Search results for: teaching-learning based optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30006

Search results for: teaching-learning based optimization

28716 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices

Authors: S. Srinivasan, E. Cretu

Abstract:

The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.

Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape

Procedia PDF Downloads 137
28715 Evidence Theory Based Emergency Multi-Attribute Group Decision-Making: Application in Facility Location Problem

Authors: Bidzina Matsaberidze

Abstract:

It is known that, in emergency situations, multi-attribute group decision-making (MAGDM) models are characterized by insufficient objective data and a lack of time to respond to the task. Evidence theory is an effective tool for describing such incomplete information in decision-making models when the expert and his knowledge are involved in the estimations of the MAGDM parameters. We consider an emergency decision-making model, where expert assessments on humanitarian aid from distribution centers (HADC) are represented in q-rung ortho-pair fuzzy numbers, and the data structure is described within the data body theory. Based on focal probability construction and experts’ evaluations, an objective function-distribution centers’ selection ranking index is constructed. Our approach for solving the constructed bicriteria partitioning problem consists of two phases. In the first phase, based on the covering’s matrix, we generate a matrix, the columns of which allow us to find all possible partitionings of the HADCs with the service centers. Some constraints are also taken into consideration while generating the matrix. In the second phase, based on the matrix and using our exact algorithm, we find the partitionings -allocations of the HADCs to the centers- which correspond to the Pareto-optimal solutions. For an illustration of the obtained results, a numerical example is given for the facility location-selection problem.

Keywords: emergency MAGDM, q-rung orthopair fuzzy sets, evidence theory, HADC, facility location problem, multi-objective combinatorial optimization problem, Pareto-optimal solutions

Procedia PDF Downloads 92
28714 Tuned Mass Damper Vibration Control of Pedestrian Bridge

Authors: Qinglin Shu

Abstract:

Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe.

Keywords: pedestrian bridges, human-induced vibration, comfort, tuned mass dampers

Procedia PDF Downloads 114
28713 Concentrated Whey Protein Drink with Orange Flavor: Protein Modification and Formulation

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh

Abstract:

The application of whey protein in drink industry to enhance the nutritional value of the products is important. Furthermore, the gelification of protein during thermal treatment and shelf life makes some limitations in its application. So, the main goal of this research is manufacturing of high concentrate whey protein orange drink with appropriate shelf life. In this way, whey protein was 5 to 30% hydrolyzed ( in 5 percent intervals at six stages), then thermal stability of samples with 10% concentration of protein was tested in acidic condition (T= 90 °C, pH=4.2, 5 minutes ) and neutral condition (T=120° C, pH:6.7, 20 minutes.) Furthermore, to study the shelf life of heat treated samples in 4 months at 4 and 24 °C, the time sweep rheological test were done. At neutral conditions, 5 to 20% hydrolyzed sample showed gelling during thermal treatment, whereas at acidic condition, was happened only in 5 to 10 percent hydrolyzed samples. This phenomenon could be related to the difference in hydrodynamic radius and zeta potential of samples with different level of hydrolyzation at acidic and neutral conditions. To study the gelification of heat resistant protein solutions during shelf life, for 4 months with 7 days intervals, the time sweep analysis were performed. Cross over was observed for all heat resistant neutral samples at both storage temperature, while in heat resistant acidic samples with degree of hydrolysis, 25 and 30 percentage at 4 and 20 °C, it was not seen. It could be concluded that the former sample was stable during heat treatment and 4 months storage, which made them a good choice for manufacturing high protein drinks. The Scheffe polynomial model and numerical optimization were employed for modeling and high protein orange drink formula optimization. Scheffe model significantly predicted the overal acceptance index (Pvalue<0.05) of sensorial analysis. The coefficient of determination (R2) of 0.94, the adjusted coefficient of determination (R2Adj) of 0.90, insignificance of the lack-of-fit test and F value of 64.21 showed the accuracy of the model. Moreover, the coefficient of variable (C.V) was 6.8% which suggested the replicability of the experimental data. The desirability function had been achieved to be 0.89, which indicates the high accuracy of optimization. The optimum formulation was found as following: Modified whey protein solution (65.30%), natural orange juice (33.50%), stevia sweetener (0.05%), orange peel oil (0.15%) and citric acid (1 %), respectively. Its worth mentioning that this study made an appropriate model for application of whey protein in drink industry without bitter flavor and gelification during heat treatment and shelf life.

Keywords: croos over, orange beverage, protein modification, optimization

Procedia PDF Downloads 62
28712 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

Abstract:

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: steepest descent, line search, iteration, running time, unconstrained optimization, convergence

Procedia PDF Downloads 540
28711 Scheduling Residential Daily Energy Consumption Using Bi-criteria Optimization Methods

Authors: Li-hsing Shih, Tzu-hsun Yen

Abstract:

Because of the long-term commitment to net zero carbon emission, utility companies include more renewable energy supply, which generates electricity with time and weather restrictions. This leads to time-of-use electricity pricing to reflect the actual cost of energy supply. From an end-user point of view, better residential energy management is needed to incorporate the time-of-use prices and assist end users in scheduling their daily use of electricity. This study uses bi-criteria optimization methods to schedule daily energy consumption by minimizing the electricity cost and maximizing the comfort of end users. Different from most previous research, this study schedules users’ activities rather than household appliances to have better measures of users’ comfort/satisfaction. The relation between each activity and the use of different appliances could be defined by users. The comfort level is at the highest when the time and duration of an activity completely meet the user’s expectation, and the comfort level decreases when the time and duration do not meet expectations. A questionnaire survey was conducted to collect data for establishing regression models that describe users’ comfort levels when the execution time and duration of activities are different from user expectations. Six regression models representing the comfort levels for six types of activities were established using the responses to the questionnaire survey. A computer program is developed to evaluate electricity cost and the comfort level for each feasible schedule and then find the non-dominated schedules. The Epsilon constraint method is used to find the optimal schedule out of the non-dominated schedules. A hypothetical case is presented to demonstrate the effectiveness of the proposed approach and the computer program. Using the program, users can obtain the optimal schedule of daily energy consumption by inputting the intended time and duration of activities and the given time-of-use electricity prices.

Keywords: bi-criteria optimization, energy consumption, time-of-use price, scheduling

Procedia PDF Downloads 60
28710 Intelligent Control of Bioprocesses: A Software Application

Authors: Mihai Caramihai, Dan Vasilescu

Abstract:

The main research objective of the experimental bioprocess analyzed in this paper was to obtain large biomass quantities. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The reactor was equipped with pH, temperature, dissolved oxygen, and agitation controllers. The operating parameters were 37 oC, 1.2 atm, 250 rpm and air flow rate of 15 L/min. The main objective of this paper is to present a case study to demonstrate that intelligent control, describing the complexity of the biological process in a qualitative and subjective manner as perceived by human operator, is an efficient control strategy for this kind of bioprocesses. In order to simulate the bioprocess evolution, an intelligent control structure, based on fuzzy logic has been designed. The specific objective is to present a fuzzy control approach, based on human expert’ rules vs. a modeling approach of the cells growth based on bioprocess experimental data. The kinetic modeling may represent only a small number of bioprocesses for overall biosystem behavior while fuzzy control system (FCS) can manipulate incomplete and uncertain information about the process assuring high control performance and provides an alternative solution to non-linear control as it is closer to the real world. Due to the high degree of non-linearity and time variance of bioprocesses, the need of control mechanism arises. BIOSIM, an original developed software package, implements such a control structure. The simulation study has showed that the fuzzy technique is quite appropriate for this non-linear, time-varying system vs. the classical control method based on a priori model.

Keywords: intelligent, control, fuzzy model, bioprocess optimization

Procedia PDF Downloads 327
28709 Modeling Studies on the Elevated Temperatures Formability of Tube Ends Using RSM

Authors: M. J. Davidson, N. Selvaraj, L. Venugopal

Abstract:

The elevated temperature forming studies on the expansion of thin walled tubes have been studied in the present work. The influence of process parameters namely the die angle, the die ratio and the operating temperatures on the expansion of tube ends at elevated temperatures is carried out. The range of operating parameters have been identified by perfoming extensive simulation studies. The hot forming parameters have been evaluated for AA2014 alloy for performing the simulation studies. Experimental matrix has been developed from the feasible range got from the simulation results. The design of experiments is used for the optimization of process parameters. Response Surface Method’s (RSM) and Box-Behenken design (BBD) is used for developing the mathematical model for expansion. Analysis of variance (ANOVA) is used to analyze the influence of process parameters on the expansion of tube ends. The effect of various process combinations of expansion are analyzed through graphical representations. The developed model is found to be appropriate as the coefficient of determination value is very high and is equal to 0.9726. The predicted values are found to coincide well with the experimental results, within acceptable error limits.

Keywords: expansion, optimization, Response Surface Method (RSM), ANOVA, bbd, residuals, regression, tube

Procedia PDF Downloads 509
28708 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet

Procedia PDF Downloads 432
28707 An Optimized Approach to Generate the Possible States of Football Tournaments Final Table

Authors: Mouslem Damkhi

Abstract:

This paper focuses on possible states of a football tournament final table according to the number of participating teams. Each team holds a position in the table with which it is possible to determine the highest and lowest points for that team. This paper proposes an optimized search space based on the minimum and maximum number of points which can be gained by each team to produce and enumerate the possible states for a football tournament final table. The proposed search space minimizes producing the invalid states which cannot occur during a football tournament. The generated states are filtered by a validity checking algorithm which seeks to reach a tournament graph based on a generated state. Thus, the algorithm provides a way to determine which team’s wins, draws and loses values guarantee a particular table position. The paper also presents and discusses the experimental results of the approach on the tournaments with up to eight teams. Comparing with a blind search algorithm, our proposed approach reduces generating the invalid states up to 99.99%, which results in a considerable optimization in term of the execution time.

Keywords: combinatorics, enumeration, graph, tournament

Procedia PDF Downloads 122
28706 Modelling of Relocation and Battery Autonomy Problem on Electric Cars Sharing Dynamic by Using Discrete Event Simulation and Petri Net

Authors: Taha Benarbia, Kay W. Axhausen, Anugrah Ilahi

Abstract:

Electric car sharing system as ecologic transportation increasing in the world. The complexity of managing electric car sharing systems, especially one-way trips and battery autonomy have direct influence to on supply and demand of system. One must be able to precisely model the demand and supply of these systems to better operate electric car sharing and estimate its effect on mobility management and the accessibility that it provides in urban areas. In this context, our work focus to develop performances optimization model of the system based on discrete event simulation and stochastic Petri net. The objective is to search optimal decisions and management parameters of the system in order to fulfil at best demand while minimizing undesirable situations. In this paper, we present new model of electric cars sharing with relocation based on monitoring system. The proposed approach also help to precise the influence of battery charging level on the behaviour of system as important decision parameter of this complex and dynamical system.

Keywords: electric car-sharing systems, smart mobility, Petri nets modelling, discrete event simulation

Procedia PDF Downloads 183
28705 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 217
28704 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network

Authors: P. Singh, R. M. Banik

Abstract:

Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.

Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network

Procedia PDF Downloads 429
28703 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 111
28702 Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides

Authors: Josef Brychta, Jiri Kratochvil, Marek Pagac

Abstract:

The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness.

Keywords: grained cutting materials difficult to machine materials, optimum utilization, mechanic, manufacturing

Procedia PDF Downloads 300
28701 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design

Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez

Abstract:

Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.

Keywords: coffee waste, optimization, oil yield, statistical planning

Procedia PDF Downloads 119
28700 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty

Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus

Abstract:

Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.

Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming

Procedia PDF Downloads 179
28699 Optimization of Polymerase Chain Reaction Condition to Amplify Exon 9 of PIK3CA Gene in Preventing False Positive Detection Caused by Pseudogene Existence in Breast Cancer

Authors: Dina Athariah, Desriani Desriani, Bugi Ratno Budiarto, Abinawanto Abinawanto, Dwi Wulandari

Abstract:

Breast cancer is a regulated by many genes. Defect in PIK3CA gene especially at position of exon 9 (E542K and E545K), called hot spot mutation induce early transformation of breast cells. The early detection of breast cancer based on mutation profile of this hot spot region would be hampered by the existence of pseudogene, marked by its substitution mutation at base 1658 (E545A) and deletion at 1659 that have been previously proven in several cancers. To the best of the authors’ knowledge, until recently no studies have been reported about pseudogene phenomenon in breast cancer. Here, we reported PCR optimization to to obtain true exon 9 of PIK3CA gene from its pseudogene hence increasing the validity of data. Material and methods: two genomic DNA with Dev and En code were used in this experiment. Two pairs of primer were design for Standard PCR method. The size of PCR products for each primer is 200bp and 400bp. While other primer was designed for Nested-PCR followed with DNA sequencing method. For Nested-PCR, we optimized the annealing temperature in first and second run of PCR, and the PCR cycle for first run PCR (15x versus 25x). Result: standard PCR using both primer pairs designed is failed to detect the true PIK3CA gene, appearing a substitution mutation at 1658 and deletion at 1659 of PCR product in sequence chromatogram indicated pseudogene. Meanwhile, Nested-PCR with optimum condition (annealing temperature for the first round at 55oC, annealing temperatung for the second round at 60,7oC with 15x PCR cycles) and could detect the true PIK3CA gene. Dev sample were identified as WT while En sample contain one substitution mutation at position 545 of exon 9, indicating amino acid changing from E to K. For the conclusion, pseudogene also exists in breast cancer and the apllication of optimazed Nested-PCR in this study could detect the true exon 9 of PIK3CA gene.

Keywords: breast cancer, exon 9, hotspot mutation, PIK3CA, pseudogene

Procedia PDF Downloads 244
28698 Comprehensive Analysis and Optimization of Alkaline Water Electrolysis for Green Hydrogen Production: Experimental Validation, Simulation Study, and Cost Analysis

Authors: Umair Ahmed, Muhammad Bin Irfan

Abstract:

This study focuses on designing and optimization of an alkaline water electrolyser for the production of green hydrogen. The aim is to enhance the durability and efficiency of this technology while simultaneously reducing the cost associated with the production of green hydrogen. The experimental results obtained from the alkaline water electrolyser are compared with simulated results using Aspen Plus software, allowing a comprehensive analysis and evaluation. To achieve the aforementioned goals, several design and operational parameters are investigated. The electrode material, electrolyte concentration, and operating conditions are carefully selected to maximize the efficiency and durability of the electrolyser. Additionally, cost-effective materials and manufacturing techniques are explored to decrease the overall production cost of green hydrogen. The experimental setup includes a carefully designed alkaline water electrolyser, where various performance parameters (such as hydrogen production rate, current density, and voltage) are measured. These experimental results are then compared with simulated data obtained using Aspen Plus software. The simulation model is developed based on fundamental principles and validated against the experimental data. The comparison between experimental and simulated results provides valuable insight into the performance of an alkaline water electrolyser. It helps to identify the areas where improvements can be made, both in terms of design and operation, to enhance the durability and efficiency of the system. Furthermore, the simulation results allow cost analysis providing an estimate of the overall production cost of green hydrogen. This study aims to develop a comprehensive understanding of alkaline water electrolysis technology. The findings of this research can contribute to the development of more efficient and durable electrolyser technology while reducing the cost associated with this technology. Ultimately, these advancements can pave the way for a more sustainable and economically viable hydrogen economy.

Keywords: sustainable development, green energy, green hydrogen, electrolysis technology

Procedia PDF Downloads 90
28697 Long-Term Results of Coronary Bifurcation Stenting with Drug Eluting Stents

Authors: Piotr Muzyk, Beata Morawiec, Mariusz Opara, Andrzej Tomasik, Brygida Przywara-Chowaniec, Wojciech Jachec, Ewa Nowalany-Kozielska, Damian Kawecki

Abstract:

Background: Coronary bifurcation is one of the most complex lesion in patients with coronary ar-tery disease. Provisional T-stenting is currently one of the recommended techniques. The aim was to assess optimal methods of treatment in the era of drug-eluting stents (DES). Methods: The regis-try consisted of data from 1916 patients treated with coronary percutaneous interventions (PCI) using either first- or second-generation DES. Patients with bifurcation lesion entered the analysis. Major adverse cardiac and cardiovascular events (MACCE) were assessed at one year of follow-up and comprised of death, acute myocardial infarction (AMI), repeated PCI (re-PCI) of target ves-sel and stroke. Results: Of 1916 registry patients, 204 patients (11%) were diagnosed with bifurcation lesion >50% and entered the analysis. The most commonly used technique was provi-sional T-stenting (141 patients, 69%). Optimization with kissing-balloons technique was performed in 45 patients (22%). In 59 patients (29%) second-generation DES was implanted, while in 112 pa-tients (55%), first-generation DES was used. In 33 patients (16%) both types of DES were used. The procedure success rate (TIMI 3 flow) was achieved in 98% of patients. In one-year follow-up, there were 39 MACCE (19%) (9 deaths, 17 AMI, 16 re-PCI and 5 strokes). Provisional T-stenting resulted in similar rate of MACCE to other techniques (16% vs. 5%, p=0.27) and similar occurrence of re-PCI (6% vs. 2%, p=0.78). The results of post-PCI kissing-balloon technique gave equal out-comes with 3% vs. 16% of MACCE in patients in whom no optimization technique was used (p=0.39). The type of implanted DES (second- vs. first-generation) had no influence on MACCE (4% vs 14%, respectively, p=0.12) and re-PCI (1.7% vs. 51% patients, respectively, p=0.28). Con-clusions: The treatment of bifurcation lesions with PCI represent high-risk procedures with high rate of MACCE. Stenting technique, optimization of PCI and the generation of implanted stent should be personalized for each case to balance risk of the procedure. In this setting, the operator experience might be the factor of better outcome, which should be further investigated.

Keywords: coronary bifurcation, drug eluting stents, long-term follow-up, percutaneous coronary interventions

Procedia PDF Downloads 204
28696 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.

Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer

Procedia PDF Downloads 262
28695 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass

Authors: Xiang Zheng, Zhaoping Zhong

Abstract:

In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.

Keywords: biomass conversion, biofuel, process optimization, life cycle assessment

Procedia PDF Downloads 70
28694 Optimization Method of the Number of Berth at Bus Rapid Transit Stations Based on Passenger Flow Demand

Authors: Wei Kunkun, Cao Wanyang, Xu Yujie, Qiao Yuzhi, Liu Yingning

Abstract:

The reasonable design of bus parking spaces can improve the traffic capacity of the station and reduce traffic congestion. In order to reasonably determine the number of berths at BRT (Bus Rapid Transit) stops, it is based on the actual bus rapid transit station observation data, scheduling data, and passenger flow data. Optimize the number of station berths from the perspective of optimizing the balance of supply and demand at the site. Combined with the classical capacity calculation model, this paper first analyzes the important factors affecting the traffic capacity of BRT stops by using SPSS PRO and MATLAB programming software, namely the distribution of BRT stops and the distribution of BRT stop time. Secondly, the method of calculating the number of the classic human capital management (HCM) model is optimized based on the actual passenger demand of the station, and the method applicable to the actual number of station berths is proposed. Taking Gangding Station of Zhongshan Avenue Bus Rapid Transit Corridor in Guangzhou as an example, based on the calculation method proposed in this paper, the number of berths of sub-station 1, sub-station 2 and sub-station 3 is 2, which reduces the road space of the station by 33.3% compared with the previous berth 3 of each sub-station, and returns to social vehicles. Therefore, under the condition of ensuring the passenger flow demand of BRT stations, the road space of the station is reduced, and the road is returned to social vehicles, the traffic capacity of social vehicles is improved, and the traffic capacity and efficiency of the BRT corridor system are improved as a whole.

Keywords: urban transportation, bus rapid transit station, HCM model, capacity, number of berths

Procedia PDF Downloads 95
28693 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk

Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi

Abstract:

The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.

Keywords: daylight, window, orientation, energy consumption, design builder

Procedia PDF Downloads 234
28692 Using Building Information Modeling in Green Building Design and Performance Optimization

Authors: Moataz M. Hamed, Khalid S. M. Al Hagla, Zeyad El Sayad

Abstract:

Thinking in design energy-efficiency and high-performance green buildings require a different design mechanism and design approach than conventional buildings to achieve more sustainable result. By reasoning about specific issues at the correct time in the design process, the design team can minimize negative impacts, maximize building performance and keep both first and operation costs low. This paper attempts to investigate and exploit the sustainable dimension of building information modeling (BIM) in designing high-performance green buildings that require less energy for operation, emit less carbon dioxide and provide a conducive indoor environment for occupants through early phases of the design process. This objective was attained by a critical and extensive literature review that covers the following issues: the value of considering green strategies in the early design stage, green design workflow, and BIM-based performance analysis. Then the research proceeds with a case study that provides an in-depth comparative analysis of building performance evaluation between an office building in Alexandria, Egypt that was designed by the conventional design process with the same building if taking into account sustainability consideration and BIM-based sustainable analysis integration early through the design process. Results prove that using sustainable capabilities of building information modeling (BIM) in early stages of the design process side by side with green design workflow promote buildings performance and sustainability outcome.

Keywords: BIM, building performance analysis, BIM-based sustainable analysis, green building design

Procedia PDF Downloads 343
28691 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 460
28690 Modelling Water Usage for Farming

Authors: Ozgu Turgut

Abstract:

Water scarcity is a problem for many regions which requires immediate action, and solutions cannot be postponed for a long time. It is known that farming consumes a significant portion of usable water. Although in recent years, the efforts to make the transition to dripping or spring watering systems instead of using surface watering started to pay off. It is also known that this transition is not necessarily translated into an increase in the capacity dedicated to other water consumption channels such as city water or power usage. In order to control and allocate the water resource more purposefully, new watering systems have to be used with monitoring abilities that can limit the usage capacity for each farm. In this study, a decision support model which relies on a bi-objective stochastic linear optimization is proposed, which takes crop yield and price volatility into account. The model generates annual planting plans as well as water usage limits for each farmer in the region while taking the total value (i.e., profit) of the overall harvest. The mathematical model is solved using the L-shaped method optimally. The decision support model can be especially useful for regional administrations to plan next year's planting and water incomes and expenses. That is why not only a single optimum but also a set of representative solutions from the Pareto set is generated with the proposed approach.

Keywords: decision support, farming, water, tactical planning, optimization, stochastic, pareto

Procedia PDF Downloads 74
28689 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection

Authors: Kostas Metaxiotis, Kostas Liagkouras

Abstract:

This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.

Keywords: expert systems, multi-objective optimization, evolutionary algorithms, portfolio selection

Procedia PDF Downloads 439
28688 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution

Authors: S. Jayasinghe, R. B. N. Dissanayake

Abstract:

Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.

Keywords: mathematical model, network optimization, linear programming

Procedia PDF Downloads 346
28687 Optimization of Pumping Power of Water between Reservoir Using Ant Colony System

Authors: Thiago Ribeiro De Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite Asano

Abstract:

The area of the electricity sector that deals with energy needs by the hydropower and thermoelectric in a coordinated way is called Planning Operating Hydrothermal Power Systems. The aim of this area is to find a political operative to provide electrical power to the system in a specified period with minimization of operating cost. This article proposes a computational tool for solving the planning problem. In addition, this article will be introducing a methodology to find new transfer points between reservoirs increasing energy production in hydroelectric power plants cascade systems. The computational tool proposed in this article applies: i) genetic algorithms to optimize the water transfer and operation of hydroelectric plants systems; and ii) Ant Colony algorithm to find the trajectory with the least energy pumping for the construction of pipes transfer between reservoirs considering the topography of the region. The computational tool has a database consisting of 35 hydropower plants and 41 reservoirs, which are part of the southeastern Brazilian system, which has been implemented in an individualized way.

Keywords: ant colony system, genetic algorithms, hydroelectric, hydrothermal systems, optimization, water transfer between rivers

Procedia PDF Downloads 326