Search results for: Ravi Kumar Jatoth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1776

Search results for: Ravi Kumar Jatoth

456 Engineering Academics’ Strategies of Modelling Mathematical Concepts into Their Teaching of an Antenna Design

Authors: Vojo George Fasinu, Nadaraj Govender, Predeep Kumar

Abstract:

An Antenna, which remains the hub of technological development in Africa had been found to be a course that is been taught and designed in an abstract manner in some universities. One of the reasons attached to this is that the appropriate approach of teaching antenna design is not yet understood by many engineering academics in some universities in South Africa. Also, another problem reported is the main difficulty encountered when interpreting and applying some of the mathematical concepts learned into their practical antenna design course. As a result of this, some engineering experts classified antenna as a mysterious technology that could not be described by anybody using mathematical concepts. In view of this, this paper takes it as its point of departure in explaining what an antenna is all about with a strong emphasis on its mathematical modelling. It also argues that the place of modelling mathematical concepts into the teaching of engineering design cannot be overemphasized. Therefore, it explains the mathematical concepts adopted during the teaching of an antenna design course, the Strategies of modelling those mathematics concepts, the behavior of antennas, and their mathematics usage were equally discussed. More so, the paper also sheds more light on mathematical modelling in South Africa context, and also comparative analysis of mathematics concepts taught in mathematics class and mathematics concepts taught in engineering courses. This paper focuses on engineering academics teaching selected topics in electronic engineering (Antenna design), with special attention on the mathematical concepts they teach and how they teach them when teaching the course. A qualitative approach was adopted as a means of collecting data in order to report the naturalistic views of the engineering academics teaching Antenna design. The findings of the study confirmed that some mathematical concepts are being modeled into the teaching of an antenna design with the adoption of some teaching approaches. Furthermore, the paper reports a didactical-realistic mathematical model as a conceptual framework used by the researchers in describing how academics teach mathematical concepts during their teaching of antenna design. Finally, the paper concludes with the importance of mathematical modelling to the engineering academics and recommendations for further researchers.

Keywords: modelling, mathematical concepts, engineering, didactical, realistic model

Procedia PDF Downloads 184
455 Antioxidant, Antibacterial and Functional Group Analysis of Ethanolic Extract of Hylocereus undatus and Garcinia indica by Using Fourier Transform Infrared Spectroscopy

Authors: Ajay Krishnamurthy, Mariyappan Mahesh Kumar, Sellamuthu Periyar Selvam

Abstract:

Fruits are considered as functional foods due to the presence of various bioactive compounds available such as polyphenols, which are beneficial to health when consumed as part of our diet. The primary objective of this study was to analyze the various functional groups present in ethanolic extracts of Hylocereus undatus and Garcinia indica and also measure their antibacterial and antioxidant potential respectively thereby affirming its nutraceutical potential. To fulfill our objective, a Fourier - transform Infrared Spectroscopy (FTIR) was conducted for functional group analysis, Total Phenolic Content and DPPH free radical scavenging activity for measuring it anti-oxidant potential and agar-well diffusion assay for antibacterial potential. On careful observation and analysis of the spectrum it was found that both the fruit extracts contain similar compounds viz. Phenols, Alkanes, Alkenes, Aldehydes, Ketones, Carboxylic Acid and Amines. Total phenolic content of H.undatus and G.indica was estimated to be (26.85 ± 1.84 mg GAE/100g) and (32.84 ± 1.63 mg GAE/100g) respectively which corresponds to an inhibition of 84% and 81% respectively. H.undatus shows an inhibition of (3.4 ± 2.1mm) in gram-positive and (4.2 ± 2.24mm) in gram-negative organism on the other hand G.indica shows (2.1 ± 0.98mm) in gram-positive and (3.1 ± 1.44mm) in gram negative. The presence of such diverse compounds in the fruits helps us to understand the necessity for the inclusion of fruits in our daily diet and also helps the pharmaceutical industry in realizing the importance of exotic fruits as a potential nutraceutical.

Keywords: DPPH, fourier-transform infrared spectroscopy (FTIR), Hylocereus undatus, Garcinia indica

Procedia PDF Downloads 183
454 ABET Accreditation Process for Engineering and Technology Programs: Detailed Process Flow from Criteria 1 to Criteria 8

Authors: Amit Kumar, Rajdeep Chakrabarty, Ganesh Gupta

Abstract:

This paper illustrates the detailed accreditation process of Accreditation Board of Engineering and Technology (ABET) for accrediting engineering and Technology programs. ABET is a non-governmental agency that accredits engineering and technology, applied and natural sciences, and computing sciences programs. ABET was founded on 10th May 1932 and was founded by Institute of Electrical and Electronics Engineering. International industries accept ABET accredited institutes having the highest standards in their academic programs. In this accreditation, there are eight criteria in general; criterion 1 describes the student outcome evaluations, criteria 2 measures the program's educational objectives, criteria 3 is the student outcome calculated from the marks obtained by students, criteria 4 establishes continuous improvement, criteria 5 focus on curriculum of the institute, criteria 6 is about faculties of this institute, criteria 7 measures the facilities provided by the institute and finally, criteria 8 focus on institutional support towards staff of the institute. In this paper, we focused on the calculative part of each criterion with equations and suitable examples, the files and documentation required for each criterion, and the total workflow of the process. The references and the values used to illustrate the calculations are all taken from the samples provided at ABET's official website. In the final section, we also discuss the criterion-wise score weightage followed by evaluation with timeframe and deadlines.

Keywords: Engineering Accreditation Committee, Computing Accreditation Committee, performance indicator, Program Educational Objective, ABET Criterion 1 to 7, IEEE, National Board of Accreditation, MOOCS, Board of Studies, stakeholders, course objective, program outcome, articulation, attainment, CO-PO mapping, CO-PO-SO mapping, PDCA cycle, degree certificates, course files, course catalogue

Procedia PDF Downloads 59
453 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.

Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy

Procedia PDF Downloads 443
452 Expert System: Debugging Using MD5 Process Firewall

Authors: C. U. Om Kumar, S. Kishore, A. Geetha

Abstract:

An Operating system (OS) is software that manages computer hardware and software resources by providing services to computer programs. One of the important user expectations of the operating system is to provide the practice of defending information from unauthorized access, disclosure, modification, inspection, recording or destruction. Operating system is always vulnerable to the attacks of malwares such as computer virus, worm, Trojan horse, backdoors, ransomware, spyware, adware, scareware and more. And so the anti-virus software were created for ensuring security against the prominent computer viruses by applying a dictionary based approach. The anti-virus programs are not always guaranteed to provide security against the new viruses proliferating every day. To clarify this issue and to secure the computer system, our proposed expert system concentrates on authorizing the processes as wanted and unwanted by the administrator for execution. The Expert system maintains a database which consists of hash code of the processes which are to be allowed. These hash codes are generated using MD5 message-digest algorithm which is a widely used cryptographic hash function. The administrator approves the wanted processes that are to be executed in the client in a Local Area Network by implementing Client-Server architecture and only the processes that match with the processes in the database table will be executed by which many malicious processes are restricted from infecting the operating system. The add-on advantage of this proposed Expert system is that it limits CPU usage and minimizes resource utilization. Thus data and information security is ensured by our system along with increased performance of the operating system.

Keywords: virus, worm, Trojan horse, back doors, Ransomware, Spyware, Adware, Scareware, sticky software, process table, MD5, CPU usage and resource utilization

Procedia PDF Downloads 427
451 Maternal Health Care Utilization and Its Effect on Pregnancy Outcome in Nepal

Authors: Adrita Banerjee, Ajeet Kumar Singh

Abstract:

Antenatal care (ANC) from a skilled provider is important to monitor the pregnancy and reduce the risk of morbidity for mother and baby during pregnancy and delivery. The quality of antenatal care can be monitored through the content of services received and the kind of information mothers are given during their visit. Objective: The paper tries to examine the association between ANC check-ups and size/ birth weight. It also focuses on investigating the relationship between utilization of recommended prenatal care for mothers and its effect on infant survival in Nepal. Data and methods: This paper uses data from Nepal demographic Health Survey 2011. To understand the relationship bi-variate statistical analysis and logistic regressions has been done. Maternal health care utilization include ANC check-ups i.e. the type of ante-natal care providers, the number and timing of the visit. The various components of the check-ups include intake of iron tablets/syrups, intestinal parasitic drugs, etc. Results: The results show that women who had no antenatal care visits about 40% had small sized babies at the time of birth compared to women to had at least 3 ANC check up. Women who had at least 3 check-ups 17% of the babies have a small size. It has also been found that about 50 % of the women prefer ANC check-ups during pregnancies which have resulted in lowering the infant mortality by about 40% during 1996-2011. Conclusion: Ante natal care check is care and monitoring of the pregnant woman and her foetus throughout pregnancy. ANC checks have an effect on the infant health and child survival. A woman who had at least three check-ups the possibilities of adverse effect on infant health and infant survival was significantly lower. The findings argue for a more enhanced focus on ANC check-ups for improving the maternal and child health in Nepal.

Keywords: maternal, health, pregnancy, outcome

Procedia PDF Downloads 242
450 Measurements of Scattering Cross Sections for 5.895 keV Photons in Various Polymers

Authors: H. Duggal, G. Singh, G. Singh, A. Bhalla, S. Kumar, J. S. Shahi, D. Mehta

Abstract:

The total differential cross section for scattering of the 5.895 keV photons by various polymers has been measured at scattering angle of 135o. The experimental measurements were carried out using the energy dispersive setup involving annular source of the 55Fe radioisotope and a low energy germanium (LEGe) detector. The cross section values are measured for 20 polymer targets namely, Paraffin Wax, Polytetrafluoro ethylene (PTFE), Cellulose, Silicone oil, Polyvinyl alcohol (PVA), Polyvinyl purrolidone (PVP), Polymethyl methacrylate (PMMA), Kapton, Mylar, Chitosan, Polyvinyl chloride (PVC), Bakelite, Carbopol, Chlorobutyl rubber (CBR), Polyetylene glycol (PEG), Polysorbate-20, Nylon-6, Cetyl alcohol, Carboxyl methyl sodium cellulose and Sodium starch glucolate. The measurements were performed in vacuum so as to avoid scattering contribution due to air and strong absorption of low energy photons in the air column. In the present investigations, the geometrical factor and efficiency of the detector were determined by measuring the K x-rays emitted from the 22Ti and 23V targets excited by the Mn K x-rays in the same experimental set up. The measured scattering cross sections have been compared with the sum of theoretically calculated elastic and inelastic scattering cross sections. The theoretical elastic (Rayleigh) scattering cross sections based on the various form factor approximations, namely, non-relativistic form factor (NF), relativistic form factor (RF), modified form factor (MF), and MF with anomalous scattering factor (ASF) as well as the second order S-matrix formalisms, and the inelastic scattering differential cross sections based on the Klein-Nishina formula after including the inelastic scattering function (KN+ISF) have been calculated. The experimental results show fairly good agreement with theoretical cross sections.

Keywords: photon, polymers, elastic and inelastic, scattering cross sections

Procedia PDF Downloads 690
449 Assessing the Financial Potential of an Agroforestry-Based Farming Practice in a Labor Scarce Subsistence Economy

Authors: Arun Dhakal, Rajesh Kumar Rai

Abstract:

Agroforestry is long practiced in Nepal as a means of subsistence livelihoods. Given its potential to climate change mitigation, this practice is being recommended as a climate-smart farming practice in the recent years. However, the financial attractiveness of this practice is not well-documented in a labor scarce economy such as Nepal. This study attempts to examine the financial suitability of an agroforestry-based farming practice in the present socio-economic context of Nepal where labor is in short supply. A total of 200 households were randomly selected for household surveys in Dhanusha district during April to July 2015. Two farming practices were found to be dominant in the study area: 1) conventional farming (field crops only) in which at least two field crops are annually grown, and 2) agroforestry-based farming (agroforest, home garden and field crops combined) practice (ABFP). The ABFP was found to be less labor intensive than the conventional farming (137 Man days/yr/ha vs 218 Man days/yr/ha). The ex-ante financial analysis indicated that both the farming practices generated positive NPVs (Net Present Values) and B/C (Benefit-Cost) ratios greater than one, indicating both are financially attractive farming enterprises under the base discount rate of 12%. However, the ABFP generated higher NPV and greater B/C ratio than the conventional farming, indicating the former was financially more attractive than the later. The sensitivity analysis showed that the conventional farming was more sensitive to change in labor wage rate than that of the ABFP. Up to the 24% discount rate, the ABFP generated higher NPV and in case of B/C ratio, the ratio was found greater for ABFP even in 50% discount rate.

Keywords: agroforestry, benefit-cost analysis, conventional farming, net present value

Procedia PDF Downloads 133
448 Modelling Patient Condition-Based Demand for Managing Hospital Inventory

Authors: Esha Saha, Pradip Kumar Ray

Abstract:

A hospital inventory comprises of a large number and great variety of items for the proper treatment and care of patients, such as pharmaceuticals, medical equipment, surgical items, etc. Improper management of these items, i.e. stockouts, may lead to delay in treatment or other fatal consequences, even death of the patient. So, generally the hospitals tend to overstock items to avoid the risk of stockout which leads to unnecessary investment of money, difficulty in storing, more expiration and wastage, etc. Thus, in such challenging environment, it is necessary for hospitals to follow an inventory policy considering the stochasticity of demand in a hospital. Statistical analysis captures the correlation of patient condition based on bed occupancy with the patient demand which changes stochastically. Due to the dependency on bed occupancy, the markov model is developed that helps to map the changes in demand of hospital inventory based on the changes in the patient condition represented by the movements of bed occupancy states (acute care state, rehabilitative state and long-care state) during the length-of-stay of patient in a hospital. An inventory policy is developed for a hospital based on the fulfillment of patient demand with the objective of minimizing the frequency and quantity of placement of orders of inventoried items. The analytical structure of the model based on probability calculation is provided to show the optimal inventory-related decisions. A case-study is illustrated in this paper for the development of hospital inventory model based on patient demand for multiple inpatient pharmaceutical items. A sensitivity analysis is conducted to investigate the impact of inventory-related parameters on the developed optimal inventory policy. Therefore, the developed model and solution approach may help the hospital managers and pharmacists in managing the hospital inventory in case of stochastic demand of inpatient pharmaceutical items.

Keywords: bed occupancy, hospital inventory, markov model, patient condition, pharmaceutical items

Procedia PDF Downloads 323
447 Development of a Regression Based Model to Predict Subjective Perception of Squeak and Rattle Noise

Authors: Ramkumar R., Gaurav Shinde, Pratik Shroff, Sachin Kumar Jain, Nagesh Walke

Abstract:

Advancements in electric vehicles have significantly reduced the powertrain noise and moving components of vehicles. As a result, in-cab noises have become more noticeable to passengers inside the car. To ensure a comfortable ride for drivers and other passengers, it has become crucial to eliminate undesirable component noises during the development phase. Standard practices are followed to identify the severity of noises based on subjective ratings, but it can be a tedious process to identify the severity of each development sample and make changes to reduce it. Additionally, the severity rating can vary from jury to jury, making it challenging to arrive at a definitive conclusion. To address this, an automotive component was identified to evaluate squeak and rattle noise issue. Physical tests were carried out for random and sine excitation profiles. Aim was to subjectively assess the noise using jury rating method and objectively evaluate the same by measuring the noise. Suitable jury evaluation method was selected for the said activity, and recorded sounds were replayed for jury rating. Objective data sound quality metrics viz., loudness, sharpness, roughness, fluctuation strength and overall Sound Pressure Level (SPL) were measured. Based on this, correlation co-efficients was established to identify the most relevant sound quality metrics that are contributing to particular identified noise issue. Regression analysis was then performed to establish the correlation between subjective and objective data. Mathematical model was prepared using artificial intelligence and machine learning algorithm. The developed model was able to predict the subjective rating with good accuracy.

Keywords: BSR, noise, correlation, regression

Procedia PDF Downloads 79
446 Effect of Sodium Chloride Concentration and Degree of Neutralization on the Structure and Dynamics of Poly(Methacrylic Acid) (PMA) in Dilute Aqueous Solutions – a Molecular Dynamics Simulations Study

Authors: Abhishek Kumar Gupta

Abstract:

Atomistic Molecular Dynamics (MD) Simulations have been performed to study the effect of monovalent salt i.e. NaCl concentration (Cs) and chain degree of neutralization (f) on the structure and dynamics of anionic poly(methacrylic acid) (PMA) in dilute aqueous solutions. In the present study, the attention is to unveil the conformational structure, hydrogen-bonding, local polyion-counterion structure, h-bond dynamics, chain dynamics and thermodynamic enthalpy of solvation of a-PMA in dilute aqueous solutions as a function of salt concentration, Cs and f. The results have revealed that at low salt concentration, the conformational radius of gyration (Rg) increases and then decreases reaching a maximum in agreement with the reported light scattering experimental results. The Rg at f = 1 shows a continual decrease and acquire a plateau value at higher salt concentration in agreement with results obtained by light scattering experiments. The radial distribution functions between PMA, salt and water atoms has been computed with respect to atom and centre-of-mass to understand the intermolecular structure in detail. The results pertaining to PMA chain conformations and hydrogen bond autocorrelation function showcasing the h-bond dynamics will be presented. The results pertaining to chain dynamics will be presented. The results pertaining to counterion condensation on the PMA chain shows greater condensation of Na+ ions on to the carboxylate ions with increase in salt concentration. Moreover, the solvation enthalpy of the system as a function of salt concentration will be presented.

Keywords: conformations, molecular dynamics simulations, NaCl concentration, radial distribution functions

Procedia PDF Downloads 115
445 Role of Endotherapy vs Surgery in the Management of Traumatic Pancreatic Injury: A Tertiary Center Experience

Authors: Thinakar Mani Balusamy, Ratnakar S. Kini, Bharat Narasimhan, Venkateswaran A. R, Pugazhendi Thangavelu, Mohammed Ali, Prem Kumar K., Kani Sheikh M., Sibi Thooran Karmegam, Radhakrishnan N., Mohammed Noufal

Abstract:

Introduction: Pancreatic injury remains a complicated condition requiring an individualized case by case approach to management. In this study, we aim to analyze the varied presentations and treatment outcomes of traumatic pancreatic injury in a tertiary care center. Methods: All consecutive patients hospitalized at our center with traumatic pancreatic injury between 2013 and 2017 were included. The American Association for Surgery of Trauma (AAST) classification was used to stratify patients into five grades of severity. Outcome parameters were then analyzed based on the treatment modality employed. Results: Of the 35 patients analyzed, 26 had an underlying blunt trauma with the remaining nine presenting due to penetrating injury. Overall in-hospital mortality was 28%. 19 of these patients underwent exploratory laparotomy with the remaining 16 managed nonoperatively. Nine patients had a severe injury ( > grade 3) – of which four underwent endotherapy, three had stents placed and one underwent an endoscopic pseudocyst drainage. Among those managed nonoperatively, three underwent a radiological drainage procedure. Conclusion: Mortality rates were clearly higher in patients managed operatively. This is likely a result of significantly higher degrees of major associated non-pancreatic injuries and not just a reflection of surgical morbidity. Despite this, surgical management remains the mainstay of therapy, especially in higher grades of pancreatic injury. However we would like to emphasize that endoscopic intervention definitely remains the preferred treatment modality when the clinical setting permits. This is especially applicable in cases of main pancreatic duct injury with ascites as well as pseudocysts.

Keywords: endotherapy, non-operative management, surgery, traumatic pancreatic injury

Procedia PDF Downloads 207
444 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on

Authors: Mahesh Kumar Jat, Manisha Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: remote sensing, GIS, object based, classification

Procedia PDF Downloads 130
443 Injury Patterns and Outcomes in Alcohol Intoxicated Trauma Patients Admitted at Level I Apex Trauma Centre of a Developing Nation

Authors: G. Kaushik, A. Gupta, S. Lalwani, K. D. Soni, S. Kumar, S. Sagar

Abstract:

Objective: Alcohol is a leading risk factor associated with the disability and death due to RTI. Present study aims to demonstrate the demographic profile, injury pattern, physiological parameters of victims of trauma following alcohol consumption arriving in the emergency department (ED) and mortality in alcohol intoxicated trauma patients admitted to Apex Trauma Center in Delhi. Design and Methods: Present study was performed in randomly selected 182 alcohol breath analyzer tested RTI patients from the emergency department of Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences, New Delhi for over a period of 3 months started from September 2013 to November 2013. Results: A total 182 RTI patients with blunt injury were selected between 30-40 years of age and equally distributed to male and female group. Of these, 93 (51%) were alcohol negative and 89 (49%) were alcohol positive. In 89 alcohol positive patients, 47 (53%) had Artificial Airway as compared to 17 (18%), (p < 0.001) in the other group. The Glasgow Coma Scale (GCS) score was lower (p < 0.001) and higher Injury Severity Score (ISS) was observed in alcohol positive group as compared to other group (p < 0.03). Increased number of patients (58%) were admitted to Intensive Care Unit (ICU), in alcohol positive group (p < 0.001) and they were in ICU for longer time compare to other group (p < 0.001). The alcohol positive patients were on ventilator support for longer duration as compared to non-alcoholic group (p < 0.001). Mortality rate was higher in alcohol intoxicated patients as compared to non-alcoholic RTI patients, however, the difference was not statistically significant. Conclusion: This study revealed that GCS, mean ISS, ICU stay, ventilation time etc. might have considerable impact on mortality in alcohol intoxicated patients as compared to non-alcoholic group.

Keywords: road traffic injuries, alcohol, trauma, emergency department

Procedia PDF Downloads 317
442 Radiation Skin Decontamination Formulation

Authors: Navneet Sharma, Himanshu Ojha, Dharam Pal Pathak, Rakesh Kumar Sharma

Abstract:

Radio-nuclides decontamination is an important task because any extra second of deposition leads to deleterious health effects. We had developed and characterise nanoemulsion of p-tertbutylcalix[4]arens using phase inversion temperature (PIT) method and evaluate its decontamination efficacy (DE). The solubility of the drug was determined in various oils and surfactants. Nanoemulsion developed with an HLB value of 11 and different ratios of the surfactants 10% (7:3, w/w), oil (20%, w/w), and double distilled water (70%) were selected. Formulation was characterised by multi-photon spectroscopy and parameters like viscosity, droplet size distribution, zeta potential and stability were optimised. In vitro and Ex vivo decontamination efficacy (DE) was evaluated against Technetium-99m, Iodine-131, and Thallium-201 as radio-contaminants applied over skin of Sprague-Dawley rat and human tissue equivalent model. Contaminants were removed using formulation soaked in cotton swabs at different time intervals and whole body imaging and static counts were recorded using SPECT gamma camera before and after decontamination attempt. Data were analysed using one-way analysis of variance (ANOVA) and was found to be significant (p <0.05). DE of the nanoemulsion loaded with p-tertbutylcalix[4]arens was compared with placebo and recorded to be 88±5%, 90±3% and 89±3% for 99mTc, 131I and 201Tl respectively. Ex-vivo complexation study of p-tertbutylcalix[4]arene nanoemulsion with surrogate nuclides of radioactive thallium and Iodine, were performed on rat skin mounted on Franz diffusion cell using high-resolution sector field inductively coupled plasma mass spectroscopy (HR-SF-ICPMS). More than 90% complexation of the formulation with these nuclides was observed. Results demonstrate that the prepared nanoemulsion formulation was found efficacious for the decontamination of radionuclides from a large contaminated population.

Keywords: p-tertbutylcalix[4]arens, skin decontamination, radiological emergencies, nanoemulsion, iodine-131, thallium-201

Procedia PDF Downloads 399
441 Vulnerability Assessment of Vertically Irregular Structures during Earthquake

Authors: Pranab Kumar Das

Abstract:

Vulnerability assessment of buildings with irregularity in the vertical direction has been carried out in this study. The constructions of vertically irregular buildings are increasing in the context of fast urbanization in the developing countries including India. During two reconnaissance based survey performed after Nepal earthquake 2015 and Imphal (India) earthquake 2016, it has been observed that so many structures are damaged due to the vertically irregular configuration. These irregular buildings are necessary to perform safely during seismic excitation. Therefore, it is very urgent demand to point out the actual vulnerability of the irregular structure. So that remedial measures can be taken for protecting those structures during natural hazard as like earthquake. This assessment will be very helpful for India and as well as for the other developing countries. A sufficient number of research has been contributed to the vulnerability of plan asymmetric buildings. In the field of vertically irregular buildings, the effort has not been forwarded much to find out their vulnerability during an earthquake. Irregularity in vertical direction may be caused due to irregular distribution of mass, stiffness and geometrically irregular configuration. Detailed analysis of such structures, particularly non-linear/ push over analysis for performance based design seems to be challenging one. The present paper considered a number of models of irregular structures. Building models made of both reinforced concrete and brick masonry are considered for the sake of generality. The analyses are performed with both help of finite element method and computational method.The study, as a whole, may help to arrive at a reasonably good estimate, insight for fundamental and other natural periods of such vertically irregular structures. The ductility demand, storey drift, and seismic response study help to identify the location of critical stress concentration. Summarily, this paper is a humble step for understanding the vulnerability and framing up the guidelines for vertically irregular structures.

Keywords: ductility, stress concentration, vertically irregular structure, vulnerability

Procedia PDF Downloads 229
440 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers

Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash

Abstract:

Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.

Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system

Procedia PDF Downloads 419
439 Impact of Geomagnetic Variation over Sub-Auroral Ionospheric Region during High Solar Activity Year 2014

Authors: Arun Kumar Singh, Rupesh M. Das, Shailendra Saini

Abstract:

The present work is an attempt to evaluate the sub-auroral ionospheric behavior under changing space weather conditions especially during high solar activity year 2014. In view of this, the GPS TEC along with Ionosonde data over Indian permanent scientific base 'Maitri', Antarctica (70°46′00″ S, 11°43′56″ E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances mainly depended upon the status of high latitudinal electro-dynamic processes along with the season of occurrence. Fortunately, in this study, both negative and positive ionospheric impact to the geomagnetic disturbances has been observed in a single year but in different seasons. The study reveals that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibiting positive ionospheric response during the winter season. Other than this, some Ionosonde based new experimental evidence also provided clear evidence of particle precipitation deep up to the low altitudinal ionospheric heights, i.e., up to E-layer by the sudden and strong appearance of E-layer at 100 km altitudes. The sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO⁺ over O⁺ at a considered region under geomagnetic disturbed condition. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. The present study provided a good scientific insight on sub-auroral ionospheric to the changing space weather condition.

Keywords: high latitude ionosphere, space weather, geomagnetic storms, sub-storm

Procedia PDF Downloads 169
438 Studies on Climatic and Soil Site Suitability of Major Grapes-Growing Soils of Eastern and Southern Dry Zones of Karnataka

Authors: Harsha B. R., Anil Kumar K. S.

Abstract:

Climate and soils are the two most dynamic entities among the factors affecting growth and grapes productivity. Studying of prevailing climate over the years in a region provides sufficient information related to management practices to be carried out in vineyards. Evaluating the suitability of vineyard soils under different climatic conditions serves as the yardstick to analyse the performance of grapevines. This study was formulated to study the climate and evaluate the site-suitability of soils in vineyards of southern Karnataka, which has registered its superiority in the quality production of wine. Ten soil profiles were excavated for suitability evaluation of soils, and six taluks were studied for climatic analysis. In almost all the regions studied, recharge starts at the end of the May or June months, peaking in either September or October months. Soil Starts drying from mid of December months in the taluks studied. Bangalore North (Rajanukunte) soils were highly suited for grapes cultivation with no or slight limitations. Bangalore North (GKVK Farm) was moderately suited with slight to moderate limitations of slope and available nitrogen content. Moderate suitability was observed in the rest of the profiles studied in Eastern dry zone soils with the slight to moderate limitations of either organic carbon or available nitrogen or both in the Eastern dry zone. Magadi (Southern dry zone) soils were moderately suitable with slight to moderate limitations of graveliness, available nitrogen, organic carbon, and exchangeable sodium percentage. Sustainable performance of vineyards in terms of yield can be achieved in these taluks by managing the constraints existing in soils.

Keywords: climatic analysis, dry zone, water recharge, growing period, suitability, sustainability

Procedia PDF Downloads 124
437 A Feasibility Study of Waste (d) Potential: Synergistic Effect Evaluation by Co-digesting Organic Wastes and Kinetics of Biogas Production

Authors: Kunwar Paritosh, Sanjay Mathur, Monika Yadav, Paras Gandhi, Subodh Kumar, Nidhi Pareek, Vivekanand Vivekanand

Abstract:

A significant fraction of energy is wasted every year managing the biodegradable organic waste inadequately as development and sustainability are the inherent enemies. The management of these waste is indispensable to boost its optimum utilization by converting it to renewable energy resource (here biogas) through anaerobic digestion and to mitigate greenhouse gas emission. Food and yard wastes may prove to be appropriate and potential feedstocks for anaerobic co-digestion for biogas production. The present study has been performed to explore the synergistic effect of co-digesting food waste and yard trimmings from MNIT campus for enhanced biogas production in different ratios in batch tests (37±10C, 90 rpm, 45 days). The results were overwhelming and showed that blending two different organic waste in proper ratio improved the biogas generation considerably, with the highest biogas yield (2044±24 mLg-1VS) that was achieved at 75:25 of food waste to yard waste ratio on volatile solids (VS) basis. The yield was 1.7 and 2.2 folds higher than the mono-digestion of food or yard waste (1172±34, 1016±36mLg-1VS) respectively. The increase in biogas production may be credited to optimum C/N ratio resulting in higher yield. Also Adding TiO2 nanoparticles showed virtually no effect on biogas production as sometimes nanoparticles enhance biogas production. ICP-MS, FTIR analysis was carried out to gain an insight of feedstocks. Modified Gompertz and logistics models were applied for the kinetic study of biogas production where modified Gompertz model showed goodness-of-fit (R2=0.9978) with the experimental results.

Keywords: anaerobic co-digestion, biogas, kinetics, nanoparticle, organic waste

Procedia PDF Downloads 388
436 A Time and Frequency Dependent Study of Low Intensity Microwave Radiation Induced Endoplasmic Reticulum Stress and Alteration of Autophagy in Rat Brain

Authors: Ranjeet Kumar, Pravin Suryakantrao Deshmukh, Sonal Sharma, Basudev Banerjee

Abstract:

With the tremendous increase in exposure to radiofrequency microwaves emitted by mobile phones, globally public awareness has grown with regard to the potential health hazards of microwaves on the nervous system in the brain. India alone has more than one billion mobile users out of 4.3 billion globally. Our studies have suggested that radio frequency able to affect neuronal alterations in the brain, and hence, affecting cognitive behaviour. However, adverse effect of low-intensity microwave exposure with endoplasmic reticulum stress and autophagy has not been evaluated yet. In this study, we explore whether low-intensity microwave induces endoplasmic reticulum stress and autophagy with varying frequency and time duration in Wistar rat. Ninety-six male Wistar rat were divided into 12 groups of 8 rats each. We studied at 900 MHz, 1800 MHz, and 2450 MHz frequency with reference to sham-exposed group. At the end of the exposure, the rats were sacrificed to collect brain tissue and expression of CHOP, ATF-4, XBP-1, Bcl-2, Bax, LC3 and Atg-4 gene was analysed by real-time PCR. Significant fold change (p < 0.05) of gene expression was found in all groups of 1800 MHz and 2450 MHz exposure group in comparison to sham exposure group. In conclusion, the microwave exposure able to induce ER stress and modulate autophagy. ER (endoplasmic reticulum) stress and autophagy vary with increasing frequency as well as the duration of exposure. Our results suggested that microwave exposure is harmful to neuronal health as it induces ER stress and hampers autophagy in neuron cells and thereby increasing the neuron degeneration which impairs cognitive behaviour of experimental animals.

Keywords: autophagy, ER stress, microwave, nervous system, rat

Procedia PDF Downloads 131
435 Apoptosis Inducing Potential of Onosma Bracteata Wall. in Mg-63 Human Osteosarcoma Cells via cdk2/Cyclin E Pathway

Authors: Ajay Kumar, Satwinderjeet Kaur

Abstract:

Onosma bracteata Wall. (Boraginaceae), is known to be a medicinal plant, useful in the treatment of body swellings, abdominal pain and urinary calculi, etc. The present study focused on the radical scavenging and cancer growth inhibitory properties of isolates from O. bracteata. Obea fraction demonstrated noticeable free radical scavenging ability along with antiproliferative activity in human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung cancer A549 cell lines using MTT assay with GI50 values of 88.56, 101.61 and 112.7 μg/ml, respectively. The scanning electron and confocal microscopy studies showed morphological alterations including nuclear condensation and formation of apoptotic bodies in osteosarcoma MG-63 cells. Obea fraction in osteosarcoma MG-63 cells augmented the reactive oxygen species (ROS) level and decreased the mitochondrial membrane potential. Flow cytometry analysis revealed the Obea treated cells to be arrested in the G0/G1 phase in a dose dependent manner supported by the observed increase in the early apoptotic cell population. Western blotting analysis showed that the expression of p-NF-kB, COX-2, p-Akt, and Bcl-xL decreased whereas, the expression of GSK-3β, p53, caspase-3 and caspase-9 proteins increased. The downregulation of Bcl-2, Cyclin E, CDK2 and mortalin gene expression and upregulation of p53 genes was unfolded in RT-qPCR studies. The presence of catechin, kaempferol, Onosmin A and epicatechin, as revealed in high-performance liquid chromatography (HPLC) studies, contributes towards the chemopreventive potential of O. bracteata which can be tapped for chemotherapeutic use.

Keywords: apoptosis, confocal microscopy, HPLC, mitochondria membrane potential, reactive oxygen species

Procedia PDF Downloads 136
434 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics

Authors: Puneet Kumar, Jonnalagadda Srinivas

Abstract:

The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.

Keywords: hygrothermal effect, free vibration, buckling load, agglomeration

Procedia PDF Downloads 264
433 Numerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Study

Authors: Amit Kumar

Abstract:

Accurate identification of deteriorated air quality regions is very helpful in devising better environmental practices and mitigation efforts. In the present study, an attempt has been made to identify the air pollutant dispersion patterns especially NOX due to vehicular and industrial sources over a rapidly developing urban city, Visakhapatnam (17°42’ N, 83°20’ E), India, during April 2009. Using the emission factors of different vehicles as well as the industry, a high resolution 1 km x 1 km gridded emission inventory has been developed for Visakhapatnam city. A dispersion model AERMOD with explicit representation of planetary boundary layer (PBL) dynamics and offline coupled through a developed coupler mechanism with a high resolution mesoscale model WRF-ARW resolution for simulating the dispersion patterns of NOX is used in the work. The meteorological as well as PBL parameters obtained by employing two PBL schemes viz., non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) of WRF-ARW model, which are reasonably representing the boundary layer parameters are considered for integrating AERMOD. Significantly different dispersion patterns of NOX have been noticed between summer and winter months. The simulated NOX concentration is validated with available six monitoring stations of Central Pollution Control Board, India. Statistical analysis of model evaluated concentrations with the observations reveals that WRF-ARW of YSU scheme with AERMOD has shown better performance. The deteriorated air quality locations are identified over Visakhapatnam based on the validated model simulations of NOX concentrations. The present study advocates the utility of tNumerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Studyhe developed gridded emission inventory of NOX with coupled WRF-AERMOD modeling system for air quality assessment over the study region.

Keywords: WRF-ARW, AERMOD, planetary boundary layer, air quality

Procedia PDF Downloads 280
432 Achieving Appropriate Use of Antibiotics through Pharmacists’ Intervention at Practice Point: An Indian Study Report

Authors: Parimalakrishnan Sundararjan, Madheswaran Murugan, Dhanya Dharman, Yatindra Kumar, Sudhir Singh Gangwar, Guru Prasad Mohanta

Abstract:

Antibiotic resistance AR is a global issue, India started to redress the issues of antibiotic resistance late and it plans to have: active surveillance of microbial resistance and promote appropriate use of antibiotics. The present study attempted to achieve appropriate use of antibiotics through pharmacists’ intervention at practice point. In a quasi-experimental prospective cohort study, the cases with bacteremia from four hospitals were identified during 2015 and 2016 for intervention. The pharmacists centered intervention: active screening of each prescription and comparing with the selection of antibiotics with susceptibility of the bacteria. Wherever irrationality noticed, it was brought to the notice of the treating physician for making changes. There were two groups: intervention group and control group without intervention. The active screening and intervention in 915 patients has reduced therapeutic regimen time in patients with bacteremia. The intervention group showed the decreased duration of hospital stay 3.4 days from 5.1 days. Further, multivariate modeling of patients who were in control group showed that patients in the intervention group had a significant decrease in both duration of hospital stay and infection-related mortality. Unlike developed countries, pharmacists are not active partners in patient care in India. This unique attempt of pharmacist’ invention was planned in consultation with hospital authorities which proved beneficial in terms of reducing the duration of treatment, hospital stay, and infection-related mortality. This establishes the need for a collaborative decision making among the health workforce in patient care at least for promoting rational use of antibiotics, an attempt to combat resistance.

Keywords: antibiotics resistance, intervention, bacteremia, multivariate modeling

Procedia PDF Downloads 182
431 Effect of Tool Size and Cavity Depth on Response Characteristics during Electric Discharge Machining on Superalloy Metal - An Experimental Investigation

Authors: Sudhanshu Kumar

Abstract:

Electrical discharge machining, also known as EDM, process is one of the most applicable machining process for removal of material in hard to machine materials like superalloy metals. EDM process utilizes electrical energy into sparks to erode the metals in presence of dielectric medium. In the present investigation, superalloy, Inconel 718 has been selected as workpiece and electrolytic copper as tool electrode. Attempt has been made to understand the effect of size of tool with varying cavity depth during drilling of hole through EDM process. In order to systematic investigate, tool size in terms of tool diameter and cavity depth along with other important electrical parameters namely, peak current, pulse-on time and servo voltage have been varied at three different values and the experiments has been designed using fractional factorial (Taguchi) method. Each experiment has been repeated twice under the same condition in order to understand the variability within the experiments. The effect of variations in parameters has been evaluated in terms of material removal rate, tool wear rate and surface roughness. Results revel that change in tool diameter during machining affects the response characteristics significantly. Larger tool diameter yielded 13% more material removal rate than smaller tool diameter. Analysis of the effect of variation in cavity depth is notable. There is no significant effect of cavity depth on material removal rate, tool wear rate and surface quality. This indicates that number of experiments can be performed to analyze other parameters effect even at smaller depth of cavity which can reduce the cost and time of experiments. Further, statistical analysis has been carried out to identify the interaction effect between parameters.

Keywords: EDM, Inconel 718, material removal rate, roughness, tool wear, tool size

Procedia PDF Downloads 216
430 Eli-Twist Spun Yarn: An Alternative to Conventional Sewing Thread

Authors: Sujit Kumar Sinha, Madan Lal Regar

Abstract:

Sewing thread plays an important role in the transformation of a two-dimensional fabric into a three-dimensional garment. The interaction of the sewing thread with the fabric at the seam not only influences the appearance of a garment but also its performance. Careful selection of sewing thread and associated parameters can only help in improvement. Over the years, ring spinning has been dominating the yarn market. In the pursuit of improvement to challenge its dominance alternative technology has also been developed. But no real challenge has been posed by the any of the developed spinning systems. Eli-Twist spinning system can be a new method of yarn manufacture to provide a product with improved mechanical and physical properties with respect to the conventional ring spun yarn. The system, patented by Suessen has gained considerable attention in the recent times. The process of produces a two-ply compact yarn with improved fiber utilization. It produces a novel structure combining all advantages of condensing and doubling. In the present study, sewing threads of three different counts each from cotton, polyester and polyester/cotton (50/50) blend were produced on a ring and Eli-Twist systems. A twist multiplier of 4.2 was used to produce all the yarns. A comparison of hairiness, tensile strength and coefficient of friction with conventional ring yarn was made. Eli-Twist yarn has shown better frictional characteristics, better tensile strength and less hairiness. The performance of the Eli-Twist sewing thread has also been found to be better than the conventional 2-ply sewing thread. The performance was estimated through seam strength, seam elongation and seam efficiency of sewn fabric. Eli-Twist sewing thread has shown less friction, less hairiness, and higher tensile strength. Eli-Twist sewing thread resulted in better seam characteristics in comparison to conventional 2-ply sewing thread.

Keywords: ring spun yarn, Eli-Twist yarn, sewing thread, seam strength, seam elongation, seam efficiency

Procedia PDF Downloads 197
429 Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP

Authors: Diptiman Dinda, Shyamal Kumar Saha

Abstract:

In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution.

Keywords: graphene, functionalization, fluorescence quenching, FRET, nitroexplosive detection

Procedia PDF Downloads 440
428 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors

Procedia PDF Downloads 273
427 3D Numerical Studies and Design Optimization of a Swallowtail Butterfly with Twin Tail

Authors: Arunkumar Balamurugan, G. Soundharya Lakshmi, V. Thenmozhi, M. Jegannath, V. R. Sanal Kumar

Abstract:

Aerodynamics of insects is of topical interest in aeronautical industries due to its wide applications on various types of Micro Air Vehicles (MAVs). Note that the MAVs are having smaller geometric dimensions operate at significantly lower speeds on the order of 10 m/s and their Reynolds numbers range is approximately 1,50,000 or lower. In this paper, numerical study has been carried out to capture the flow physics of a biological inspired Swallowtail Butterfly with fixed wing having twin tail at a flight speed of 10 m/s. Comprehensive numerical simulations have been carried out on swallow butterfly with twin tail flying at a speed of 10 m/s with uniform upper and lower angles of attack in both lateral and longitudinal position for identifying the best wing orientation with better aerodynamic efficiency. Grid system in the computational domain is selected after a detailed grid refinement exercises. Parametric analytical studies have been carried out with different lateral and longitudinal angles of attack for finding the better aerodynamic efficiency at the same flight speed. The results reveal that lift coefficient significantly increases with marginal changes in the longitudinal angle and vice versa. But in the case of drag coefficient the conventional changes have been noticed, viz., drag increases at high longitudinal angles. We observed that the change of twin tail section has a significant impact on the formation of vortices and aerodynamic efficiency of the MAV’s. We concluded that for every lateral angle there is an exact longitudinal orientation for the existence of an aerodynamically efficient flying condition of any MAV. This numerical study is a pointer towards for the design optimization of Twin tail MAVs with flapping wings.

Keywords: aerodynamics of insects, MAV, swallowtail butterfly, twin tail MAV design

Procedia PDF Downloads 395