reinforced with Eucalyptus Pulp and Nanofibrillated Cellulose

Authors: Viviane da Costa Correia, Sergio Francisco Santos, Holmer Savastano Junior

Abstract:

The main purpose of this work was verify the influence of the accelerated carbonation in the physical and mechanical properties of the hybrid composites, reinforced with micro and nanofibers and composites with microfibers. The composites were produced by the slurry vacuum dewatering method, followed by pressing. It was produced using two formulations: 8% of eucalyptus pulp + 1% of the nanofibrillated cellulose and 9% of eucalyptus pulp, both were subjected to accelerated carbonation. The results showed that the accelerated carbonation contributed to improve the physical and mechanical properties of the hybrid composites and of the composites reinforced with microfibers (eucalyptus pulp).

Keywords: carbonation, cement composites, nanofibrillated cellulose, eucalyptus pulp

Procedia PDF Downloads 315