Search results for: actuarial modeling
2628 Testing a Structural Model of SME Development in Mauritius and Botswana: The Role of Institutions in a Comparative Perspective
Authors: B. Seetanah, R. V. Sannassee, Lamport, K. Padachi, K. Seetah, S. Matadeen, N. Okurutt, N. Ama, L. Mokoodi
Abstract:
This paper analyses the impact of the various enabling elements towards fostering entrepreneurial behavior for two Sub Saharan African countries namely Mauritius and Botswana, with focus is on role of institutions (ministries, government support institutions, financing institutions and SME associations). Using a structural equation modeling framework, it is found that finance was some of the most determinant of respondents’ evaluation of the business climate thus emphasizing on the crucial of such an ingredient. Interestingly government related factors such as government support and institutional support are also reported to have a significant influence on the SME business climate in both countries.Keywords: institutions, SME, SEM, Mauritius, Botswana
Procedia PDF Downloads 3952627 An Integrated Real-Time Hydrodynamic and Coastal Risk Assessment Model
Authors: M. Reza Hashemi, Chris Small, Scott Hayward
Abstract:
The Northeast Coast of the US faces damaging effects of coastal flooding and winds due to Atlantic tropical and extratropical storms each year. Historically, several large storm events have produced substantial levels of damage to the region; most notably of which were the Great Atlantic Hurricane of 1938, Hurricane Carol, Hurricane Bob, and recently Hurricane Sandy (2012). The objective of this study was to develop an integrated modeling system that could be used as a forecasting/hindcasting tool to evaluate and communicate the risk coastal communities face from these coastal storms. This modeling system utilizes the ADvanced CIRCulation (ADCIRC) model for storm surge predictions and the Simulating Waves Nearshore (SWAN) model for the wave environment. These models were coupled, passing information to each other and computing over the same unstructured domain, allowing for the most accurate representation of the physical storm processes. The coupled SWAN-ADCIRC model was validated and has been set up to perform real-time forecast simulations (as well as hindcast). Modeled storm parameters were then passed to a coastal risk assessment tool. This tool, which is generic and universally applicable, generates spatial structural damage estimate maps on an individual structure basis for an area of interest. The required inputs for the coastal risk model included a detailed information about the individual structures, inundation levels, and wave heights for the selected region. Additionally, calculation of wind damage to structures was incorporated. The integrated coastal risk assessment system was then tested and applied to Charlestown, a small vulnerable coastal town along the southern shore of Rhode Island. The modeling system was applied to Hurricane Sandy and a synthetic storm. In both storm cases, effect of natural dunes on coastal risk was investigated. The resulting damage maps for the area (Charlestown) clearly showed that the dune eroded scenarios affected more structures, and increased the estimated damage. The system was also tested in forecast mode for a large Nor’Easters: Stella (March 2017). The results showed a good performance of the coupled model in forecast mode when compared to observations. Finally, a nearshore model XBeach was then nested within this regional grid (ADCIRC-SWAN) to simulate nearshore sediment transport processes and coastal erosion. Hurricane Irene (2011) was used to validate XBeach, on the basis of a unique beach profile dataset at the region. XBeach showed a relatively good performance, being able to estimate eroded volumes along the beach transects with a mean error of 16%. The validated model was then used to analyze the effectiveness of several erosion mitigation methods that were recommended in a recent study of coastal erosion in New England: beach nourishment, coastal bank (engineered core), and submerged breakwater as well as artificial surfing reef. It was shown that beach nourishment and coastal banks perform better to mitigate shoreline retreat and coastal erosion.Keywords: ADCIRC, coastal flooding, storm surge, coastal risk assessment, living shorelines
Procedia PDF Downloads 1162626 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model
Procedia PDF Downloads 4072625 Numerical Simulation of Flow and Particle Motion in Liquid – Solid Hydrocyclone
Authors: Seyed Roozbeh Pishva, Alireza Aboudi Asl
Abstract:
In this investigation a hydrocyclone by using for separation particles from fluid in oil and gas, mining and other industries is simulated. Case study is cone – cylindrical and solid - liquid hydrocyclone. The fluid is water and the solid is a type of silis having diameters of 53, 75, 106, 150, 212, 250, and 300 micron. In this investigation CFD method used for analysis flow and movement of particles in hydrocyclone. In this modeling flow is three-dimention, turbulence and RSM model have been used for solving. Particles are three dimensional, spherical and non rotating and for tracking them Lagrangian model is used. The results of this study in addition to analyzing flowfield, obtaining efficiency of hydrocyclone in 5, 7, 12, and 15 percent concentrations and compare them with experimental result that both of them had suitable agreement with each other.Keywords: hydrocyclone, RSM Model, CFD, copper industry
Procedia PDF Downloads 5732624 Numerical Simulation for Self-Loosening Phenomenon Analysis of Bolt Joint under Vibration
Authors: Long Kim Vu, Ban Dang Nguyen
Abstract:
In this paper, the finite element method (FEM) is utilized to simulate the comprehensive process including tightening, releasing and self-loosening of a bolt joint under transverse vibration. Following to the accurate geometry of helical threads, an absolutely hexahedral meshing is implemented. The accuracy of simulation process is verified and validated by comparison with the experimental results on clamping force-vibration relationship, which shows the sufficient correlation. Further analysis with different amplitude and frequency of transverse vibration is done to determine the dominant factor inducing the failure.Keywords: bolt self-loosening, contact state, finite element method, FEM, helical thread modeling
Procedia PDF Downloads 2022623 Review on PETG Material Parts Made Using Fused Deposition Modeling
Authors: Dhval Chauhan, Mahesh Chudasama
Abstract:
This study has been undertaken to give a review of Polyethylene Terephthalate Glycol (PETG) material used in Fused Deposition Modelling (FDM). This paper offers a review of the existing literature on polyethylene terephthalate glycol (PETG) material, the objective of the paper is to providing guidance on different process parameters that can be used to improve the strength of the part by performing various testing like tensile, compressive, flexural, etc. This work is target to find new paths that can be used for further development of the use of fiber reinforcement in PETG material.Keywords: PETG, FDM, tensile strength, flexural strength, fiber reinforcement
Procedia PDF Downloads 1922622 Critical Analysis of Different Actuation Techniques for a Micro Cantilever
Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri
Abstract:
The objective of this work is to carry out a critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a microcantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, they help in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation are done by considering the microcantilever of same dimensions as an actuator using all the above-mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in the micro domain.Keywords: actuation techniques, microswitch, micro actuator, microsystems
Procedia PDF Downloads 4092621 Influence of Bacterial Motility on Biofilm Formation
Authors: Li Cheng, Zhang Yilei, Cohen Yehuda
Abstract:
Two motility mechanisms were introduced into iDynoMiCs software, which adopts an individual-based modeling method. Based on the new capabilities, along with the pressure motility developed before, influence of bacterial motility on biofilm formation was studied. Simulation results were evaluated both qualitatively through 3D structure inspections and quantitatively by parameter characterizations. It was showed that twitching motility increased the biofilm surface irregularity probably due to movement of cells towards higher nutrient concentration location whereas free motility, on the other hand, could make biofilms flatter and smoother relatively. Pressure motility showed no significant influence in this study.Keywords: iDynoMics, biofilm structure, bacterial motility, motility mechanisms
Procedia PDF Downloads 3902620 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms
Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson
Abstract:
This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection
Procedia PDF Downloads 4642619 Safety Climate Assessment and Its Impact on the Productivity of Construction Enterprises
Authors: Krzysztof J. Czarnocki, F. Silveira, E. Czarnocka, K. Szaniawska
Abstract:
Research background: Problems related to the occupational health and decreasing level of safety occur commonly in the construction industry. Important factor in the occupational safety in construction industry is scaffold use. All scaffolds used in construction, renovation, and demolition shall be erected, dismantled and maintained in accordance with safety procedure. Increasing demand for new construction projects unfortunately still is linked to high level of occupational accidents. Therefore, it is crucial to implement concrete actions while dealing with scaffolds and risk assessment in construction industry, the way on doing assessment and liability of assessment is critical for both construction workers and regulatory framework. Unfortunately, professionals, who tend to rely heavily on their own experience and knowledge when taking decisions regarding risk assessment, may show lack of reliability in checking the results of decisions taken. Purpose of the article: The aim was to indicate crucial parameters that could be modeling with Risk Assessment Model (RAM) use for improving both building enterprise productivity and/or developing potential and safety climate. The developed RAM could be a benefit for predicting high-risk construction activities and thus preventing accidents occurred based on a set of historical accident data. Methodology/Methods: A RAM has been developed for assessing risk levels as various construction process stages with various work trades impacting different spheres of enterprise activity. This project includes research carried out by teams of researchers on over 60 construction sites in Poland and Portugal, under which over 450 individual research cycles were carried out. The conducted research trials included variable conditions of employee exposure to harmful physical and chemical factors, variable levels of stress of employees and differences in behaviors and habits of staff. Genetic modeling tool has been used for developing the RAM. Findings and value added: Common types of trades, accidents, and accident causes have been explored, in addition to suitable risk assessment methods and criteria. We have found that the initial worker stress level is more direct predictor for developing the unsafe chain leading to the accident rather than the workload, or concentration of harmful factors at the workplace or even training frequency and management involvement.Keywords: safety climate, occupational health, civil engineering, productivity
Procedia PDF Downloads 3182618 Simulation of Human Heart Activation Based on Diffusion Tensor Imaging
Authors: Ihab Elaff
Abstract:
Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature.Keywords: diffusion tensor, DTI, heart, conduction network, excitation propagation
Procedia PDF Downloads 2662617 Modeling and Simulation of Primary Atomization and Its Effects on Internal Flow Dynamics in a High Torque Low Speed Diesel Engine
Authors: Muteeb Ulhaq, Rizwan Latif, Sayed Adnan Qasim, Imran Shafi
Abstract:
Diesel engines are most efficient and reliable in terms of efficiency, reliability and adaptability. Most of the research and development up till now have been directed towards High-Speed Diesel Engine, for Commercial use. In these engines objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low-speed engines the requirement is altogether different. These types of Engines are mostly used in Maritime Industry, Agriculture industry, Static Engines Compressors Engines etc. Unfortunately due to lack of research and development, these engines have low efficiency and high soot emissions and one of the most effective way to overcome these issues is by efficient combustion in an engine cylinder, the fuel spray atomization process plays a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process is of a great importance. In this research, we will examine the effects of primary breakup modeling on the spray characteristics under diesel engine conditions. KH-ACT model is applied to cater the effect of aerodynamics in an engine cylinder and also cavitations and turbulence generated inside the injector. It is a modified form of most commonly used KH model, which considers only the aerodynamically induced breakup based on the Kelvin–Helmholtz instability. Our model is extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver. Spray characteristics like Spray Penetration, Liquid length, Spray cone angle and Souter mean diameter (SMD) were validated by comparing the results of Open Foam and Matlab. Including the effects of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. All these properties favor early evaporation of fuel which enhances Engine efficiency.Keywords: Kelvin–Helmholtz instability, open foam, primary breakup, souter mean diameter, turbulence
Procedia PDF Downloads 2122616 Efficient Modeling Technique for Microstrip Discontinuities
Authors: Nassim Ourabia, Malika Ourabia
Abstract:
A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The technique obtains closed form expressions for the equivalent circuits which are used to model these discontinuities. Then it would be easy to handle and to characterize complicated structures like T and Y junctions, truncated junctions, arbitrarily shaped junctions, cascading junctions, and more generally planar multiport junctions. Another advantage of this method is that the edge line concept for arbitrary shape junctions operates with real parameters circuits. The validity of the method was further confirmed by comparing our results for various discontinuities (bend, filters) with those from HFSS as well as from other published sources.Keywords: CAD analysis, contour integral approach, microwave circuits, s-parameters
Procedia PDF Downloads 5162615 Retrofitting Measures for Existing Housing Stock in Kazakhstan
Authors: S. Yessengabulov, A. Uyzbayeva
Abstract:
Residential buildings fund of Kazakhstan was built in the Soviet time about 35-60 years ago without considering energy efficiency measures. Currently, most of these buildings are in a rundown condition and fail to meet the minimum of hygienic, sanitary and comfortable living requirements. The paper aims to examine the reports of recent building energy survey activities in the country and provide a possible solution for retrofitting existing housing stock built before 1989 which could be applicable for building envelope in cold climate. Methodology also includes two-dimensional modeling of possible practical solutions and further recommendations.Keywords: energy audit, energy efficient buildings in Kazakhstan, retrofit, two-dimensional conduction heat transfer analysis
Procedia PDF Downloads 2472614 A Model for Analysis the Induced Voltage of 115 kV On-Line Acting on Neighboring 22 kV Off-Line
Authors: Sakhon Woothipatanapan, Surasit Prakobkit
Abstract:
This paper presents a model for analysis the induced voltage of transmission lines (energized) acting on neighboring distribution lines (de-energized). From environmental restrictions, 22 kV distribution lines need to be installed under 115 kV transmission lines. With the installation of the two parallel circuits like this, they make the induced voltage which can cause harm to operators. This work was performed with the ATP-EMTP modeling to analyze such phenomenon before field testing. Simulation results are used to find solutions to prevent danger to operators who are on the pole.Keywords: transmission system, distribution system, induced voltage, off-line operation
Procedia PDF Downloads 6062613 Modeling the Impact of Controls on Information System Risks
Authors: M. Ndaw, G. Mendy, S. Ouya
Abstract:
Information system risk management helps to reduce or eliminate risk by implementing appropriate controls. In this paper, we propose a quantification model of controls impact on information system risks by automatizing the residual criticality estimation step of FMECA which is based on a inductive reasoning. For this, we defined three equations based on type and maturity of controls. For testing, the values obtained with the model were compared to estimated values given by interlocutors during different working sessions and the result is satisfactory. This model allows an optimal assessment of controls maturity and facilitates risk analysis of information system.Keywords: information system, risk, control, FMECA method
Procedia PDF Downloads 3552612 The importance of Clinical Pharmacy and Computer Aided Drug Design
Authors: Peter Edwar Mortada Nasif
Abstract:
The use of CAD (Computer Aided Design) technology is ubiquitous in the architecture, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of architecture schools in Nigeria as an important part of the training module. This article examines the ethical issues involved in implementing CAD (Computer Aided Design) content into the architectural education curriculum. Using existing literature, this study begins with the benefits of integrating CAD into architectural education and the responsibilities of different stakeholders in the implementation process. It also examines issues related to the negative use of information technology and the perceived negative impact of CAD use on design creativity. Using a survey method, data from the architecture department of Chukwuemeka Odumegwu Ojukwu Uli University was collected to serve as a case study on how the issues raised were being addressed. The article draws conclusions on what ensures successful ethical implementation. Millions of people around the world suffer from hepatitis C, one of the world's deadliest diseases. Interferon (IFN) is treatment options for patients with hepatitis C, but these treatments have their side effects. Our research focused on developing an oral small molecule drug that targets hepatitis C virus (HCV) proteins and has fewer side effects. Our current study aims to develop a drug based on a small molecule antiviral drug specific for the hepatitis C virus (HCV). Drug development using laboratory experiments is not only expensive, but also time-consuming to conduct these experiments. Instead, in this in silicon study, we used computational techniques to propose a specific antiviral drug for the protein domains of found in the hepatitis C virus. This study used homology modeling and abs initio modeling to generate the 3D structure of the proteins, then identifying pockets in the proteins. Acceptable lagans for pocket drugs have been developed using the de novo drug design method. Pocket geometry is taken into account when designing ligands. Among the various lagans generated, a new specific for each of the HCV protein domains has been proposed.Keywords: drug design, anti-viral drug, in-silicon drug design, hepatitis C virus, computer aided design, CAD education, education improvement, small-size contractor automatic pharmacy, PLC, control system, management system, communication
Procedia PDF Downloads 222611 Forecasting Regional Data Using Spatial Vars
Authors: Taisiia Gorshkova
Abstract:
Since the 1980s, spatial correlation models have been used more often to model regional indicators. An increasingly popular method for studying regional indicators is modeling taking into account spatial relationships between objects that are part of the same economic zone. In 2000s the new class of model – spatial vector autoregressions was developed. The main difference between standard and spatial vector autoregressions is that in the spatial VAR (SpVAR), the values of indicators at time t may depend on the values of explanatory variables at the same time t in neighboring regions and on the values of explanatory variables at time t-k in neighboring regions. Thus, VAR is a special case of SpVAR in the absence of spatial lags, and the spatial panel data model is a special case of spatial VAR in the absence of time lags. Two specifications of SpVAR were applied to Russian regional data for 2000-2017. The values of GRP and regional CPI are used as endogenous variables. The lags of GRP, CPI and the unemployment rate were used as explanatory variables. For comparison purposes, the standard VAR without spatial correlation was used as “naïve” model. In the first specification of SpVAR the unemployment rate and the values of depending variables, GRP and CPI, in neighboring regions at the same moment of time t were included in equations for GRP and CPI respectively. To account for the values of indicators in neighboring regions, the adjacency weight matrix is used, in which regions with a common sea or land border are assigned a value of 1, and the rest - 0. In the second specification the values of depending variables in neighboring regions at the moment of time t were replaced by these values in the previous time moment t-1. According to the results obtained, when inflation and GRP of neighbors are added into the model both inflation and GRP are significantly affected by their previous values, and inflation is also positively affected by an increase in unemployment in the previous period and negatively affected by an increase in GRP in the previous period, which corresponds to economic theory. GRP is not affected by either the inflation lag or the unemployment lag. When the model takes into account lagged values of GRP and inflation in neighboring regions, the results of inflation modeling are practically unchanged: all indicators except the unemployment lag are significant at a 5% significance level. For GRP, in turn, GRP lags in neighboring regions also become significant at a 5% significance level. For both spatial and “naïve” VARs the RMSE were calculated. The minimum RMSE are obtained via SpVAR with lagged explanatory variables. Thus, according to the results of the study, it can be concluded that SpVARs can accurately model both the actual values of macro indicators (particularly CPI and GRP) and the general situation in the regionsKeywords: forecasting, regional data, spatial econometrics, vector autoregression
Procedia PDF Downloads 1412610 Development of a Mathematical Theoretical Model and Simulation of the Electromechanical System for Wave Energy Harvesting
Authors: P. Valdez, M. Pelissero, A. Haim, F. Muiño, F. Galia, R. Tula
Abstract:
As a result of the studies performed on the wave energy resource worldwide, a research project was set up to harvest wave energy for its conversion into electrical energy. Within this framework, a theoretical model of the electromechanical energy harvesting system, developed with MATLAB’s Simulink software, will be provided. This tool recreates the site conditions where the device will be installed and offers valuable information about the amount of energy that can be harnessed. This research provides a deeper understanding of the utilization of wave energy in order to improve the efficiency of a 1:1 scale prototype of the device.Keywords: electromechanical device, modeling, renewable energy, sea wave energy, simulation
Procedia PDF Downloads 4882609 Modeling False Statements in Texts
Authors: Francielle A. Vargas, Thiago A. S. Pardo
Abstract:
According to the standard philosophical definition, lying is saying something that you believe to be false with the intent to deceive. For deception detection, the FBI trains its agents in a technique named statement analysis, which attempts to detect deception based on parts of speech (i.e., linguistics style). This method is employed in interrogations, where the suspects are first asked to make a written statement. In this poster, we model false statements using linguistics style. In order to achieve this, we methodically analyze linguistic features in a corpus of fake news in the Portuguese language. The results show that they present substantial lexical, syntactic and semantic variations, as well as punctuation and emotion distinctions.Keywords: deception detection, linguistics style, computational linguistics, natural language processing
Procedia PDF Downloads 2182608 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 4362607 Parasitic Capacitance Modeling in Pulse Transformer Using FEA
Authors: D. Habibinia, M. R. Feyzi
Abstract:
Nowadays, specialized software is vastly used to verify the performance of an electric machine prototype by evaluating a model of the system. These models mainly consist of electrical parameters such as inductances and resistances. However, when the operating frequency of the device is above one kHz, the effect of parasitic capacitances grows significantly. In this paper, a software-based procedure is introduced to model these capacitances within the electromagnetic simulation of the device. The case study is a high-frequency high-voltage pulse transformer. The Finite Element Analysis (FEA) software with coupled field analysis is used in this method.Keywords: finite element analysis, parasitic capacitance, pulse transformer, high frequency
Procedia PDF Downloads 5152606 Evaluation of the Elastic Mechanical Properties of a Hybrid Adhesive Material
Authors: Moudar H. A. Zgoul, Amin Al Zamer
Abstract:
Adhesive materials and adhesion have been the focal point of multiple research works related to numerous applications, particularly, aerospace, and aviation industries. To enhance the properties of conventional adhesive materials, additives have been introduced to the mix in order to enhance their mechanical and physical properties by creating a hybrid adhesive material. The evaluation of the mechanical properties of such hybrid adhesive materials is thus of an essential requirement for the purpose of properly modeling their behavior accurately. This paper presents an approach/tool to simulate the behavior such hybrid adhesives in a way that will allow researchers to better understand their behavior while in service.Keywords: adhesive materials, analysis, hybrid adhesives, mechanical properties, simulation
Procedia PDF Downloads 4202605 Three-Stage Multivariate Stratified Sample Surveys with Probabilistic Cost Constraint and Random Variance
Authors: Sanam Haseen, Abdul Bari
Abstract:
In this paper a three stage multivariate programming problem with random survey cost and variances as random variables has been formulated as a non-linear stochastic programming problem. The problem has been converted into an equivalent deterministic form using chance constraint programming and modified E-modeling. An empirical study of the problem has been done at the end of the paper using R-simulation.Keywords: chance constraint programming, modified E-model, stochastic programming, stratified sample surveys, three stage sample surveys
Procedia PDF Downloads 4582604 Contribution to the Analytical Study of the Stability of a DC-DC Converter (Boost) Used for MPPT Control
Authors: Mohamed Amarouayache, Badia Amrouche, Gharbi Akila, Boukadoume Mohamed
Abstract:
This work is devoted to the modeling of DC-DC converter (boost) used for MPPT applications to set conditions of stability. For this, we establish a linear mathematical model of the DC-DC converter with an average small signal model. This model has allowed us to apply conventional linear methods of automation. A mathematical relationship between the duty cycle and the voltage of the panel has been set up. With this relationship we specify the conditions of the stability in closed-loop depending on the system parameters (the elements of storage capacity and inductance, PWM control).Keywords: MPPT, PWM, stability, criterion of Routh, average small signal model
Procedia PDF Downloads 4442603 An Efficient Approach to Optimize the Cost and Profit of a Tea Garden by Using Branch and Bound Method
Authors: Abu Hashan Md Mashud, M. Sharif Uddin, Aminur Rahman Khan
Abstract:
In this paper, we formulate a new problem as a linear programming and Integer Programming problem and maximize profit within the limited budget and limited resources based on the construction of a tea garden problem. It describes a new idea about how to optimize profit and focuses on the practical aspects of modeling and the challenges of providing a solution to a complex real life problem. Finally, a comparative study is carried out among Graphical method, Simplex method and Branch and bound method.Keywords: integer programming, tea garden, graphical method, simplex method, branch and bound method
Procedia PDF Downloads 6232602 Prosody Generation in Neutral Speech Storytelling Application Using Tilt Model
Authors: Manjare Chandraprabha A., S. D. Shirbahadurkar, Manjare Anil S., Paithne Ajay N.
Abstract:
This paper proposes Intonation Modeling for Prosody generation in Neutral speech for Marathi (language spoken in Maharashtra, India) story telling applications. Nowadays audio story telling devices are very eminent for children. In this paper, we proposed tilt model for stressed words in Marathi for speech modification. Tilt model predicts modification in tone of neutral speech. GMM is used to identify stressed words for modification.Keywords: tilt model, fundamental frequency, statistical parametric speech synthesis, GMM
Procedia PDF Downloads 3922601 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows
Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid
Abstract:
Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil
Procedia PDF Downloads 1302600 Requirements Gathering for Improved Software Usability and the Potential for Usage-Centred Design
Authors: Kholod J. Alotaibi, Andrew M. Gravell
Abstract:
Usability is an important software quality that is often neglected at the design stage. Although methods exist to incorporate elements of usability engineering, there is a need for more balanced usability focused methods that can enhance the experience of software usability for users. In this regard, the potential for Usage-Centered Design is explored with respect to requirements gathering and is shown to lead to high software usability besides other benefits. It achieves this through its focus on usage, defining essential use cases, by conducting task modeling, encouraging user collaboration, refining requirements, and so on. The requirements gathering process in UgCD is described in detail.Keywords: requirements gathering, usability, usage-centred design, computer science
Procedia PDF Downloads 3582599 Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results
Authors: A. B. Bolkhir, A. Elshafie, T. K. Yousif
Abstract:
This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation.Keywords: finite element analysis (FEA), discretization error, round-off error, mesh refinement, richardson extrapolation, monotonic convergence
Procedia PDF Downloads 495