Search results for: regression analysis (RA)
28089 Linking Market Performance to Exploration and Exploitation in The Pharmaceutical Industry
Authors: Johann Valentowitsch, Wolfgang Burr
Abstract:
In organizational research, strategies of exploration and exploitation are often considered to be contradictory. Building on the tradeoff argument, many authors have assumed that a company's market performance should be positively dependent on its strategic balance between exploration and exploitation over time. In this study, we apply this reasoning to the pharmaceutical industry. Using exploratory regression analysis we show that the long-term market performance of a pharmaceutical company is linked to both its ability to carry out exploratory projects and its ability to develop exploitative competencies. In particular, our findings demonstrate that, on average, the company's annual sales performance is higher the better the strategic alignment between exploration and exploitation is balanced. The contribution of our research is twofold. On the one hand, we provide empirical evidence for the initial tradeoff hypothesis and thus support the theoretical position of those who understand exploration and exploitation as strategic substitutes. On the other hand, our findings show that a balanced relationship between exploration and exploitation is also important in research-intensive industries, which naturally tend to place more emphasis on exploration.Keywords: exploitation, exploration, market performance, pharmaceutical industry, strategy
Procedia PDF Downloads 22328088 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters
Authors: Trevor C. Brown, David J. Miron
Abstract:
Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics
Procedia PDF Downloads 23728087 Competing Risks Modeling Using within Node Homogeneity Classification Tree
Authors: Kazeem Adesina Dauda, Waheed Babatunde Yahya
Abstract:
To design a tree that maximizes within-node homogeneity, there is a need for a homogeneity measure that is appropriate for event history data with multiple risks. We consider the use of Deviance and Modified Cox-Snell residuals as a measure of impurity in Classification Regression Tree (CART) and compare our results with the results of Fiona (2008) in which homogeneity measures were based on Martingale Residual. Data structure approach was used to validate the performance of our proposed techniques via simulation and real life data. The results of univariate competing risk revealed that: using Deviance and Cox-Snell residuals as a response in within node homogeneity classification tree perform better than using other residuals irrespective of performance techniques. Bone marrow transplant data and double-blinded randomized clinical trial, conducted in other to compare two treatments for patients with prostate cancer were used to demonstrate the efficiency of our proposed method vis-à-vis the existing ones. Results from empirical studies of the bone marrow transplant data showed that the proposed model with Cox-Snell residual (Deviance=16.6498) performs better than both the Martingale residual (deviance=160.3592) and Deviance residual (Deviance=556.8822) in both event of interest and competing risks. Additionally, results from prostate cancer also reveal the performance of proposed model over the existing one in both causes, interestingly, Cox-Snell residual (MSE=0.01783563) outfit both the Martingale residual (MSE=0.1853148) and Deviance residual (MSE=0.8043366). Moreover, these results validate those obtained from the Monte-Carlo studies.Keywords: within-node homogeneity, Martingale residual, modified Cox-Snell residual, classification and regression tree
Procedia PDF Downloads 27628086 Applying Miniaturized near Infrared Technology for Commingled and Microplastic Waste Analysis
Authors: Monika Rani, Claudio Marchesi, Stefania Federici, Laura E. Depero
Abstract:
Degradation of the aquatic environment by plastic litter, especially microplastics (MPs), i.e., any water-insoluble solid plastic particle with the longest dimension in the range 1µm and 1000 µm (=1 mm) size, is an unfortunate indication of the advancement of the Anthropocene age on Earth. Microplastics formed due to natural weathering processes are termed as secondary microplastics, while when these are synthesized in industries, they are called primary microplastics. Their presence from the highest peaks to the deepest points in oceans explored and their resistance to biological and chemical decay has adversely affected the environment, especially marine life. Even though the presence of MPs in the marine environment is well-reported, a legitimate and authentic analytical technique to sample, analyze, and quantify the MPs is still under progress and testing stages. Among the characterization techniques, vibrational spectroscopic techniques are largely adopted in the field of polymers. And the ongoing miniaturization of these methods is on the way to revolutionize the plastic recycling industry. In this scenario, the capability and the feasibility of a miniaturized near-infrared (MicroNIR) spectroscopy combined with chemometrics tools for qualitative and quantitative analysis of urban plastic waste collected from a recycling plant and microplastic mixture fragmented in the lab were investigated. Based on the Resin Identification Code, 250 plastic samples were used for macroplastic analysis and to set up a library of polymers. Subsequently, MicroNIR spectra were analysed through the application of multivariate modelling. Principal Components Analysis (PCA) was used as an unsupervised tool to find trends within the data. After the exploratory PCA analysis, a supervised classification tool was applied in order to distinguish the different plastic classes, and a database containing the NIR spectra of polymers was made. For the microplastic analysis, the three most abundant polymers in the plastic litter, PE, PP, PS, were mechanically fragmented in the laboratory to micron size. The distinctive arrangement of blends of these three microplastics was prepared in line with a designed ternary composition plot. After the PCA exploratory analysis, a quantitative model Partial Least Squares Regression (PLSR) allowed to predict the percentage of microplastics in the mixtures. With a complete dataset of 63 compositions, PLS was calibrated with 42 data-points. The model was used to predict the composition of 21 unknown mixtures of the test set. The advantage of the consolidated NIR Chemometric approach lies in the quick evaluation of whether the sample is macro or micro, contaminated, coloured or not, and with no sample pre-treatment. The technique can be utilized with bigger example volumes and even considers an on-site evaluation and in this manner satisfies the need for a high-throughput strategy.Keywords: chemometrics, microNIR, microplastics, urban plastic waste
Procedia PDF Downloads 16828085 A Study on the Impact of Employment Status of the Elderly on Their Mental Well-Being in India
Authors: Santosh B. Phad, Priyanka V. Janbandhu, Dhananjay W. Bansod
Abstract:
Population Ageing is a growing concern for the social scientists. There is a higher level of aged male participation compared to elderly females. Now, the critical question is whether participation in work improves the quality of life among the elderly and the impact of working status on the mental well-being of the elderly. While examining these research questions, the present paper focuses on the workforce participation of the elderly and the reasons behind it, additionally, determines the association between employment status and the mental well-being of the elderly. The present study has a base of two data sources. First one is Census of India data, 2001 and 2011, and another one is – the Study on Global Ageing and Adult Health (SAGE), a survey conducted in 2007. To capture the trend of workforce participation elderly Census data is significant and to obtain other information associated with this issue the SAGE data is studied. The research piece consists of univariate and bivariate analysis along with some statistical methods like principal component analysis (PCA) and regression modeling – to investigate the association between workforce participation of elderly and subjective well-being (SWB). The results show that the percentage of elderly participating in the labor market is gradually reducing, but the share of working elderly has increased within the group of overall workers. i.e., the ratio of aged workers to non-aged workers is rising. The findings from survey data specify that there is a considerable share of the elderly in the labor market; three-fourths of the employed elderly enrolled the workforce unwillingly. They are in need of some earnings mainly to afford the medical expenses on their health or the health of their spouse, also to support their family members who are economically inactive. Apart from need, duration of working is another vital aspect for the elderly, whereas more than 80 percent of the elderly are working for six hours or more, and most of them engaged in self-employment. However, more than one-third of the working elderly falls into a negative cluster of the subjective well-being (SWB) index, and it is consistent with the result of the discriminant analysis. Here, the SWB index calculated from the 12 items and the reliability score of these items is 0.89.Keywords: ageing, workforce, census of India, SAGE
Procedia PDF Downloads 15528084 Relationship between Blow Count Number (N) and Shear Wave Velocity (Vs30) from the Specified Embankment Material: A Case Study on Three Selected Earthen Dams
Authors: Tanapon Suklim, Prachaya Intaphrom, Noppadol Poomvises, Anchalee Kongsuk
Abstract:
The relationship between shear wave velocity (Vs30) and blow count Number from Standard Penetration Tests (NSPT) was investigated on specified embankment dam to find the solution which can be used to estimate the value of N. Shear wave velocity, Vs30 and blow count number, NSPT were performed at three specified dam sites. At each site, Vs30 measurement was recorded by using seismic survey of MASW technique and NSPT were measured by field Standard Penetration Test. Regression analysis was used to derive statistical relation. The relation is giving a final solution to applicable calculated N-value with other earthen dam. Dam engineer can use the statistical relation to convert field Vs30 to estimated N-value instead of absolute N-value from field Standard Penetration Test. It can be noted that the formulae can be applied only in the earthen dam of specified material.Keywords: blow count number, earthen dam, embankment, shear wave velocity
Procedia PDF Downloads 23728083 The Impact of Quality of Life on Satisfaction and Intent to Return for Distance Running
Authors: Chin-Huang Huang, Chun-Chu Yeh
Abstract:
Physical activities have a positive impact on individuals’ health and well-being. They also play an important role in promoting quality of life (QoL). The distance running enhances participants’ life satisfaction and provides positive experiences in physical activity. This study aims to measure the perception of QoL and to find the effect on satisfaction and intent to return for distance runners. Exploratory factor analysis is carried out to extract four major factorial dimensions of QoL, including multiple functions, spiritual, physical and cognitive factors. The main factors of QoL will be introduced into the regression function on satisfaction and return intention. The results show that the QoL factors including multiple functions, spiritual, physical and cognitive factors have a positive and significant impact on satisfaction for participants. The multiple functions and physical factors are also significantly positively correlated to the intent of return for runners.Keywords: quality of life, physical activity, distance running, satisfaction
Procedia PDF Downloads 46928082 Relationship and Associated Factors of Breastfeeding Self-efficacy among Postpartum Couples in Malawi: A Cross-sectional Study
Authors: Roselyn Chipojola, Shu-yu Kuo
Abstract:
Background: Breastfeeding self-efficacy in both mothers and fathers play a crucial role in improving exclusive breastfeeding rates. However, less is known on the relationship and predictors of paternal and maternal breastfeeding self-efficacy. This study aimed to examine the relationship and associated factors of breastfeeding self-efficacy (BSE) among mothers and fathers in Malawi. Methods: A cross-sectional study was conducted on 180 pairs of postpartum mothers and fathers at a tertiary maternity facility in central Malawi. BSE was measured using the Breastfeeding Self-Efficacy Scale Short-Form. Depressive symptoms were assessed by the Edinburgh Postnatal Depression Scale. A structured questionnaire was used to collect demographic and health variables. Data were analyzed using multivariable logistic regression and multinomial logistic regression. Results: A higher score of self-efficacy was found in mothers (mean=55.7, Standard Deviation (SD) =6.5) compared to fathers (mean=50.2, SD=11.9). A significant association between paternal and maternal breastfeeding self-efficacy was found (r= 0. 32). Age, employment status, mode of birth was significantly related to maternal and paternal BSE, respectively. Older age and caesarean section delivery were significant factors of combined BSE scores in couples. A higher BSE score in either the mother or her partner predicted higher exclusive breastfeeding rates. BSE scores were lower when couples’ depressive symptoms were high. Conclusion: BSE are highly correlated between Malawian mothers and fathers, with a relatively higher score in maternal BSE. Importantly, a high BSE in couples predicted higher odds of exclusive breastfeeding, which highlights the need to include both mothers and fathers in future breastfeeding promotion strategies.Keywords: paternal, maternal, exclusive breastfeeding, breastfeeding self‑efficacy, malawi
Procedia PDF Downloads 7328081 A Statistical Analysis on Relationship between Temperature Variations with Latitude and Altitude regarding Total Amount of Atmospheric Carbon Dioxide in Iran
Authors: Masoumeh Moghbel
Abstract:
Nowadays, carbon dioxide which is produced by human activities is considered as the main effective factor in the global warming occurrence. Regarding to the role of CO2 and its ability in trapping the heat, the main objective of this research is study the effect of atmospheric CO2 (which is recorded in Manaloa) on variations of temperature parameters (daily mean temperature, minimum temperature and maximum temperature) in 5 meteorological stations in Iran which were selected according to the latitude and altitude in 40 years statistical period. Firstly, the trend of temperature parameters was studied by Regression and none-graphical Man-Kendal methods. Then, relation between temperature variations and CO2 were studied by Correlation technique. Also, the impact of CO2 amount on temperature in different atmospheric levels (850 and 500 hpa) was analyzed. The results illustrated that correlation coefficient between temperature variations and CO2 in low latitudes and high altitudes is more significant rather than other regions. it is important to note that altitude as the one of the main geographic factor has limitation in affecting the temperature variations, so that correlation coefficient between these two parameters in 850 hpa (r=0.86) is more significant than 500 hpa (r = 0.62).Keywords: altitude, atmospheric carbon dioxide, latitude, temperature variations
Procedia PDF Downloads 41228080 Role and Impact of Artificial Intelligence in Sales and Distribution Management
Authors: Kiran Nair, Jincy George, Suhaib Anagreh
Abstract:
Artificial intelligence (AI) in a marketing context is a form of a deterministic tool designed to optimize and enhance marketing tasks, research tools, and techniques. It is on the verge of transforming marketing roles and revolutionize the entire industry. This paper aims to explore the current dissemination of the application of artificial intelligence (AI) in the marketing mix, reviewing the scope and application of AI in various aspects of sales and distribution management. The paper also aims at identifying the areas of the strong impact of AI in factors of sales and distribution management such as distribution channel, purchase automation, customer service, merchandising automation, and shopping experiences. This is a qualitative research paper that aims to examine the impact of AI on sales and distribution management of 30 multinational brands in six different industries, namely: airline; automobile; banking and insurance; education; information technology; retail and telecom. Primary data is collected by means of interviews and questionnaires from a sample of 100 marketing managers that have been selected using convenient sampling method. The data is then analyzed using descriptive statistics, correlation analysis and multiple regression analysis. The study reveals that AI applications are extensively used in sales and distribution management, with a strong impact on various factors such as identifying new distribution channels, automation in merchandising, customer service, and purchase automation as well as sales processes. International brands have already integrated AI extensively in their day-to-day operations for better efficiency and improved market share while others are investing heavily in new AI applications for gaining competitive advantage.Keywords: artificial intelligence, sales and distribution, marketing mix, distribution channel, customer service
Procedia PDF Downloads 16328079 Investigating the Interaction of Individuals' Knowledge Sharing Constructs
Authors: Eugene Okyere-Kwakye
Abstract:
Knowledge sharing is a practice where individuals commonly exchange both tacit and explicit knowledge to jointly create a new knowledge. Knowledge management literature vividly express that knowledge sharing is the keystone and perhaps it is the most important aspect of knowledge management. To enhance the understanding of knowledge sharing domain, this study is aimed to investigate some factors that could influence employee’s attitude and behaviour to share their knowledge. The researchers employed the social exchange theory as a theoretical foundation for this study. Three essential factors namely: Trust, mutual reciprocity and perceived enjoyment that could influence knowledge sharing behaviour has been incorporated into a research model. To empirically validate this model, data was collected from one hundred and twenty respondents. The multiple regression analysis was employed to analyse the data. The results indicate that perceived enjoyment and trust have a significant influence on knowledge sharing. Surprisingly, mutual reciprocity did not influence knowledge sharing. The paper concludes by highlight the practical implications of the findings and areas for future research to consider.Keywords: perceived enjoyment, trust, knowledge sharing, knowledge management
Procedia PDF Downloads 45128078 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes
Procedia PDF Downloads 4828077 The Fantasy of the Media and the Sexual World of Adolescents: The Relationship between Viewing Sexual Content on Television and Sexual Behaviour of Adolescents
Authors: Ifeanyi Adigwe
Abstract:
The influence of television on adolescents is prevalent and widespread because television is a powerful sex educator for adolescents. This study examined the relationship between viewing sexual content on television and sexual behaviour of adolescents in public senior secondary schools in Lagos, Nigeria. The study employed a survey research design with a structured questionnaire as instrument. The multi-stage sampling technique was adopted. Firstly, purposive sampling was adopted in selecting 3 educational districts namely: Agege, Maryland, and Agboju. These educational districts were chosen for convenience and its wide coverage area of public senior secondary schools in Lagos State. Secondly, the researcher adopted systematic sampling to select the schools. The schools were listed in alphabetical order in each district and every 10th school were selected, yielding 13 schools altogether. A total of 501 copies of questionnaire were administered to the students and a total 491 copies of the questionnaire were retrieved. Only 453 copies of the questionnaire met the inclusion criteria and were used for analysis. Data were analyzed using descriptive statistics, Pearson Correlation, Principal components analysis, and regression analysis. Results of correlation analysis showed a positive and significant relationship between adolescent sexual belief and their preference for sexual content in television (r =0.117, N =453, p=0.13), viewing sexual content on television and adolescent sexual behavior, (r =-0.112, N =453, p<0.05), adolescent television preference and their preference for sexual content in television (r =0.328, N =453, p<0.05), adolescent television preference and adolescent’s sexual behavior (r=0.093, N =453, p<0.05). However, a negative but significant relationship exists between adolescent’s sexual knowledge and their sexual behavior (r=-122, N=453, p=0.0009). Pearson’s correlation between adolescents’ sexual knowledge and sexual behavior shows that there is a positive significant but strong relationship between adolescent’s sexual knowledge and their sexual behavior (r=0.967, N=453, p<0.05). The results also show that adolescent’s preference for sexual content in television informs them about their sexuality, development and sexual health. The descriptive and inferential analysis of data revealed that the interaction among adolescent sexual belief, knowledge and adolescents’ preference of sexual in television and its resultant effect on adolescent sexual behavior is apparent because sexual belief and norms about sex of an adolescent can induce his television preference of sexual content on television. The study concludes that exposure to sexual content in television can impact on adolescent sexual behaviour. There is no doubt that the actual outcome of television viewing and adolescent sexual behavior remains controversial because adolescent sexual behavior is multifaceted and multi-dimensional. Since behavior is learned overtime, the frequency of exposure and nature of sexual content viewed overtime induces and hastens sexual activity.Keywords: adolescent sexual behavior, Nigeria, sexual belief, sexual content, sexual knowledge, television preference
Procedia PDF Downloads 39828076 The Documentary Analysis of Meta-Analysis Research in Violence of Media
Authors: Proud Arunrangsiwed
Abstract:
The part of “future direction” in the findings of meta-analysis could provide the great direction to conduct the future studies. This study, “The Documentary Analysis of Meta-Analysis Research in Violence of Media” would conclude “future directions” out of 10 meta-analysis papers. The purposes of this research are to find an appropriate research design or an appropriate methodology for the future research related to the topic, “violence of media”. Further research needs to explore by longitudinal and experimental design, and also needs to have a careful consideration about age effects, time spent effects, enjoyment effects, and ordinary lifestyle of each media consumer.Keywords: aggressive, future direction, meta-analysis, media, violence
Procedia PDF Downloads 41428075 Data Transformations in Data Envelopment Analysis
Authors: Mansour Mohammadpour
Abstract:
Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.Keywords: data transformation, data envelopment analysis, undesirable data, negative data
Procedia PDF Downloads 2928074 Risk Factors for Postoperative Recurrence in Indian Patients with Crohn’s Disease
Authors: Choppala Pratheek, Vineet Ahuja
Abstract:
Background: Crohn's disease (CD) recurrence following surgery is a common challenge, and current detection methods rely on risk factors identified in Western populations. This study aimed to investigate the risk factors and rates of postoperative CD recurrence in a tuberculosis-endemic region like India. Retrospective data was collected from a structured database from a specialty IBD clinic by reviewing case files from January 2005 to December 2021. Inclusion criteria involved CD patients diagnosed based on the ECCO-ESGAR consensus guidelines, who had undergone at least one intestinal resection and had a minimum follow-up period of one year at the IBD clinic. Results: A total of 90 patients were followed up for a median period of 45 months (IQR, 20.75 - 72.00). Out of the 90 patients, 61 received ATT prior to surgery, with a mean delay in diagnosis of 2.5 years, although statistically non-significant (P=0.078). Clinical recurrence occurred in 50% of patients, with the cumulative rate increasing from 13.3% at one year to 40% at three years. Among 63 patients who underwent endoscopy, 65.7% showed evidence of endoscopic recurrence, with the cumulative rate increasing from 31.7% at one year to 55.5% at four years. Smoking was identified as a significant risk factor for early endoscopic recurrence (P=0.001) by Cox regression analysis, but no other risk factors were identified. Initiating post-operative medications prior to clinical recurrence delayed its onset (P=0.004). Subgroup analysis indicated that endoscopic monitoring aided in the early identification of recurrence (P=0.001). The findings contribute to enhancing post-operative CD management strategies in such regions where the disease burden is escalating.Keywords: crohns, post operative, tuberculosis-endemic, risk factors
Procedia PDF Downloads 6928073 Psychosocial Influences on Psychological Health of Assisted Conception Service Consumers in an African Context
Authors: Benjamin Osayawe Ehigie, Olufunmilola Olayinka Miriki
Abstract:
Context: The research focuses on the psychological health of assisted conception patients in an African cultural context, where infertility is stigmatized. The study examines the influence of gender, religiosity, and marital satisfaction on the mental well-being of these patients, as consumers of the services of assisted reproductive technology (ART). Research aim: To investigate the psychosocial influences on the psychological health (depression, anxiety, and stress) of assisted conception patients in Africa. Questions addressed: The study addressed the influence of gender, religiosity, and marital satisfaction on the psychological health of assisted conception patients in an African context. Theoretical importance: The study integrates the Need-based Theory and Biopsychosocial Model to enhance understanding of psychological health in assisted conception patients in Africa. Methodology: A mixed research design incorporating Focus Group Discussions and online surveys was utilized. Standardized psychological scales were administered to 100 participants from two teaching hospitals in Nigeria. Data collection: Data was collected through FGDs and online surveys using validated psychological scales. Analysis procedures: Statistical analysis was conducted to determine the relationship between gender, religiosity, marital satisfaction, and psychological health, as well hierarchical regression analysis to determine the joint prediction of participants’ psychological health by gender, religiosity, and marital satisfaction. Findings: Females experienced higher levels of depression, anxiety, and stress compared to males, attributed to cultural expectations. Religiosity and marital satisfaction negatively affected patients' psychological health, while older age was associated with better mental well-being. Conclusion: The research highlights the importance of addressing psychosocial factors in managing the psychological health of assisted conception patients in Africa. Limitations: This sample size is limited and conclusions based on a single data collection process.Keywords: Africa, psychological health, assisted-conception, psychological health
Procedia PDF Downloads 1128072 Thermoregulatory Responses of Holstein Cows Exposed to Intense Heat Stress
Authors: Rodrigo De A. Ferrazza, Henry D. M. Garcia, Viviana H. V. Aristizabal, Camilla De S. Nogueira, Cecilia J. Verissimo, Jose Roberto Sartori, Roberto Sartori, Joao Carlos P. Ferreira
Abstract:
Environmental factors adversely influence sustainability in livestock production system. Dairy herds are the most affected by heat stress among livestock industries. This clearly implies in development of new strategies for mitigating heat, which should be based on physiological and metabolic adaptations of the animal. In this study, we incorporated the effect of climate variables and heat exposure time on the thermoregulatory responses in order to clarify the adaptive mechanisms for bovine heat dissipation under intense thermal stress induced experimentally in climate chamber. Non-lactating Holstein cows were contemporaneously and randomly assigned to thermoneutral (TN; n=12) or heat stress (HS; n=12) treatments during 16 days. Vaginal temperature (VT) was measured every 15 min with a microprocessor-controlled data logger (HOBO®, Onset Computer Corporation, Bourne, MA, USA) attached to a modified vaginal controlled internal drug release insert (Sincrogest®, Ourofino, Brazil). Rectal temperature (RT), respiratory rate (RR) and heart rate (HR) were measured twice a day (0700 and 1500h) and dry matter intake (DMI) was estimated daily. The ambient temperature and air relative humidity were 25.9±0.2°C and 73.0±0.8%, respectively for TN, and 36.3± 0.3°C and 60.9±0.9%, respectively for HS. Respiratory rate of HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm; P<0.001) than TN (39.70±0.71bpm), followed by rising of RT (39.87°C±0.07 for HS versus 38.56±0.03°C for TN; P<0.001) and VT (39.82±0.10°C for HS versus 38.26±0.03°C for TN; P<0.001). A diurnal pattern was detected, with higher (P<0.01) afternoon temperatures than morning and this effect was aggravated for HS cows. There was decrease (P<0.05) of HR for HS cows (62.13±0.99bpm) compared to TN (66.23±0.79bpm), but the magnitude of the differences was not the same over time. From the third day, there was a decrease of DMI for HS in attempt to maintain homeothermy, while TN cows increased DMI (8.27kg±0.33kg d-1 for HS versus 14.03±0.29kg d-1 for TN; P<0.001). By regression analysis, RT and RR better reflected the response of cows to changes in the Temperature Humidity Index and the effect of climate variables from the previous day to influence the physiological parameters and DMI was more important than the current day, with ambient temperature the most important factor. Comparison between acute (0 to 3 days) and chronic (13 to 16 days) exposure to heat stress showed decreasing of the slope of the regression equations for RR and DMI, suggesting an adaptive adjustment, however with no change for RT. In conclusion, intense heat stress exerted strong influence on the thermoregulatory mechanisms, but the acclimation process was only partial.Keywords: acclimation, bovine, climate chamber, hyperthermia, thermoregulation
Procedia PDF Downloads 22128071 Impact of Vehicle Travel Characteristics on Level of Service: A Comparative Analysis of Rural and Urban Freeways
Authors: Anwaar Ahmed, Muhammad Bilal Khurshid, Samuel Labi
Abstract:
The effect of trucks on the level of service is determined by considering passenger car equivalents (PCE) of trucks. The current version of Highway Capacity Manual (HCM) uses a single PCE value for all tucks combined. However, the composition of truck traffic varies from location to location; therefore a single PCE-value for all trucks may not correctly represent the impact of truck traffic at specific locations. Consequently, present study developed separate PCE values for single-unit and combination trucks to replace the single value provided in the HCM on different freeways. Site specific PCE values, were developed using concept of spatial lagging headways (the distance from the rear bumper of a leading vehicle to the rear bumper of the following vehicle) measured from field traffic data. The study used data from four locations on a single urban freeway and three different rural freeways in Indiana. Three-stage-least-squares (3SLS) regression techniques were used to generate models that predicted lagging headways for passenger cars, single unit trucks (SUT), and combination trucks (CT). The estimated PCE values for single-unit and combination truck for basic urban freeways (level terrain) were: 1.35 and 1.60, respectively. For rural freeways the estimated PCE values for single-unit and combination truck were: 1.30 and 1.45, respectively. As expected, traffic variables such as vehicle flow rates and speed have significant impacts on vehicle headways. Study results revealed that the use of separate PCE values for different truck classes can have significant influence on the LOS estimation.Keywords: level of service, capacity analysis, lagging headway, trucks
Procedia PDF Downloads 36028070 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model
Authors: Xiang Zhang, David Rey, S. Travis Waller
Abstract:
Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning
Procedia PDF Downloads 30728069 Parental Bonding and Cognitive Emotion Regulation
Authors: Fariea Bakul, Chhanda Karmaker
Abstract:
The present study was designed to investigate the effects of parental bonding on adult’s cognitive emotion regulation and also to investigate gender differences in parental bonding and cognitive emotion regulation. Data were collected by using convenience sampling technique from 100 adult students (50 males and 50 females) of different universities of Dhaka city, ages between 20 to 25 years, using Bengali version of Parental Bonding Inventory and Bengali version of Cognitive Emotion Regulation Questionnaire. The obtained data were analyzed by using multiple regression analysis and independent samples t-test. The results revealed that fathers care (β =0.317, p < 0.05) was only significantly positively associated with adult’s cognitive emotion regulation. Adjusted R² indicated that the model explained 30% of the variance in adult’s adaptive cognitive emotion regulation. No significant association was found between parental bonding and less adaptive cognitive emotion regulations. Results from independent samples t-test also revealed that there was no significant gender difference in both parental bonding and cognitive emotion regulations.Keywords: cognitive emotion regulation, parental bonding, parental care, parental over-protection
Procedia PDF Downloads 37728068 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 13728067 Language Anxiety and Motivation as Predictors of English as a Foreign Language Achievement
Authors: Fakieh Alrabai
Abstract:
The present study examines the predictive power of foreign language anxiety and motivation, as two significant affective variables, in English as a foreign language (EFL) achievement. It also explores the causal relationship between these two factors (i.e. which variable causes the other); and which one of them best predicts other affective factors including learner attitude, self-esteem, and autonomy. The study utilized experimental treatments among 210 Saudi EFL learners divided into four groups. Group 1 was exposed to anxiety-controlling moments, group 2 was exposed to motivational moments, group 3 was exposed to anxiety-controlling and motivational moments together, and group 4 was exposed to no specific anxiety or motivation strategies. The influence of the treatment on the study variables was evaluated using a triangulation of measurements including questionnaires, classroom observations, and achievement tests. Descriptive analysis, ANOVA, ANCOVA, and regression analyses have been deployed to figure out the study findings. While both motivation and anxiety significantly predicted learners EFL achievement, motivation has been found to be the best predictor of learners’ achievement; and therefore, operates as the mediator of EFL achievement.Keywords: motivation, anxiety, achievement, autonomy
Procedia PDF Downloads 13328066 A Cheap Mesoporous Silica from Fly Ash as an Adsorbent for Sulfate in Water
Authors: Ximena Castillo, Jaime Pizarro
Abstract:
This research describes the development of a very cheap mesoporous silica material similar to hexagonal mesoporous silica (HMS) and using a silicate extract as precursor. This precursor is obtained from cheap fly ash by an easy calcination process at 850 °C and a green extraction with water. The obtained mesoporous fly ash material had a surface area of 282 m2 g-1 and a pore size of 5.7 nm. It was functionalized with ethylene diamino moieties via the well-known SAMMS method, followed by a DRIFT analysis that clearly showed the successful functionalization. An excellent adsorbent was obtained for the adsorption of sulfate anions by the solid’s modification with copper forming a copper-ethylenediamine complex. The adsorption of sulfates was studied in a batch system ( experimental conditions: pH=8.0; 5 min). The kinetics data were adjusted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model. The maximum sulfate adsorption capacity of this very cheap fly ash based adsorbent was 146.1 mg g-1, 3 times greater than the values reported in literature and commercial adsorbent materials.Keywords: fly ash, mesoporous materials, SAMMS, sulfate
Procedia PDF Downloads 18328065 Water Demand Modelling Using Artificial Neural Network in Ramallah
Authors: F. Massri, M. Shkarneh, B. Almassri
Abstract:
Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.Keywords: water management, demand forecasting, consumption, ANN, Ramallah
Procedia PDF Downloads 22328064 Considering Partially Developed Artifacts in Change Impact Analysis Implementation
Authors: Nazri Kama, Sufyan Basri, Roslina Ibrahim
Abstract:
It is important to manage the changes in the software to meet the evolving needs of the customer. Accepting too many changes causes delay in the completion and it incurs additional cost. One type of information that helps to make the decision is through change impact analysis. Current impact analysis approaches assume that all classes in the class artifact are completely developed and the class artifact is used as a source of analysis. However, these assumptions are impractical for impact analysis in the software development phase as some classes in the class artifact are still under development or partially developed that leads to inaccuracy. This paper presents a novel impact analysis approach to be used in the software development phase. The significant achievements of the approach are demonstrated through an extensive experimental validation using three case studies.Keywords: software development, impact analysis, traceability, static analysis.
Procedia PDF Downloads 61128063 Analysis of Peoples' Adherence to Safety Measures that Curb Ebola Virus Diseases in Nigeria (A Case Study of State of Osun)
Authors: Shittu Bisi Agnes
Abstract:
Ebola virus Diseases outbreak in Nigeria caused a lot of concerns considering the mode of transmission and no known cure discovered. Therefore a lot of safety measures were taken which eventually led to the eradication of the virus in Nigeria. This therefore attempted to determine the various safety measures, how socio-economic characteristic of the people affected adherence to safety measures. And provide reasonable recommendations for total eradication of the virus, future outbreak and general environmental safety Data were collected with the aid of well structured questionnaires and administered 180 randomly selected of the state and oral interview was also utilize. Data collected were analysed using both descriptive tools and inferential statistics vis-a-vis regression analysis. Finding showed that 70.5% was strongly adhere to almost all the measures, 15.2% was fairly advent, 3% was poorly observing the selected measures while 1.3% was in different. 65% of the respondents was strongly aware of the advent of ebola virus diseases, 20% was fairly in awareness, 8.5% was poorly in awareness while 6.55% was in aware of any disease outbreak. Safety measures put forwards were; hand washing, use of hand sanitize-rs, no shaking of hands non-consumption of wildlife games(Bush Meat) and general health and environmental safety measures. It was recommended that policy instrument to increase peoples income will accelerate eradication of diseases as this will enable households to pay for monetary safety measures, health and environmental education, in form of talk shop, workshop, lectures could be organised at the political ward levels, schools, market women, religious bodies functional unions and mass media.Keywords: ebola diseases, pay, safety, outbreak
Procedia PDF Downloads 59928062 Impact of Water, Sanitation and Hygiene Interventions on Water Quality in Primary Schools of Pakistan
Authors: Jamil Ahmed, Li P. Wong, Yan P. Chua
Abstract:
The United Nation's sustainable development goals include the target to ensure access to water and sanitation for all; however, very few studies have assessed school-based drinking water in Pakistan. The purpose of this study was to characterize water quality in primary schools of Pakistan and to characterize how recent WASH interventions were associated with school water quality. We conducted a representative cross-sectional study of primary schools in the Sindh province of Pakistan. We used structured observations and structured interviews to ascertain the school’s WASH conditions. Our primary exposures of interest were the implementation of previous WASH interventions in the school and the water source type. Outcomes of interest included water quality (measured by various chemical and microbiological indicators) and water availability at the school’s primary drinking water source. We used log-binomial regression to characterize how WASH exposures were associated with water quality outcomes. We collected data from 256 schools. Groundwater was the primary drinking water source at most schools (87%). Water testing showed that 14% of the school’s water had arsenic above the WHO recommendations, and over 50% of the water samples exceeded recommendations for both lead and cadmium. A majority of the water sources (52%) had fecal coliform contamination. None of the schools had nitrate contamination (0%), and few had fluoride contamination (5%). Regression results indicated that having a recent WASH intervention at the school was not associated with either arsenic contamination (prevalence ratio=0.97; 95% CI: 0.46-2.1) or with fecal coliform contamination (PR=0.88; 95% CI: 0.67-1.17). Our assessment unveiled several water quality gaps that exist, including high heavy metal and fecal contamination. Our findings will help various stakeholders to take suitable action to improve water quality in Pakistani schools.Keywords: WASH interventions, water quality, primary school children, heavy metals
Procedia PDF Downloads 14828061 Integrated Marketing Communication to Influencing International Standard Energy Economy Car Buying Decision of Consumers in Bangkok
Authors: Pisit Potjanajaruwit
Abstract:
The objective of this research was to study the influence of Integrated Marketing Communication on Buying Decision of Consumers in Bangkok. A total of 397 respondents were collected from customers who drive in Bangkok. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences. The findings revealed that the majority of respondents were male with the age between 25-34 years old, hold undergraduate degree, married and stay together. The average income of respondents was between 10,001-20,000 baht. In terms of occupation, the majority worked for private companies. The effect to the Buying Decision of Consumers in Bangkok to including sale promotion with the low interest and discount for an installment, selling by introducing and gave product information through sales persons, public relation by website, direct marketing by annual motor show and advertisement by television media.Keywords: Bangkok metropolis, ECO car, integrated marketing communication, international standard
Procedia PDF Downloads 31928060 Higher Education and Empowerment of Women in Assam (India): An Empirical Analysis
Authors: Anupam Deka, Indira Bardoloi
Abstract:
Gender discrimination has been considered as a major obstacle in granting equal opportunity for women in higher education as education plays a pivotal role in a country’s socioeconomic development. To examine the empowerment of women in the higher education field of Assam, a case study has been carried out. In the first stage, an overview of enrollment of students in different courses has been made by considering the whole state. In the second stage, a study has been conducted regarding the enrollment of students in various degree and postgraduate courses for the period 2000-2007 at Gauhati University (one of the four universities of Assam), and the relevant data has been collected. It has been found that though the enrollment of students in the degree levels has been constantly increasing, but the enrollment of girls are not proportionately increasing, especially in commerce and law. On the other hand, in the postgraduate level, these proportions are higher in almost all subjects (except some subjects like M. COM., L.L.M, M. C. A., Mathematics, etc.), indicating that compared to boys, a higher number of girls are being admitted in postgraduate courses.Keywords: field study, enrollment of girls in degree and postgratudate levels, regression lines, chi square test, diagrams, statistical tables
Procedia PDF Downloads 262