Search results for: LANDSAT images
1178 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images
Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.Keywords: defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets
Procedia PDF Downloads 4851177 Hazardous Vegetation Detection in Right-Of-Way Power Transmission Lines in Brazil Using Unmanned Aerial Vehicle and Light Detection and Ranging
Authors: Mauricio George Miguel Jardini, Jose Antonio Jardini
Abstract:
Transmission power utilities participate with kilometers of circuits, many with particularities in terms of vegetation growth. To control these rights-of-way, maintenance teams perform ground, and air inspections, and the identification method is subjective (indirect). On a ground inspection, when identifying an irregularity, for example, high vegetation threatening contact with the conductor cable, pruning or suppression is performed immediately. In an aerial inspection, the suppression team is mobilized to the identified point. This work investigates the use of 3D modeling of a transmission line segment using RGB (red, blue, and green) images and LiDAR (Light Detection and Ranging) sensor data. Both sensors are coupled to unmanned aerial vehicle. The goal is the accurate and timely detection of vegetation along the right-of-way that can cause shutdowns.Keywords: 3D modeling, LiDAR, right-of-way, transmission lines, vegetation
Procedia PDF Downloads 1311176 Post-Contrast Susceptibility Weighted Imaging vs. Post-Contrast T1 Weighted Imaging for Evaluation of Brain Lesions
Authors: Sujith Rajashekar Swamy, Meghana Rajashekara Swamy
Abstract:
Although T1-weighted gadolinium-enhanced imaging (T1-Gd) has its established clinical role in diagnosing brain lesions of infectious and metastatic origins, the use of post-contrast susceptibility-weighted imaging (SWI) has been understudied. This observational study aims to explore and compare the prominence of brain parenchymal lesions between T1-Gd and SWI-Gd images. A cross-sectional study design was utilized to analyze 58 patients with brain parenchymal lesions using T1-Gd and SWI-Gd scanning techniques. Our results indicated that SWI-Gd enhanced the conspicuity of metastatic as well as infectious brain lesions when compared to T1-Gd. Consequently, it can be used as an adjunct to T1-Gd for post-contrast imaging, thereby avoiding additional contrast administration. Improved conspicuity of brain lesions translates directly to enhanced patient outcomes, and hence SWI-Gd imaging proves useful to meet that endpoint.Keywords: susceptibility weighted, T1 weighted, brain lesions, gadolinium contrast
Procedia PDF Downloads 1281175 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 4781174 Prevention of Road Accidents by Computerized Drowsiness Detection System
Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan
Abstract:
This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety
Procedia PDF Downloads 1571173 Gender Moderates the Association Between Symbolization Trait (But Not Internalization Trait) and Smoking Behaviour
Authors: Kuay Hue San, Muaz Haqim Shaharum, Nasir Yusoff
Abstract:
Gender plays a big role in psychosocial development. This study aimed to investigate whether gender moderates the relationship between moral identity (internalization and symbolization) and risk-smoking behavior. An online cross-sectional study was carried out on 388 (61% female) youths who fulfilled the study’s inclusion and exclusion criteria. While viewing images of smoking behavior, participants rated their emotional state, which ranged from unpleasant to pleasant. Participants were also asked to fill out the eight-item Moral Identity Scale and provide their socio-demographic information. Gender significantly moderated the relationship between symbolization and smoking behavior. However, the moderation effect was not shown by internalization Finding highlights the implication of gender on moral identity and smoking behavior and the importance of considering this in the public health intervention and program.Keywords: smoking behaviour, gender, emotion, moral identity
Procedia PDF Downloads 1071172 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics
Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin
Abstract:
Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.Keywords: convolutional neural networks, deep learning, shallow correctors, sign language
Procedia PDF Downloads 1001171 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment
Authors: Hae-Yeoun Lee
Abstract:
Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.Keywords: photomosaic, Euclidean distance, block matching, intensity adjustment
Procedia PDF Downloads 2781170 An Investigation of Direct and Indirect Geo-Referencing Techniques on the Accuracy of Points in Photogrammetry
Authors: F. Yildiz, S. Y. Oturanc
Abstract:
Advances technology in the field of photogrammetry replaces analog cameras with reflection on aircraft GPS/IMU system with a digital aerial camera. In this system, when determining the position of the camera with the GPS, camera rotations are also determined by the IMU systems. All around the world, digital aerial cameras have been used for the photogrammetry applications in the last ten years. In this way, in terms of the work done in photogrammetry it is possible to use time effectively, costs to be reduced to a minimum level, the opportunity to make fast and accurate. Geo-referencing techniques that are the cornerstone of the GPS / INS systems, photogrammetric triangulation of images required for balancing (interior and exterior orientation) brings flexibility to the process. Also geo-referencing process; needed in the application of photogrammetry targets to help to reduce the number of ground control points. In this study, the use of direct and indirect geo-referencing techniques on the accuracy of the points was investigated in the production of photogrammetric mapping.Keywords: photogrammetry, GPS/IMU systems, geo-referecing, digital aerial camera
Procedia PDF Downloads 4111169 Evaluation of Sensor Pattern Noise Estimators for Source Camera Identification
Authors: Benjamin Anderson-Sackaney, Amr Abdel-Dayem
Abstract:
This paper presents a comprehensive survey of recent source camera identification (SCI) systems. Then, the performance of various sensor pattern noise (SPN) estimators was experimentally assessed, under common photo response non-uniformity (PRNU) frameworks. The experiments used 1350 natural and 900 flat-field images, captured by 18 individual cameras. 12 different experiments, grouped into three sets, were conducted. The results were analyzed using the receiver operator characteristic (ROC) curves. The experimental results demonstrated that combining the basic SPN estimator with a wavelet-based filtering scheme provides promising results. However, the phase SPN estimator fits better with both patch-based (BM3D) and anisotropic diffusion (AD) filtering schemes.Keywords: sensor pattern noise, source camera identification, photo response non-uniformity, anisotropic diffusion, peak to correlation energy ratio
Procedia PDF Downloads 4411168 Preparation of Carbon Monoliths from PET Waste and Their Use in Solar Interfacial Water Evaporation
Authors: Andrea Alfaro Barajas, Arturo I. Martinez
Abstract:
3D photothermal structure of carbon was synthesized using PET bottles waste and sodium chloride through controlled carbonization. Characterization techniques such as X-ray photoelectron spectroscopy, X-ray diffraction, BET, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, spectrophotometry, and mechanical compression were carried out. The carbon showed physical integrity > 90%, an absorbance > 90% between 300-1000nm of the solar spectrum, and a high specific surface area from 450 to 620 m2/g. The X-ray was employed to examine the phase structure; the obtained pattern shows an amorphous material. A higher intensity of band D with respect to band G was confirmed by Raman Spectroscopy. C-OH, COOH, C-O, and C-C bonds were obtained from the deconvolution of the high-resolution C1s orbital. Macropores of 160 to 180µm and micropores of 0.5 to 2nm were observed by SEM and TEM images, respectively. Such combined characteristics of carbon confer efficient evaporation of water under 1 sun irradiation > 60%.Keywords: solar-absorber, carbon, water-evaporation, interfacial
Procedia PDF Downloads 1511167 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI
Authors: Hae-Yeoun Lee
Abstract:
Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering
Procedia PDF Downloads 3991166 An Improved Circulating Tumor Cells Analysis Method for Identifying Tumorous Blood Cells
Authors: Salvador Garcia Bernal, Chi Zheng, Keqi Zhang, Lei Mao
Abstract:
Circulating Tumor Cells (CTC) is used to detect tumoral cell metastases using blood samples of patients with cancer (lung, breast, etc.). Using an immunofluorescent method a three channel image (Red, Green, and Blue) are obtained. These set of images usually overpass the 11 x 30 M pixels in size. An aided tool is designed for imaging cell analysis to segmented and identify the tumorous cell based on the three markers signals. Our Method, it is cell-based (area and cell shape) considering each channel information and extracting and making decisions if it is a valid CTC. The system also gives information about number and size of tumor cells found in the sample. We present results in real-life samples achieving acceptable performance in identifying CTCs in short time.Keywords: Circulating Tumor Cells (CTC), cell analysis, immunofluorescent, medical image analysis
Procedia PDF Downloads 2141165 Application of Unmanned Aerial Vehicle in Urban Rail Transit Intelligent Inspection
Authors: Xinglu Nie, Feifei Tang, Chuntao Wei, Zhimin Ruan, Qianhong Zhu
Abstract:
Current method of manual-style inspection can not fully meet the requirement of the urban rail transit security in China. In this paper, an intelligent inspection method using unmanned aerial vehicle (UAV) is utilized. A series of orthophoto of rail transit monitored area was collected by UAV, image correction and registration were operated among multi-phase images, then the change detection was used to detect the changes, judging the engineering activities and human activities that may become potential threats to the security of urban rail. Not only qualitative judgment, but also quantitative judgment of changes in the security control area can be provided by this method, which improves the objectives and efficiency of the patrol results. The No.6 line of Chongqing Municipality was taken as an example to verify the validation of this method.Keywords: rail transit, control of protected areas, intelligent inspection, UAV, change detection
Procedia PDF Downloads 3691164 Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia
Authors: Ali A. Aldosari
Abstract:
Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region.Keywords: spatial analysis, geographical information system, change detection
Procedia PDF Downloads 4021163 Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields
Authors: Bing-Bing E. Goh
Abstract:
Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management.Keywords: winter wheat, remote sensing, crop monitoring, multivariate analysis
Procedia PDF Downloads 1611162 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats
Authors: S. Mohammadzadehmoghadam, Y. Dong
Abstract:
In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.Keywords: electrospinning, gelatin, silk fibroin, mechanical properties, nanocomposites
Procedia PDF Downloads 1561161 Nepal Himalaya: Status of Women, Politics, and Administration
Authors: Tulasi Acharya
Abstract:
The paper is a qualitative analysis of status of women and women in politics and administration in Nepal Himalaya. The paper reviews data of women in civil service and in administrative levels. Looking at the Nepali politics and administration from the social constructivist perspective, the paper highlights some social and cultural issues that have othered women as “second sex.” As the country is heading towards modernity, gender friendly approaches are being instituted. Although the data reflects on the progress on women’s status and on women’s political and administrative participation, the data is not enough to predict the democratic gender practices in political and administrative levels. The political and administrative culture of Nepal Himalaya should be changed by promoting gender practices and deconstructing gender images in administrative culture through representative bureaucracy and by introducing democratic policies.Keywords: politics, policy, administration, culture, women, Nepal, democracy
Procedia PDF Downloads 5371160 Monitoring of Rice Phenology and Agricultural Practices from Sentinel 2 Images
Authors: D. Courault, L. Hossard, V. Demarez, E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, F. Ruget
Abstract:
In the global change context, efficient management of the available resources has become one of the most important topics, particularly for sustainable crop development. Timely assessment with high precision is crucial for water resource and pest management. Rice cultivated in Southern France in the Camargue region must face a challenge, reduction of the soil salinity by flooding and at the same time reduce the number of herbicides impacting negatively the environment. This context has lead farmers to diversify crop rotation and their agricultural practices. The objective of this study was to evaluate this crop diversity both in crop systems and in agricultural practices applied to rice paddy in order to quantify the impact on the environment and on the crop production. The proposed method is based on the combined use of crop models and multispectral data acquired from the recent Sentinel 2 satellite sensors launched by the European Space Agency (ESA) within the homework of the Copernicus program. More than 40 images at fine spatial resolution (10m in the optical range) were processed for 2016 and 2017 (with a revisit time of 5 days) to map crop types using random forest method and to estimate biophysical variables (LAI) retrieved by inversion of the PROSAIL canopy radiative transfer model. Thanks to the high revisit time of Sentinel 2 data, it was possible to monitor the soil labor before flooding and the second sowing made by some farmers to better control weeds. The temporal trajectories of remote sensing data were analyzed for various rice cultivars for defining the main parameters describing the phenological stages useful to calibrate two crop models (STICS and SAFY). Results were compared to surveys conducted with 10 farms. A large variability of LAI has been observed at farm scale (up to 2-3m²/m²) which induced a significant variability in the yields simulated (up to 2 ton/ha). Observations on more than 300 fields have also been collected on land use. Various maps were elaborated, land use, LAI, flooding and sowing, and harvest dates. All these maps allow proposing a new typology to classify these paddy crop systems. Key phenological dates can be estimated from inverse procedures and were validated against ground surveys. The proposed approach allowed to compare the years and to detect anomalies. The methods proposed here can be applied at different crops in various contexts and confirm the potential of remote sensing acquired at fine resolution such as the Sentinel2 system for agriculture applications and environment monitoring. This study was supported by the French national center of spatial studies (CNES, funded by the TOSCA).Keywords: agricultural practices, remote sensing, rice, yield
Procedia PDF Downloads 2741159 Efficient Heuristic Algorithm to Speed Up Graphcut in Gpu for Image Stitching
Authors: Tai Nguyen, Minh Bui, Huong Ninh, Tu Nguyen, Hai Tran
Abstract:
GraphCut algorithm has been widely utilized to solve various types of computer vision problems. Its expensive computational cost encouraged many researchers to improve the speed of the algorithm. Recent works proposed schemes that work on parallel computing platforms such as CUDA. However, the problem of low convergence speed prevents the usage of GraphCut for real time applications. In this paper, we propose global suppression heuristic to boost the conver-gence process of the algorithm. A parallel implementation of GraphCut algorithm on CUDA designed for the image stitching problem is introduced. Our method achieves up to 3× time boost on the graph of size 80 × 480 compared to the best sequential GraphCut algorithm while achieving satisfactory stitched images, suitable for panorama applications. Our source code will be soon available for further research.Keywords: CUDA, graph cut, image stitching, texture synthesis, maxflow/mincut algorithm
Procedia PDF Downloads 1321158 Neuromarketing: Discovering the Somathyc Marker in the Consumer´s Brain
Authors: Mikel Alonso López, María Francisca Blasco López, Víctor Molero Ayala
Abstract:
The present study explains the somatic marker theory of Antonio Damasio, which indicates that when making a decision, the stored or possible future scenarios (future memory) images allow people to feel for a moment what would happen when they make a choice, and how this is emotionally marked. This process can be conscious or unconscious. The development of new Neuromarketing techniques such as functional magnetic resonance imaging (fMRI), carries a greater understanding of how the brain functions and consumer behavior. In the results observed in different studies using fMRI, the evidence suggests that the somatic marker and future memories influence the decision-making process, adding a positive or negative emotional component to the options. This would mean that all decisions would involve a present emotional component, with a rational cost-benefit analysis that can be performed later.Keywords: emotions, decision making, somatic marker, consumer´s brain
Procedia PDF Downloads 4031157 Application of Change Detection Techniques in Monitoring Environmental Phenomena: A Review
Authors: T. Garba, Y. Y. Babanyara, T. O. Quddus, A. K. Mukatari
Abstract:
Human activities make environmental parameters in order to keep on changing globally. While some changes are necessary and beneficial to flora and fauna, others have serious consequences threatening the survival of their natural habitat if these changes are not properly monitored and mitigated. In-situ assessments are characterized by many challenges due to the absence of time series data and sometimes areas to be observed or monitored are inaccessible. Satellites Remote Sensing provide us with the digital images of same geographic areas within a pre-defined interval. This makes it possible to monitor and detect changes of environmental phenomena. This paper, therefore, reviewed the commonly use changes detection techniques globally such as image differencing, image rationing, image regression, vegetation index difference, change vector analysis, principal components analysis, multidate classification, post-classification comparison, and visual interpretation. The paper concludes by suggesting the use of more than one technique.Keywords: environmental phenomena, change detection, monitor, techniques
Procedia PDF Downloads 2741156 Neural Style Transfer Using Deep Learning
Authors: Shaik Jilani Basha, Inavolu Avinash, Alla Venu Sai Reddy, Bitragunta Taraka Ramu
Abstract:
We can use the neural style transfer technique to build a picture with the same "content" as the beginning image but the "style" of the picture we've chosen. Neural style transfer is a technique for merging the style of one image into another while retaining its original information. The only change is how the image is formatted to give it an additional artistic sense. The content image depicts the plan or drawing, as well as the colors of the drawing or paintings used to portray the style. It is a computer vision programme that learns and processes images through deep convolutional neural networks. To implement software, we used to train deep learning models with the train data, and whenever a user takes an image and a styled image, the output will be as the style gets transferred to the original image, and it will be shown as the output.Keywords: neural networks, computer vision, deep learning, convolutional neural networks
Procedia PDF Downloads 951155 The Idea of Reputation in a Post-Truth Era
Authors: Karen Armstrong
Abstract:
This paper considers the importance of acquiring, cultivating, and protecting one’s personal online reputation in a post-truth era. Although the idea of the individual is essential psychological construct, the concept necessarily now includes our online reputation. The idea of this online reputation has expanded to become almost more important than any other factor in terms of our professional, social and psychological development. The discussion will first consider philosophical ideas of the self, followed by an examination of underlying concepts of perception and interpretation in a post-truth world. Then, the idea of the recent shift to a consideration of posted images, through words and photos, in the construction of self, will be discussed. Next, the relation between private personal life and exterior social life, including our reputation in a variety of realms will be addressed. This will include the adoption of specific strategies and behaviors, which facilitate accuracy, currency and necessary modifications with regard to our online reputation. Finally, specific ways in which we can negotiate the fluid dynamic between reputation, and inner and outer selves to optimum effect will conclude the discussion.Keywords: image, post-truth, privacy, reputation, surveillance
Procedia PDF Downloads 2541154 Musical Composition by Computer with Inspiration from Files of Different Media Types
Authors: Cassandra Pratt Romero, Andres Gomez de Silva Garza
Abstract:
This paper describes a computational system designed to imitate human inspiration during musical composition. The system is called MIS (Musical Inspiration Simulator). The MIS system is inspired by media to which human beings are exposed daily (visual, textual, or auditory) to create new musical compositions based on the emotions detected in said media. After building the system we carried out a series of evaluations with volunteer users who used MIS to compose music based on images, texts, and audio files. The volunteers were asked to judge the harmoniousness and innovation in the system's compositions. An analysis of the results points to the difficulty of computational analysis of the characteristics of the media to which we are exposed daily, as human emotions have a subjective character. This observation will direct future improvements in the system.Keywords: human inspiration, musical composition, musical composition by computer, theory of sensation and human perception
Procedia PDF Downloads 1831153 The Covid-19 Pandemic: Transmission, Misinformation, and Implications on Public Health
Authors: Jonathan De Rothewelle
Abstract:
A pandemic, such as that of COVID-19, can be a time of panic and stress; concerns about health supersede others such as work and leisure. With such concern comes the seeking of crucial information— information that, during a global health crisis, could mean the difference between life and death. Whether newspapers, cable news, or radio, media plays an important role in the transmission of medical information to the general public. Moreover, the news media in particular must uphold its obligation to the public to only disseminate factual, useful information. The circulation of misinformation, whether explicit or implicit, may profoundly impact global health. Using a discursive analytic framework founded in linguistics, the images and headlines of top coverage of COVID-19 from the most influential media outlets will be examined. Micro-analyses reveal what may be interpreted as evidence of sensationalism, which may be argued to a form of misinformation, and ultimately a departure from ethical media. Withdrawal from responsible reporting and publishing, expressly in times of epidemic, may cause further confusion and panic.Keywords: public health, pandemic, public education, media
Procedia PDF Downloads 1511152 Vieira Da Silva's Tiles at Universidade Federal Rural Do Rio de Janeiro: A Conservation and Restoration Project
Authors: Adriana Anselmo Oliveira
Abstract:
The present project showcases a tile work from the Franco-Portuguese artist Maria Helena Vieira da Silva (1908-1992). It is a set of 8 panels composed of figurative and geometric tiles, with extra tiles framing nearby doors and windows in a study room in the (UFRRJ, Universidade Federal Rural do Rio de Janeiro). The aforementioned work was created between 1942 and 1943, during the artist's 6 year exile in the Brazilian city. This one-of-a-kind tileset was designed and made by Vieira da Silva between 1942 and 1943. Over the years, several units were lost, which led to their replacement in the nineties. However, these replacements don't do justice to the original work of art. In 2007, a project was initiated to fully repair and maintain the set. Three panels are removed and restored, but the project is halted. To this day, the three fully restored panels remain in boxes. In 2016 a new restoration project is submitted by the (Faculdade de Belas Artes da Universidade de Lisboa) in collaboration with de (Fundacão Árpád Szenes-Vieira da Silva). There are many varied opinions on restoring and conserving older pieces of art, however, we have the moral duty to safeguard the original materials used by the artist along with the artists original vision and also to care for the future generations of students who will use the space in which the tile-work was inserted. Many tiles have been replaced by white tiles, tiles with a divergent colour pallet and technique, and in a few cases, the incorrect place or way around. These many factors make it increasingly difficult to maintain the artists original vision and destroy and chance of coherence within the artwork itself. The conservative technician cannot make new images to fill the empty spaces or mark the remaining images with their own creative input. with reliable photographic documentation that can provide us with the necessary vision to allow us to proceed with an accurate reconstruction, we have the obligation to proceed and return the piece of art to its true form, as in its current state, it is impossible to maintain its original glory. Using the information we have, we must find a way to differentiate the original tiles from the reconstructions in order to recreate and reclaim the original message from the artist. The objective of this project is to understand the significance of tiles in Vieira da Silva's art as well as the influence they had on the artist's pictorial language since the colour definition on tile work is vastly different from the painting process as the materials change during their merger. Another primary goal is to understand what the previous interventions achieved besides increasing the artworks durability. The main objective is to submit a proposal that can salvage the artist's visual intention and supports it for posteriority. In summary, this proposal goes further than the usual conservative interventions as it intends to recreate the original artistic worth, prioritising the aesthetics and keeping its soul alive.Keywords: Vieira da Silva, tiles, conservation, restoration
Procedia PDF Downloads 1541151 Current Applications of Artificial Intelligence (AI) in Chest Radiology
Authors: Angelis P. Barlampas
Abstract:
Learning Objectives: The purpose of this study is to inform briefly the reader about the applications of AI in chest radiology. Background: Currently, there are 190 FDA-approved radiology AI applications, with 42 (22%) pertaining specifically to thoracic radiology. Imaging findings OR Procedure details Aids of AI in chest radiology1: Detects and segments pulmonary nodules. Subtracts bone to provide an unobstructed view of the underlying lung parenchyma and provides further information on nodule characteristics, such as nodule location, nodule two-dimensional size or three dimensional (3D) volume, change in nodule size over time, attenuation data (i.e., mean, minimum, and/or maximum Hounsfield units [HU]), morphological assessments, or combinations of the above. Reclassifies indeterminate pulmonary nodules into low or high risk with higher accuracy than conventional risk models. Detects pleural effusion . Differentiates tension pneumothorax from nontension pneumothorax. Detects cardiomegaly, calcification, consolidation, mediastinal widening, atelectasis, fibrosis and pneumoperitoneum. Localises automatically vertebrae segments, labels ribs and detects rib fractures. Measures the distance from the tube tip to the carina and localizes both endotracheal tubes and central vascular lines. Detects consolidation and progression of parenchymal diseases such as pulmonary fibrosis or chronic obstructive pulmonary disease (COPD).Can evaluate lobar volumes. Identifies and labels pulmonary bronchi and vasculature and quantifies air-trapping. Offers emphysema evaluation. Provides functional respiratory imaging, whereby high-resolution CT images are post-processed to quantify airflow by lung region and may be used to quantify key biomarkers such as airway resistance, air-trapping, ventilation mapping, lung and lobar volume, and blood vessel and airway volume. Assesses the lung parenchyma by way of density evaluation. Provides percentages of tissues within defined attenuation (HU) ranges besides furnishing automated lung segmentation and lung volume information. Improves image quality for noisy images with built-in denoising function. Detects emphysema, a common condition seen in patients with history of smoking and hyperdense or opacified regions, thereby aiding in the diagnosis of certain pathologies, such as COVID-19 pneumonia. It aids in cardiac segmentation and calcium detection, aorta segmentation and diameter measurements, and vertebral body segmentation and density measurements. Conclusion: The future is yet to come, but AI already is a helpful tool for the daily practice in radiology. It is assumed, that the continuing progression of the computerized systems and the improvements in software algorithms , will redder AI into the second hand of the radiologist.Keywords: artificial intelligence, chest imaging, nodule detection, automated diagnoses
Procedia PDF Downloads 721150 N400 Investigation of Semantic Priming Effect to Symbolic Pictures in Text
Authors: Thomas Ousterhout
Abstract:
The purpose of this study was to investigate if incorporating meaningful pictures of gestures and facial expressions in short sentences of text could supplement the text with enough semantic information to produce and N400 effect when probe words incongruent to the picture were subsequently presented. Event-related potentials (ERPs) were recorded from a 14-channel commercial grade EEG headset while subjects performed congruent/incongruent reaction time discrimination tasks. Since pictures of meaningful gestures have been shown to be semantically processed in the brain in a similar manner as words are, it is believed that pictures will add supplementary information to text just as the inclusion of their equivalent synonymous word would. The hypothesis is that when subjects read the text/picture mixed sentences, they will process the images and words just like in face-to-face communication and therefore probe words incongruent to the image will produce an N400.Keywords: EEG, ERP, N400, semantics, congruency, facilitation, Emotiv
Procedia PDF Downloads 2581149 Damage Micromechanisms of Coconut Fibers and Chopped Strand Mats of Coconut Fibers
Authors: Rios A. S., Hild F., Deus E. P., Aimedieu P., Benallal A.
Abstract:
The damage micromechanisms of chopped strand mats manufactured by compression of Brazilian coconut fiber and coconut fibers in different external conditions (chemical treatment) were used in this study. Mechanical analysis testing uniaxial traction were used with Digital Image Correlation (DIC). The images captured during the tensile test in the coconut fibers and coconut fiber mats showed an uncertainty of measurement in order centipixels. The initial modulus (modulus of elasticity) and tensile strength decreased with increasing diameter for the four conditions of coconut fibers. The DIC showed heterogeneous deformation fields for coconut fibers and mats and the displacement fields showed the rupture process of coconut fiber. The determination of poisson’s ratio of the mat was performed through of transverse and longitudinal deformations found in the elastic region.Keywords: coconut fiber, mechanical behavior, digital image correlation, micromechanism
Procedia PDF Downloads 459