Search results for: GLCM texture features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4340

Search results for: GLCM texture features

3020 Load-Deflecting Characteristics of a Fabricated Orthodontic Wire with 50.6Ni 49.4Ti Alloy Composition

Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Peerapong Tua-Ngam

Abstract:

Aims: The objectives of this study was to determine the load-deflecting characteristics of a fabricated orthodontic wire with alloy composition of 50.6% (atomic weight) Ni and 49.4% (atomic weight) Ti and to compare the results with Ormco, a commercially available pre-formed NiTi orthodontic archwire. Materials and Methods: The ingots alloys with atomic weight ratio 50.6 Ni: 49.4 Ti alloy were used in this study. Three specimens were cut to have wire dimensions of 0.016 inch x0.022 inch. For comparison, a commercially available pre-formed NiTi archwire, Ormco, with dimensions of 0.016 inch x 0.022 inch was used. Three-point bending tests were performed at the temperature 36+1 °C using a Universal Testing Machine on the newly fabricated and commercial archwires to assess the characteristics of the load-deflection curve with loading and unloading forces. The loading and unloading features at the deflection points 0.25, 0.50, 0.75. 1.0, 1.25, and 1.5 mm were compared. Descriptive statistics was used to evaluate each variables, and independent t-test at p < 0.05 was used to analyze the mean differences between the two groups. Results: The load-deflection curve of the 50.6Ni: 49.4Ti wires exhibited the characteristic features of superelasticity. The curves at the loading and unloading slope of Ormco NiTi archwire were more parallel than the newly fabricated NiTi wires. The average deflection force of the 50.6Ni: 49.4Ti wire was 304.98 g and 208.08 g for loading and unloading, respectively. Similarly, the values were 358.02 g loading and 253.98 g for unloading of Ormco NiTi archwire. The interval difference forces between each deflection points were in the range 20.40-121.38 g and 36.72-92.82 g for the loading and unloading curve of 50.6Ni: 49.4Ti wire, respectively, and 4.08-157.08 g and 14.28-90.78 g for the loading and unloading curve of commercial wire, respectively. The average deflection force of the 50.6Ni: 49.4Ti wire was less than that of Ormco NiTi archwire, which could have been due to variations in the wire dimensions. Although a greater force was required for each deflection point of loading and unloading for the 50.6Ni: 49.4Ti wire as compared to Ormco NiTi archwire, the values were still within the acceptable limits to be clinically used in orthodontic treatment. Conclusion: The 50.6Ni: 49.4Ti wires presented the characteristics of a superelastic orthodontic wire. The loading and unloading force were also suitable for orthodontic tooth movement. These results serve as a suitable foundation for further studies in the development of new orthodontic NiTi archwires.

Keywords: 50.6 ni 49.4 Ti alloy wire, load deflection curve, loading and unloading force, orthodontic

Procedia PDF Downloads 303
3019 Novel Wound Healing Biodegradable Patch of Bioactive

Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari

Abstract:

The present research was aimed to develop a biodegradable dermal patch formulation for wound healing in a novel, sustained and systematic manner. The goal is to reduce the frequency of dressings with improved drug delivery and thereby enhance therapeutic performance. In present study optimized formulation was designed using component polymers and excipients (e.g. Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin) to impart significant folding endurance, elasticity and strength. Gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in suitable medium was mixed with stirring to gelatin mixture. With continued stirring to the mixture Curcumin was added in optimized ratio to get homogeneous dispersion. Polymers were dispersed with stirring in final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2C) and at room temperature (23 ± 2C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12 h and matched the biodegradation rate as drug release with correlation factor R2 > 0.9. The film based formulation developed shows promising results in terms of stability and release profiles.

Keywords: biodegradable, patch, bioactive, polymer

Procedia PDF Downloads 517
3018 Wadi Halfa Oolitic Ironstone Formation, Wadi Halfa and Argein Areas, North Sudan

Authors: Mutwakil Nafi, Abed Elaziz El Amein, Muna El Dawi, Khalafala Salih, Osma Elbahi, Abed Elhalim Abou

Abstract:

Recently a large deposit of oolitic iron ore of Late Carboniferous-Permotriassic-Lower Jurassic age was discovered in Wadi Halfa and Argein areas, North Sudan. It seems that the iron ore mineralization exists in the west and east bank of the River Nile of the study area that are found on the Egyptian-Sudanese border. The Carboniferous-Lower Jurassic age strata were covered by 67 sections and each section has been examined and carefully described. The iron-ore in Wadi Halfa occurs as oolitic ironstone and contained two horizons: (A) horizon and (B) horizon. Only horizon (A) was observed in southern Argein area. The texture of the ore is variable depending on the volume of the component. In thin sections the average of the ooids were ranged between 90% - 80%. The matrix varies between 10%-20% by volume and detritus quartz in other component my reach up to 30% by volume in sandy massive ore. Ooids size ranges from 0.2mm-1.00 mm on average in very coarse ooids may attend up to 1 mm in size. The matrix around the ooids is dominated by iron hydroxide, carbonate, fine and amorphous silica. The probable ore reserve estimate of 1.234 billion at a head grade of 41.29% Fe for the Wadi Halfa Oolitic Ironstone Formation. The iron ore shows higher content of phosphorus ranges from 6.15% to 0.16%, with mean 1.45%. The new technology Hatch–Ironstone Chloride Segregation (HICS) can be used to produce commercial-quality of iron and reduce phosphorus and silica to acceptable levels for steel industry. The development of infra structures and presence huge quantity of iron ore would make exploitation of the iron ore economic.

Keywords: HICS, Late Carboniferous age, oolitic iron ore, phosphorus

Procedia PDF Downloads 648
3017 Assessing Circularity Potentials and Customer Education to Drive Ecologically and Economically Effective Materials Design for Circular Economy - A Case Study

Authors: Mateusz Wielopolski, Asia Guerreschi

Abstract:

Circular Economy, as the counterargument to the ‘make-take-dispose’ linear model, is an approach that includes a variety of schools of thought looking at environmental, economic, and social sustainability. This, in turn, leads to a variety of strategies and often confusion when it comes to choosing the right one to make a circular transition as effective as possible. Due to the close interplay of circular product design, business model and social responsibility, companies often struggle to develop strategies that comply with all three triple-bottom-line criteria. Hence, to transition to circularity effectively, product design approaches must become more inclusive. In a case study conducted with the University of Bayreuth and the ISPO, we correlated aspects of material choice in product design, labeling and technological innovation with customer preferences and education about specific material and technology features. The study revealed those attributes of the consumers’ environmental awareness that directly translate into an increase of purchase power - primarily connected with individual preferences regarding sports activity and technical knowledge. Based on this outcome, we constituted a product development approach that incorporates the consumers’ individual preferences towards sustainable product features as well as their awareness about materials and technology. It allows deploying targeted customer education campaigns to raise the willingness to pay for sustainability. Next, we implemented the customer preference and education analysis into a circularity assessment tool that takes into account inherent company assets as well as subjective parameters like customer awareness. The outcome is a detailed but not cumbersome scoring system, which provides guidance for material and technology choices for circular product design while considering business model and communication strategy to the attentive customers. By including customer knowledge and complying with corresponding labels, companies develop more effective circular design strategies, while simultaneously increasing customers’ trust and loyalty.

Keywords: circularity, sustainability, product design, material choice, education, awareness, willingness to pay

Procedia PDF Downloads 201
3016 A Political-Economic Analysis of Next Generation EU Recovery Fund

Authors: Fernando Martín-Espejo, Christophe Crombez

Abstract:

This paper presents a political-economic analysis of the reforms introduced during the coronavirus crisis at the EU level with a special emphasis on the recovery fund Next Generation EU (NGEU). It also introduces a spatial model to evaluate whether the governmental features of the recovery fund can be framed inside the community method. Particularly, by evaluating the brake clause in the NGEU legislation, this paper analyses theoretically the political and legislative implications of the introduction of flexibility clauses in the EU decision-making process.

Keywords: EU, legislative procedures, spatial model, coronavirus

Procedia PDF Downloads 178
3015 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers

Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang

Abstract:

In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.

Keywords: centrality, patent coupling network, patent influence, social network analysis

Procedia PDF Downloads 54
3014 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 75
3013 Testing the Simplification Hypothesis in Constrained Language Use: An Entropy-Based Approach

Authors: Jiaxin Chen

Abstract:

Translations have been labeled as more simplified than non-translations, featuring less diversified and more frequent lexical items and simpler syntactic structures. Such simplified linguistic features have been identified in other bilingualism-influenced language varieties, including non-native and learner language use. Therefore, it has been proposed that translation could be studied within a broader framework of constrained language, and simplification is one of the universal features shared by constrained language varieties due to similar cognitive-physiological and social-interactive constraints. Yet contradicting findings have also been presented. To address this issue, this study intends to adopt Shannon’s entropy-based measures to quantify complexity in language use. Entropy measures the level of uncertainty or unpredictability in message content, and it has been adapted in linguistic studies to quantify linguistic variance, including morphological diversity and lexical richness. In this study, the complexity of lexical and syntactic choices will be captured by word-form entropy and pos-form entropy, and a comparison will be made between constrained and non-constrained language use to test the simplification hypothesis. The entropy-based method is employed because it captures both the frequency of linguistic choices and their evenness of distribution, which are unavailable when using traditional indices. Another advantage of the entropy-based measure is that it is reasonably stable across languages and thus allows for a reliable comparison among studies on different language pairs. In terms of the data for the present study, one established (CLOB) and two self-compiled corpora will be used to represent native written English and two constrained varieties (L2 written English and translated English), respectively. Each corpus consists of around 200,000 tokens. Genre (press) and text length (around 2,000 words per text) are comparable across corpora. More specifically, word-form entropy and pos-form entropy will be calculated as indicators of lexical and syntactical complexity, and ANOVA tests will be conducted to explore if there is any corpora effect. It is hypothesized that both L2 written English and translated English have lower entropy compared to non-constrained written English. The similarities and divergences between the two constrained varieties may provide indications of the constraints shared by and peculiar to each variety.

Keywords: constrained language use, entropy-based measures, lexical simplification, syntactical simplification

Procedia PDF Downloads 94
3012 Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light

Authors: Claudia L. Bianchi, Giuseppina Cerrato, Federico Galli, Federica Minozzi, Valentino Capucci

Abstract:

At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017.

Keywords: Ag-doped microsized TiO₂, eco-active ceramic, photocatalysis, digital coating

Procedia PDF Downloads 231
3011 Recognition of Tifinagh Characters with Missing Parts Using Neural Network

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.

Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN

Procedia PDF Downloads 335
3010 Managing and Marketing a Modern Art Museum in a Small Town: A Case Study on Odunpazarı Modern Museum

Authors: Mehmet Sinan Erguven

Abstract:

Modern art is relatively new but a popular area in Turkish art society. Modern art museums are mainly located in big cities like Istanbul and Ankara where cultural life is more dynamic. Odunpazarı Modern Museum (OMM) will open its doors on September 2019 and be the only modern art museum located in a small town in Turkey. OMM executives declare the mission of the museum as; art must go beyond the metropolises of the world, give a new lease of life to cities that make a difference with their cultural texture, and reach a greater audience through that expansion. So OMM will not only serve as a museum but a landmark for regenerating the city brand of Eskişehir like the Guggenheim in Bilbao. OMM is located in the Odunpazarı area, the heart of Eskişehir. Named after the historical timber market it once hosted, Odunpazarı is a nominated site for the UNESCO Intangible Cultural Heritage List, and is Eskişehir’s first area of settlement. This study focuses on the complex nature of opening a modern art museum in a small town. The management and marketing dynamics of OMM are discussed in the study. Content analysis technique is used on local and national news to display the perception differences before and after the opening of OMM. In depth interviews with the executives of the museum are conducted in order to enlighten the insights of opening a modern art museum in a small town. Early findings of the content analysis point out that, the comments on the national press are mostly positive. On the other hand, different views occur on the local press. The location OMM is constructed and grandness of the museum building are criticized by some of the local newspapers. OMM’s potential as a tourist attraction is agreed by most of the media. OMM executives stated the most challenging task as reaching the different target audiences on international, national and local levels. These early findings will be improved and compared shortly before and after the opening of the museum.

Keywords: management, marketing, Odunpazarı modern museum, small town

Procedia PDF Downloads 232
3009 About the Number of Fundamental Physical Interactions

Authors: Andrey Angorsky

Abstract:

In the article an issue about the possible number of fundamental physical interactions is studied. The theory of similarity on the dimensionless quantity as the damping ratio serves as the instrument of analysis. The structure with the features of Higgs field comes out from non-commutative expression for this ratio. The experimentally checked up supposition about the nature of dark energy is spoken out.

Keywords: damping ratio, dark energy, dimensionless quantity, fundamental physical interactions, Higgs field, non-commutative expression

Procedia PDF Downloads 141
3008 Google Translate: AI Application

Authors: Shaima Almalhan, Lubna Shukri, Miriam Talal, Safaa Teskieh

Abstract:

Since artificial intelligence is a rapidly evolving topic that has had a significant impact on technical growth and innovation, this paper examines people's awareness, use, and engagement with the Google Translate application. To see how familiar aware users are with the app and its features, quantitative and qualitative research was conducted. The findings revealed that consumers have a high level of confidence in the application and how far people they benefit from this sort of innovation and how convenient it makes communication.

Keywords: artificial intelligence, google translate, speech recognition, language translation, camera translation, speech to text, text to speech

Procedia PDF Downloads 155
3007 Design of Broadband Power Divider for 3G and 4G Applications

Authors: A. M. El-Akhdar, A. M. El-Tager, H. M. El-Hennawy

Abstract:

This paper presents a broadband power divider with equal power division ratio. Two sections of transmission line transformers based on coupled microstrip lines are applied to obtain broadband performance. In addition, design methodology is proposed for the novel structure. A prototype is designed, simulated to operate in the band from 2.1 to 3.8 GHz to fulfill the requirements of 3G and 4G applications. The proposed structure features reduced size and less resistors than other conventional techniques. Simulation verifies the proposed idea and design methodology.

Keywords: power dividers, coupled lines, microstrip, 4G applications

Procedia PDF Downloads 478
3006 A Semantic and Concise Structure to Represent Human Actions

Authors: Tobias Strübing, Fatemeh Ziaeetabar

Abstract:

Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.

Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis

Procedia PDF Downloads 126
3005 Artificial Intelligence and Development: The Missing Link

Authors: Driss Kettani

Abstract:

ICT4D actors are naturally attempted to include AI in the range of enabling technologies and tools that could support and boost the Development process, and to refer to these as AI4D. But, doing so, assumes that AI complies with the very specific features of ICT4D context, including, among others, affordability, relevance, openness, and ownership. Clearly, none of these is fulfilled, and the enthusiastic posture that AI4D is a natural part of ICT4D is not grounded and, to certain extent, does not serve the purpose of Technology for Development at all. In the context of Development, it is important to emphasize and prioritize ICT4D, in the national digital transformation strategies, instead of borrowing "trendy" waves of the IT Industry that are motivated by business considerations, with no specific care/consideration to Development.

Keywords: AI, ICT4D, technology for development, position paper

Procedia PDF Downloads 94
3004 Exploration of an Environmentally Friendly Form of City Development Combined with a River: An Example of a Four-Dimensional Analysis Based on the Expansion of the City of Jinan across the Yellow River

Authors: Zhaocheng Shang

Abstract:

In order to study the topic of cities crossing rivers, a Four-Dimensional Analysis Method consisting of timeline, X-axis, Y-axis, and Z-axis is proposed. Policies, plans, and their implications are summarized and researched along with the timeline. The X-axis is the direction which is parallel to the river. The research area was chosen because of its important connection function. It is proposed that more surface water network should be built because of the ecological orientation of the research area. And the analysis of groundwater makes it for sure that the proposal is feasible. After the blue water network is settled, the green landscape network which is surrounded by it could be planned. The direction which is transversal to the river (Y-axis) should run through the transportation axis so that the urban texture could stretch in an ecological way. Therefore, it is suggested that the work of the planning bureau and river bureau should be coordinated. The Z-axis research is on the section view of the river, especially on the Yellow River’s special feature of being a perched river. Based on water control safety demands, river parks could be constructed on the embankment buffer zone, whereas many kinds of ornamental trees could be used to build the buffer zone. City Crossing River is a typical case where we make use of landscaping to build a symbiotic relationship between the urban landscape architecture and the environment. The local environment should be respected in the process of city expansion. The planning order of "Benefit- Flood Control Safety" should be replaced by "Flood Control Safety - Landscape Architecture- People - Benefit".

Keywords: blue-green landscape network, city crossing river, four-dimensional analysis method, planning order

Procedia PDF Downloads 161
3003 Potential Use of Thymus mastichina L. Extract as a Natural Agent against Cheese Spoilage Microorganisms

Authors: Susana P. Dias, Andrea Gomes, Fernanda M. Ferreira, Marta F. Henriques

Abstract:

Thymus mastichina L. is an endogenous medicinal and aromatic plant of the Mediterranean flora. It has been used empirically over the years as a natural preservative in food. Nowadays, the antimicrobial activity of its bioactive compounds, such as essential oils and extracts, has been well recognized. The main purpose of this study was to evaluate the antimicrobial effect of Thymus mastichina ethanolic and aqueous extracts on pathogens and spoilage microorganisms present in cheese during ripening. The effect that the extract type and its concentration has on the development of Staphylococcus aureus, Escherichia coli, and Yarrowia lipolytica populations during 24 hours, was studied 'in vitro' using appropriate culture media. The results achieved evidenced the antimicrobial activity of T. mastichina extracts against the studied strains, and the concentration of 2 mg/mL (w/v) was selected and used directly on the cheese surface during ripening. In addition to the microbiological evaluation in terms of total aerobic bacteria, Enterobacteriaceae, yeasts (particularly Y. lipolytica) and molds, the treated cheeses physicochemical evaluation (humidity, aw, pH, colour, and texture) was also performed. The results were compared with cheeses with natamicyn (positive control) and without any treatment (negative control). The physicochemical evaluation showed that the cheeses treated with ethanolic extract of Thymus mastichina, except the fact that they lead to a faster water loss during ripening, did not present considerable differences when compared to controls. The study revealed an evident antimicrobial power of the extracts, although less effective than the one shown by the use of natamycin. For this reason, the improvement of the extraction methods and the adjustment of the extract concentrations will contribute to the use of T. mastichina as a healthier and eco-friendly alternative to natamycin, that is also more attractive from an economic point of view.

Keywords: antimicrobial activity, cheese, ethanolic extract, Thymus mastichina

Procedia PDF Downloads 175
3002 Evaluation of SCS-Curve Numbers and Runoff across Varied Tillage Methods

Authors: Umar Javed, Kristen Blann, Philip Adalikwu, Maryam Sahraei, John McMaine

Abstract:

The soil conservation service curve number (SCS-CN) is a widely used method to assess direct runoff depth based on specific rainfall events. “Actual” estimated runoff depth was estimated by subtracting the change in soil moisture from the depth of precipitation for each discrete rain event during the growing seasons from 2021 to 2023. Fields under investigation were situated in a HUC-12 watershed in southeastern South Dakota selected for a common soil series (Nora-Crofton complex and Moody-Nora complex) to minimize the influence of soil texture on soil moisture. Two soil moisture probes were installed from May 2021 to October 2023, with exceptions during planting and harvest periods. For each field, “Textbook” CN estimates were derived from the TR-55 table based on corresponding mapped land use land cover LULC class and hydrologic soil groups from web soil survey maps. The TR-55 method incorporated HSG and crop rotation within the study area fields. These textbook values were then compared to actual CN values to determine the impact of tillage practices on CN and runoff. Most fields were mapped as having a textbook C or D HSG, but the HSG of actual CNs was that of a B or C hydrologic group. Actual CNs were consistently lower than textbook CNs for all management practices, but actual CNs in conventionally tilled fields were the highest (and closest to textbook CNs), while actual CNs in no-till fields were the lowest. Preliminary results suggest that no-till practice reduces runoff compared to conventional till. This research highlights the need to use CNs that incorporate agricultural management to more accurately estimate runoff at the field and watershed scale.

Keywords: curve number hydrology, hydrologic soil groups, runoff, tillage practices

Procedia PDF Downloads 50
3001 NanoFrazor Lithography for advanced 2D and 3D Nanodevices

Authors: Zhengming Wu

Abstract:

NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam.

Keywords: nanofabrication, grayscale lithography, 2D materials device, nano-optics, photonics, spintronic circuits

Procedia PDF Downloads 72
3000 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 184
2999 Iranian Processed Cheese under Effect of Emulsifier Salts and Cooking Time in Process

Authors: M. Dezyani, R. Ezzati bbelvirdi, M. Shakerian, H. Mirzaei

Abstract:

Sodium Hexametaphosphate (SHMP) is commonly used as an Emulsifying Salt (ES) in process cheese, although rarely as the sole ES. It appears that no published studies exist on the effect of SHMP concentration on the properties of process cheese when pH is kept constant; pH is well known to affect process cheese functionality. The detailed interactions between the added phosphate, Casein (CN), and indigenous Ca phosphate are poorly understood. We studied the effect of the concentration of SHMP (0.25-2.75%) and holding time (0-20 min) on the textural and Rheological properties of pasteurized process Cheddar cheese using a central composite rotatable design. All cheeses were adjusted to pH 5.6. The meltability of process cheese (as indicated by the decrease in loss tangent parameter from small amplitude oscillatory rheology, degree of flow, and melt area from the Schreiber test) decreased with an increase in the concentration of SHMP. Holding time also led to a slight reduction in meltability. Hardness of process cheese increased as the concentration of SHMP increased. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is attributable to residual colloidal Ca phosphate, was shifted to lower pH values with increasing concentration of SHMP. The insoluble Ca and total and insoluble P contents increased as concentration of SHMP increased. The proportion of insoluble P as a percentage of total (indigenous and added) P decreased with an increase in ES concentration because of some of the (added) SHMP formed soluble salts. The results of this study suggest that SHMP chelated the residual colloidal Ca phosphate content and dispersed CN; the newly formed Ca-phosphate complex remained trapped within the process cheese matrix, probably by cross-linking CN. Increasing the concentration of SHMP helped to improve fat emulsification and CN dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.

Keywords: Iranian processed cheese, emulsifying salt, rheology, texture

Procedia PDF Downloads 433
2998 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 239
2997 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 162
2996 Great Art for Little Children - Games in School Education as Integration of Polish-Language, Eurhythmics, Artistic and Mathematical Subject Matter

Authors: Małgorzata Anna Karczmarzyk

Abstract:

Who is the contemporary child? What are his/her distinctive features making him/her different from earlier generations? And how to teach in the dissimilar social reality? These questions will constitute the key to my reflections on contemporary early school education. For, to my mind, games have become highly significant for the modern model of education. There arise publications and research employing games to increase competence both in business, tutoring, or coaching, as well as in academic education . Thanks to games students and subordinates can be taught such abilities as problem thinking, creativity, consistent fulfillment of goals, resourcefulness and skills of communication.

Keywords: games, art, children, school education, integration

Procedia PDF Downloads 856
2995 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for the balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.

Keywords: power spectral density, 3D EEG model, brain balancing, kNN

Procedia PDF Downloads 489
2994 Effects of Cellular Insulin Receptor Stimulators with Alkaline Water on Performance, Plasma Cholesterol, Glucose, Triglyceride Levels and Hatchability in Breeding Japanese Quail

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

Aim of this study is to determine the effects of cellular insulin receptor stimulators on performance, plasma glucose, high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol, triglyceride, triiodothyronine (T3) and thyroxine (T4) hormone levels, and incubation features in the breeding Japanese quails (Coturnix japonica). In the study, a total of 84 breeding quails was used, 6 weeks’ age, 24 are male and 60, female. Rations used in experiment are 2900 kcal/kg metabolic energy and 20% crude protein. Water pH is calibrated to 7.45. Ration and water were administered ad-libitum to the animals. As metformin source, metformin-HCl was used and as chrome resource, chromium picolinate was used. Trial groups were formed as control group (basal ration), metformin group (basal ration, added metformin at the level of feed of 20 mg/kg), and chromium picolinate (basal ration, added feed of 1500 ppb Cr) group. When regarded to the results of performance at the end of experiment, it is seen that live weight gain, feed consumption, egg weight, feed conversion ratio (Feed consumption/ egg weight), and egg production were affected at the significant level (p < 0.05). When the results are evaluated in terms of incubation features, hatchability and hatchability of fertile egg ratio were not affected from the treatments. Fertility ratio was significantly affected by metformin and chromium picolinate treatments and fertility rose at the significant level compared to control group (p < 0.05). According to results of experiment, plasma glucose level was not affected by metformin and chromium picolinate treatments. Plasma, total cholesterol, HDL, LDL, and triglyceride levels were significantly affected from insulin receptor stimulators added to ration (p < 0.05). Hormone level of Plasma T3 and T4 were also affected at the significant level from insulin receptor stimulators added to ration (p < 0.05).

Keywords: chromium picolinate, cholesterol, hormone, metformin, quail

Procedia PDF Downloads 220
2993 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA

Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell

Abstract:

Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.

Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis

Procedia PDF Downloads 231
2992 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis

Authors: H. Jung, N. Kim, B. Kang, J. Choe

Abstract:

History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.

Keywords: history matching, principal component analysis, reservoir modelling, support vector machine

Procedia PDF Downloads 160
2991 Automatic Checkpoint System Using Face and Card Information

Authors: Kriddikorn Kaewwongsri, Nikom Suvonvorn

Abstract:

In the deep south of Thailand, checkpoints for people verification are necessary for the security management of risk zones, such as official buildings in the conflict area. In this paper, we propose an automatic checkpoint system that verifies persons using information from ID cards and facial features. The methods for a person’s information abstraction and verification are introduced based on useful information such as ID number and name, extracted from official cards, and facial images from videos. The proposed system shows promising results and has a real impact on the local society.

Keywords: face comparison, card recognition, OCR, checkpoint system, authentication

Procedia PDF Downloads 321