Search results for: bipartite networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2826

Search results for: bipartite networks

1506 Design of Neural Predictor for Vibration Analysis of Drilling Machine

Authors: İkbal Eski

Abstract:

This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.

Keywords: artificial neural network, vibration analyses, drilling machine, robust

Procedia PDF Downloads 396
1505 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 130
1504 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization

Procedia PDF Downloads 384
1503 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks

Authors: Younghyun Jeon, Seungjoo Maeng

Abstract:

In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.

Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power

Procedia PDF Downloads 399
1502 Community Empowerment: The Contribution of Network Urbanism on Urban Poverty Reduction

Authors: Lucia Antonela Mitidieri

Abstract:

This research analyzes the application of a model of settlements management based on networks of territorial integration that advocates planning as a cyclical and participatory process that engages early on with civic society, the private sector and the state. Through qualitative methods such as participant observation, interviews with snowball technique and an active research on territories, concrete results of community empowerment are obtained from the promotion of productive enterprises and community spaces of encounter and exchange. Studying the cultural and organizational dimensions of empowerment allows building indicators such as increase of capacities or community cohesion that can lead to support local governments in achieving sustainable urban development for a reduction of urban poverty.

Keywords: community spaces, empowerment, network urbanism, participatory process

Procedia PDF Downloads 332
1501 An Analysis of LoRa Networks for Rainforest Monitoring

Authors: Rafael Castilho Carvalho, Edjair de Souza Mota

Abstract:

As the largest contributor to the biogeochemical functioning of the Earth system, the Amazon Rainforest has the greatest biodiversity on the planet, harboring about 15% of all the world's flora. Recognition and preservation are the focus of research that seeks to mitigate drastic changes, especially anthropic ones, which irreversibly affect this biome. Functional and low-cost monitoring alternatives to reduce these impacts are a priority, such as those using technologies such as Low Power Wide Area Networks (LPWAN). Promising, reliable, secure and with low energy consumption, LPWAN can connect thousands of IoT devices, and in particular, LoRa is considered one of the most successful solutions to facilitate forest monitoring applications. Despite this, the forest environment, in particular the Amazon Rainforest, is a challenge for these technologies, requiring work to identify and validate the use of technology in a real environment. To investigate the feasibility of deploying LPWAN in remote water quality monitoring of rivers in the Amazon Region, a LoRa-based test bed consisting of a Lora transmitter and a LoRa receiver was set up, both parts were implemented with Arduino and the LoRa chip SX1276. The experiment was carried out at the Federal University of Amazonas, which contains one of the largest urban forests in Brazil. There are several springs inside the forest, and the main goal is to collect water quality parameters and transmit the data through the forest in real time to the gateway at the uni. In all, there are nine water quality parameters of interest. Even with a high collection frequency, the amount of information that must be sent to the gateway is small. However, for this application, the battery of the transmitter device is a concern since, in the real application, the device must run without maintenance for long periods of time. With these constraints in mind, parameters such as Spreading Factor (SF) and Coding Rate (CR), different antenna heights, and distances were tuned to better the connectivity quality, measured with RSSI and loss rate. A handheld spectrum analyzer RF Explorer was used to get the RSSI values. Distances exceeding 200 m have soon proven difficult to establish communication due to the dense foliage and high humidity. The optimal combinations of SF-CR values were 8-5 and 9-5, showing the lowest packet loss rates, 5% and 17%, respectively, with a signal strength of approximately -120 dBm, these being the best settings for this study so far. The rains and climate changes imposed limitations on the equipment, and more tests are already being conducted. Subsequently, the range of the LoRa configuration must be extended using a mesh topology, especially because at least three different collection points in the same water body are required.

Keywords: IoT, LPWAN, LoRa, coverage, loss rate, forest

Procedia PDF Downloads 90
1500 A Summary-Based Text Classification Model for Graph Attention Networks

Authors: Shuo Liu

Abstract:

In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.

Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network

Procedia PDF Downloads 102
1499 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: deep learning, skin cancer, image processing, melanoma

Procedia PDF Downloads 150
1498 A Case from China on the Situation of Knowledge Management in Government

Authors: Qiaoyun Yang

Abstract:

Organizational scholars have paid enormous attention on how local governments manage their knowledge during the past two decades. Government knowledge management (KM) research recognizes that the management of knowledge flows and networks is critical to reforms on government service efficiency and the effect of administration. When dealing with complex affairs, all the limitations resulting from a lack of KM concept, processes and technologies among all the involved organizations begin to be exposed and further compound the processing difficulty of the affair. As a result, the challenges for individual or group knowledge sharing, knowledge digging and organizations’ collaboration in government's activities are diverse and immense. This analysis presents recent situation of government KM in China drawing from a total of more than 300 questionnaires and highlights important challenges that remain. The causes of the lapses in KM processes within and across the government agencies are discussed.

Keywords: KM processes, KM technologies, government, KM situation

Procedia PDF Downloads 363
1497 Fast Authentication Using User Path Prediction in Wireless Broadband Networks

Authors: Gunasekaran Raja, Rajakumar Arul, Kottilingam Kottursamy, Ramkumar Jayaraman, Sathya Pavithra, Swaminathan Venkatraman

Abstract:

Wireless Interoperability for Microwave Access (WiMAX) utilizes the IEEE 802.1X mechanism for authentication. However, this mechanism incurs considerable delay during handoffs. This delay during handoffs results in service disruption which becomes a severe bottleneck. To overcome this delay, our article proposes a key caching mechanism based on user path prediction. If the user mobility follows that path, the user bypasses the normal IEEE 802.1X mechanism and establishes the necessary authentication keys directly. Through analytical and simulation modeling, we have proved that our mechanism effectively decreases the handoff delay thereby achieving fast authentication.

Keywords: authentication, authorization, and accounting (AAA), handoff, mobile, user path prediction (UPP) and user pattern

Procedia PDF Downloads 407
1496 Integrated Gesture and Voice-Activated Mouse Control System

Authors: Dev Pratap Singh, Harshika Hasija, Ashwini S.

Abstract:

The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computers using hand gestures and voice commands. The system leverages advanced computer vision techniques using the Media Pipe framework and OpenCV to detect and interpret real-time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the speech recognition library allows for seamless execution of tasks like web searches, location navigation, and gesture control in the system through voice commands.

Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks, natural language processing, voice assistant

Procedia PDF Downloads 15
1495 Application of Neural Petri Net to Electric Control System Fault Diagnosis

Authors: Sadiq J. Abou-Loukh

Abstract:

The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications.

Keywords: petri net, neural petri net, electric control system, fault diagnosis

Procedia PDF Downloads 477
1494 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates

Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera

Abstract:

Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.

Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR

Procedia PDF Downloads 213
1493 Community Singing, a Pathway to Social Capital: A Cross-Cultural Comparative Assessment of the Benefits of Singing Communities in South Tyrol and South Africa

Authors: Johannes Van Der Sandt

Abstract:

This quantitative study investigates different approaches of community singing, in building social capital in South Tyrol, Italy, and South Africa. The impact of the various approaches of community singing is examined by investigating the main components of social capital, namely, social norms and obligations, social networks and associations and trust, and how these components are manifested in two different societies. The research is based on the premise that community singing is an important agent for the development of social capital. It seeks to establish in what form community singing can best enhance the social capital of communities in South Tyrol that are undergoing significant changes in the ways in which social capital is generally being generated on account of demographic, economic, technological and cultural changes. South Tyrol and South Africa share some similarities in the management of their multi-cultural composition. By comparing the different approaches to community singing in two multi-cultural societies, it is hoped to gain insight, and an understanding of the connections between culture, social cohesion, identity and therefore to be able to add to the understanding of the building of social capital through community singing. Participation in music contributes to the growth of social capital in communities, this is amongst others the finding of an ever increasing amount of research. In sociological discourses on social capital generation, the dimension of community music making is recognized as an important factor. Trust and mutual cooperation are products when people listen to each other, when they work or play together, and when they care about each other. This is how social capital develops as an important shared resource. Scholars of Community Music still do not agree on a short and concise definition for Community Music. For the purpose of this research, the author concurs with the definition of Community Music of the Community Music Activity commission of the International Society of Music Education as having the following characteristics: decentralization, accessibility, equal opportunity, and active participation in music-making. These principles are social and political ones, and there can be no doubt that community music activity is more than a purely musical one. Trust, shared norms and values civic and community involvement, networks, knowledge resources, contact with families and friends, and fellowship are key components in fostering group cohesion and social capital development in a community. The research will show that there is no better place for these factors to flourish than in a community singing group. Through this comparative study, it is the aim to identify, analyze and explain similarities and differences in approaches to community across societies that find themselves in a rapid transition from traditional cultural to global cultural habits characterized by a plurality of orientation points, with the aim to gain a better understanding of the various directions South Tyrolean singing culture can take.

Keywords: community music, multicultural, singing, social capital

Procedia PDF Downloads 285
1492 Path Planning for Collision Detection between two Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari

Abstract:

This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: path planning, collision detection, convex polyhedron, neural network

Procedia PDF Downloads 439
1491 Proposed Terminal Device for End-to-End Secure SMS in Cellular Networks

Authors: Neetesh Saxena, Narendra S. Chaudhari

Abstract:

Nowadays, SMS is a very popular mobile service and even the poor, illiterate people and those living in rural areas use SMS service very efficiently. Although many mobile operators have already started 3G and 4G services, 2G services are still being used by the people in many countries. In 2G (GSM), only encryption provided is between the MS and the BTS, there is no end-to-end encryption available. Sometimes we all need to send some confidential message to other person containing bank account number, some password, financial details, etc. Normally, a message is sent in plain text only to the recipient and it is not an acceptable standard for transmitting such important and confidential information. Authors propose an end-to-end encryption approach by proposing a terminal for sending/receiving a secure message. An asymmetric key exchange algorithm is used in order to transmit secret shared key securely to the recipient. The proposed approach with terminal device provides authentication, confidentiality, integrity and non-repudiation.

Keywords: AES, DES, Diffie-Hellman, ECDH, A5, SMS

Procedia PDF Downloads 419
1490 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 157
1489 Strategic Planning in South African Higher Education

Authors: Noxolo Mafu

Abstract:

This study presents an overview of strategic planning in South African higher education institutions by tracing its trends and mystique in order to identify its impact. Over the democratic decades, strategic planning has become integral to institutional survival. It has been used as a potent tool by several institutions to catch up and surpass counterparts. While planning has always been part of higher education, strategic planning should be considered different. Strategic planning is primarily about development and maintenance of a strategic fitting between an institution and its dynamic opportunities. This presupposes existence of sets of stages that institutions pursue of which, can be regarded for assessment of the impact of strategic planning in an institution. The network theory serves guides the study in demystifying apparent organisational networks in strategic planning processes.

Keywords: network theory, strategy, planning, strategic planning, assessment, impact

Procedia PDF Downloads 563
1488 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 39
1487 Pattern in Splitting Sequence in Okike’s Merged Irregular Transposition Cipher for Encrypting Cyberspace Messages

Authors: Okike Benjamin, E. J. D. Garba

Abstract:

The protection of sensitive information against unauthorized access or fraudulent changes has been of prime concern throughout the centuries. Modern communication techniques, using computers connected through networks, make all data even more vulnerable to these threats. The researchers in this work propose a new encryption technique to be known as Merged Irregular Transposition Cipher. In this proposed encryption technique, a message to be encrypted will first of all be split into multiple parts depending on the length of the message. After the split, different keywords are chosen to encrypt different parts of the message. After encrypting all parts of the message, the positions of the encrypted message could be swapped to other position thereby making it very difficult to decrypt by any unauthorized user.

Keywords: information security, message splitting, pattern, sequence

Procedia PDF Downloads 290
1486 Floating Populations, Rooted Networks Tracing the Evolution of Russeifa City in Relation to Marka Refugee Camp

Authors: Dina Dahood Dabash

Abstract:

Refugee camps are habitually defined as receptive sites, transient spaces of exile and nondescript depoliticized places of exception. However, such arguments form partial sides of reality, especially in countries that are geopolitically challenged and rely immensely on international aid. In Jordan, the dynamics brought with the floating population of refugees (Palestinian amongst others) have resulted in spatial after-effects that cannot be easily overlooked. For instance, Palestine refugee camps have turned by time into socioeconomic centers of gravity and cores of spatial evolution. Yet, such a position is not instantaneous. Amongst various reasons, it can be related, according to this paper, to a distinctive institutional climate that has been co-produced by the refugees, host community and the state. This paper aims to investigate the evolution of urban and spatial regulations in Jordan between 1948 and 1995, more specifically, state regulations, community regulations and refugee-self-regulation that all dynamically interacted that period. The paper aims to unpack the relations between refugee camps and their environs to further explore the agency of such floating populations in establishing rooted networks that extended the time and place boundaries. The paper’s argument stems from the fact that the spatial configuration of urban systems is not only an outcome of a historical evolutionary process but is also a result of interactions between the actors. The research operationalizes Marka camp in Jordan as a case study. Marka Camp is one of the six "emergency" camps erected in 1968 to shelter 15,000 Palestine refugees and displaced persons who left the West Bank and Gaza Strip. Nowadays, camp shelters more than 50,000 refugees in the same area of land. The camp is located in Russeifa, a city in Zarqa Governorate in Jordan. Together with Amman and Zarqa, Russeifa is part of a larger metropolitan area that acts as a home to more than half of Jordan’s businesses. The paper aspires to further understand the post-conflict strategies which were historically applied in Jordan and can be employed to handle more recent geopolitical challenges such as the Syrian refugee crisis. Methodological framework: The paper traces the evolution of the refugee-camp regulating norms in Jordan, parallel with the horizontal and vertical evolution of the Marka camp and its surroundings. Consequently, the main methods employed are historical and mental tracing, Interviews, in addition to using available Aerial and archival photos of the Marka camp and its surrounding.

Keywords: forced migration, Palestine refugee camps, spatial agency, urban regulations

Procedia PDF Downloads 187
1485 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 466
1484 A Review of Ultralightweight Mutual Authentication Protocols

Authors: Umar Mujahid, Greatzel Unabia, Hongsik Choi, Binh Tran

Abstract:

Radio Frequency Identification (RFID) is one of the most commonly used technologies in IoTs and Wireless Sensor Networks which makes the devices identification and tracking extremely easy to manage. Since RFID uses wireless channel for communication, which is open for all types of adversaries, researchers have proposed many Ultralightweight Mutual Authentication Protocols (UMAPs) to ensure security and privacy in a cost-effective manner. These UMAPs involve simple bitwise logical operators such as XOR, AND, OR & Rot, etc., to design the protocol messages. However, most of these UMAPs were later reported to be vulnerable against many malicious attacks. In this paper, we have presented a detailed overview of some eminent UMAPs and also discussed the many security attacks on them. Finally, some recommendations and suggestions have been discussed, which can improve the design of the UMAPs.

Keywords: RFID, Ultralightweight, UMAP, SASI

Procedia PDF Downloads 154
1483 Load Forecasting in Short-Term Including Meteorological Variables for Balearic Islands Paper

Authors: Carolina Senabre, Sergio Valero, Miguel Lopez, Antonio Gabaldon

Abstract:

This paper presents a comprehensive survey of the short-term load forecasting (STLF). Since the behavior of consumers and producers continue changing as new technologies, it is an ongoing process, and moreover, new policies become available. The results of a research study for the Spanish Transport System Operator (REE) is presented in this paper. It is presented the improvement of the forecasting accuracy in the Balearic Islands considering the introduction of meteorological variables, such as temperature to reduce forecasting error. Variables analyzed for the forecasting in terms of overall accuracy are cloudiness, solar radiation, and wind velocity. It has also been analyzed the type of days to be considered in the research.

Keywords: short-term load forecasting, power demand, neural networks, load forecasting

Procedia PDF Downloads 191
1482 Entrepreneurship and the Discovery and Exploitation of Business Opportunities: Empirical Evidence from the Malawian Tourism Sector

Authors: Aravind Mohan Krishnan

Abstract:

This paper identifies a research gap in the literature on tourism entrepreneurship in Malawi, Africa, and investigates how entrepreneurs from the Malawian tourism sector discover and exploit business opportunities. In particular, the importance of prior experience and business networks in the opportunity development process is debated. Another area of empirical research examined here is the opportunity recognition-venture creation sequence. While Malawi presents fruitful business opportunities, exploiting these opportunities into fully realized business ideas is a real challenge due to the country’s difficult business environment and poor promotional and marketing efforts. The study concludes by calling for further research in Sub-Saharan Africa in order to develop our understanding of entrepreneurship in this (African) context.

Keywords: entrepreneurship, Malawi, opportunities, tourism

Procedia PDF Downloads 338
1481 Measurement of the Neutron Spectrum of 241AmLi and 241AmF Sources Using the Bonner Sphere Spectrometers

Authors: Victor Rocha Carvalho

Abstract:

The Bonner Sphere Spectrometry was used to obtain the average energy, the fluence rate, and radioprotection quantities such as the personal and ambient dose equivalent of the ²⁴¹AmLi and ²⁴¹AmF isotopic neutron sources used in the Neutron Metrology Laboratory - LN. The counts of the sources were performed with six different spherical moderators around the detector. Through this, the neutron spectrum was obtained by means of the software named NeuraLN, developed by the LN, that uses the neural networks technique. The 241AmLi achieved a result close to the literature, and 241AmF, which contains few published references, acquired a result with a slight variation from the literature. Therefore, besides fulfilling its objective, the work raises questions about a possible standard of the ²⁴¹AmLi and about the lack of work with the ²⁴¹AmF.

Keywords: nuclear physics, neutron metrology, neutron spectrometry, bonner sphere spectrometers

Procedia PDF Downloads 103
1480 Hosoya Polynomials of Mycielskian Graphs

Authors: Sanju Vaidya, Aihua Li

Abstract:

Vulnerability measures and topological indices are crucial in solving various problems such as the stability of the communication networks and development of mathematical models for chemical compounds. In 1947, Harry Wiener introduced a topological index related to molecular branching. Now there are more than 100 topological indices for graphs. For example, Hosoya polynomials (also called Wiener polynomials) were introduced to derive formulas for certain vulnerability measures and topological indices for various graphs. In this paper, we will find a relation between the Hosoya polynomials of any graph and its Mycielskian graph. Additionally, using this we will compute vulnerability measures, closeness and betweenness centrality, and extended Wiener indices. It is fascinating to see how Hosoya polynomials are useful in the two diverse fields, cybersecurity and chemistry.

Keywords: hosoya polynomial, mycielskian graph, graph vulnerability measure, topological index

Procedia PDF Downloads 72
1479 Estimation of Sediment Transport into a Reservoir Dam

Authors: Kiyoumars Roushangar, Saeid Sadaghian

Abstract:

Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.

Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction

Procedia PDF Downloads 499
1478 A Decentralized Application for Secure Data Handling of Wireless Networks Using Ethereum Smart Contracts

Authors: Midhun Xavier

Abstract:

This paper introduces a method to verify multi-agent systems in industrial control systems using blockchain technology. The proposed solution enables to record and verify each process that occurs while generating a customized product using Ethereum-based smart contracts. Node-Red software agents are developed with the help of semantic web technologies, and these software agents interact with IEC 61499 function blocks to execute the processes. The agent associated with each mechatronic component and its controller can communicate with the blockchain to record various events that occur during each process, and the latter smart contract helps to verify these process orders of the customized product.

Keywords: blockchain, Ethereum, node-red, IEC 61499, multi-agent system, MQTT

Procedia PDF Downloads 95
1477 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation

Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro

Abstract:

More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.

Keywords: reactive power control, solar irradiance, utility-scale PV systems, voltage fluctuations

Procedia PDF Downloads 461