Search results for: real time anomaly detection
21728 Design and Implementation of Reliable Location-Based Social Community Services
Authors: B. J. Kim, K. W. Nam, S. J. Lee
Abstract:
Traditional social network services provide users with more information than is needed, and it is not easy to verify the authenticity of the information. This paper proposes a system that can only post messages where users are located to enhance the reliability of social networking services. The proposed system implements a Google Map API to post postings on the map and to read postings within a range of distances from the users’ location. The proposed system will only provide alerts, memories, and information about locations within a given range depending on the users' current location, providing reliable information that they believe will be necessary in real time. It is expected that the proposed system will be able to meet the real demands of users and create a more reliable social network services environment.Keywords: social network, location, reliability, posting
Procedia PDF Downloads 25721727 Malware Detection in Mobile Devices by Analyzing Sequences of System Calls
Authors: Jorge Maestre Vidal, Ana Lucila Sandoval Orozco, Luis Javier García Villalba
Abstract:
With the increase in popularity of mobile devices, new and varied forms of malware have emerged. Consequently, the organizations for cyberdefense have echoed the need to deploy more effective defensive schemes adapted to the challenges posed by these recent monitoring environments. In order to contribute to their development, this paper presents a malware detection strategy for mobile devices based on sequence alignment algorithms. Unlike the previous proposals, only the system calls performed during the startup of applications are studied. In this way, it is possible to efficiently study in depth, the sequences of system calls executed by the applications just downloaded from app stores, and initialize them in a secure and isolated environment. As demonstrated in the performed experimentation, most of the analyzed malicious activities were successfully identified in their boot processes.Keywords: android, information security, intrusion detection systems, malware, mobile devices
Procedia PDF Downloads 30421726 A Spatial Approach to Model Mortality Rates
Authors: Yin-Yee Leong, Jack C. Yue, Hsin-Chung Wang
Abstract:
Human longevity has been experiencing its largest increase since the end of World War II, and modeling the mortality rates is therefore often the focus of many studies. Among all mortality models, the Lee–Carter model is the most popular approach since it is fairly easy to use and has good accuracy in predicting mortality rates (e.g., for Japan and the USA). However, empirical studies from several countries have shown that the age parameters of the Lee–Carter model are not constant in time. Many modifications of the Lee–Carter model have been proposed to deal with this problem, including adding an extra cohort effect and adding another period effect. In this study, we propose a spatial modification and use clusters to explain why the age parameters of the Lee–Carter model are not constant. In spatial analysis, clusters are areas with unusually high or low mortality rates than their neighbors, where the “location” of mortality rates is measured by age and time, that is, a 2-dimensional coordinate. We use a popular cluster detection method—Spatial scan statistics, a local statistical test based on the likelihood ratio test to evaluate where there are locations with mortality rates that cannot be described well by the Lee–Carter model. We first use computer simulation to demonstrate that the cluster effect is a possible source causing the problem of the age parameters not being constant. Next, we show that adding the cluster effect can solve the non-constant problem. We also apply the proposed approach to mortality data from Japan, France, the USA, and Taiwan. The empirical results show that our approach has better-fitting results and smaller mean absolute percentage errors than the Lee–Carter model.Keywords: mortality improvement, Lee–Carter model, spatial statistics, cluster detection
Procedia PDF Downloads 17121725 A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks
Authors: Khelifa Benahmed, Tarek Benahmed
Abstract:
There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks.Keywords: critical infrastructure monitoring, environment monitoring, event region detection, wireless sensor networks
Procedia PDF Downloads 35021724 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach
Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou
Abstract:
The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation
Procedia PDF Downloads 17121723 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control
Authors: Ming-Yen Chang, Sheng-Hung Ke
Abstract:
This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride
Procedia PDF Downloads 6621722 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology
Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões
Abstract:
This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.Keywords: fruit thinning, horticultural field, portable devices, sensor technologies
Procedia PDF Downloads 13921721 Pharmacokinetic Monitoring of Glimepiride and Ilaprazole in Rat Plasma by High Performance Liquid Chromatography with Diode Array Detection
Authors: Anil P. Dewani, Alok S. Tripathi, Anil V. Chandewar
Abstract:
Present manuscript reports the development and validation of a quantitative high performance liquid chromatography method for the pharmacokinetic evaluation of Glimepiride (GLM) and Ilaprazole (ILA) in rat plasma. The plasma samples were involved with Solid phase extraction process (SPE). The analytes were resolved on a Phenomenex C18 column (4.6 mm× 250 mm; 5 µm particle size) using a isocratic elution mode comprising methanol:water (80:20 % v/v) with pH of water modified to 3 using Formic acid, the total run time was 10 min at 225 nm as common wavelength, the flow rate throughout was 1ml/min. The method was validated over the concentration range from 10 to 600 ng/mL for GLM and ILA, in rat plasma. Metformin (MET) was used as Internal Standard. Validation data demonstrated the method to be selective, sensitive, accurate and precise. The limit of detection was 1.54 and 4.08 and limit of quantification was 5.15 and 13.62 for GLM and ILA respectively, the method demonstrated excellent linearity with correlation coefficients (r2) 0.999. The intra and inter-day precision (RSD%) values were < 2.0% for both ILA and GLM. The method was successfully applied in pharmacokinetic studies followed by oral administration in rats.Keywords: pharmacokinetics, glimepiride, ilaprazole, HPLC, SPE
Procedia PDF Downloads 36921720 Building Safety Through Real-time Design Fire Protection Systems
Authors: Mohsin Ali Shaikh, Song Weiguo, Muhammad Kashan Surahio, Usman Shahid, Rehmat Karim
Abstract:
When the area of a structure that is threatened by a disaster affects personal safety, the effectiveness of disaster prevention, evacuation, and rescue operations can be summarized by three assessment indicators: personal safety, property preservation, and attribution of responsibility. These indicators are applicable regardless of the disaster that affects the building. People need to get out of the hazardous area and to a safe place as soon as possible because there's no other way to respond. The results of the tragedy are thus closely related to how quickly people are advised to evacuate and how quickly they are rescued. This study considers present fire prevention systems to address catastrophes and improve building safety. It proposes the methods of Prevention Level for Deployment in Advance and Spatial Transformation by Human-Machine Collaboration. We present and prototype a real-time fire protection system architecture for building disaster prevention, evacuation, and rescue operations. The design encourages the use of simulations to check the efficacy of evacuation, rescue, and disaster prevention procedures throughout the planning and design phase of the structure.Keywords: prevention level, building information modeling, quality management system, simulated reality
Procedia PDF Downloads 6921719 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)
Procedia PDF Downloads 43521718 Execution Time Optimization of Workflow Network with Activity Lead-Time
Authors: Xiaoping Qiu, Binci You, Yue Hu
Abstract:
The executive time of the workflow network has an important effect on the efficiency of the business process. In this paper, the activity executive time is divided into the service time and the waiting time, then the lead time can be extracted from the waiting time. The executive time formulas of the three basic structures in the workflow network are deduced based on the activity lead time. Taken the process of e-commerce logistics as an example, insert appropriate lead time for key activities by using Petri net, and the executive time optimization model is built to minimize the waiting time with the time-cost constraints. Then the solution program-using VC++6.0 is compiled to get the optimal solution, which reduces the waiting time of key activities in the workflow, and verifies the role of lead time in the timeliness of e-commerce logistics.Keywords: electronic business, execution time, lead time, optimization model, petri net, time workflow network
Procedia PDF Downloads 17621717 The Influences of Green Infrastructure Develop on Urban Renewals for Real Essence and Non-Real Essence Economic Value
Authors: Chao Jen-Chih, Hsu Kuo-Wei
Abstract:
Climate change and natural disasters take effect on urban development. It has been discussed urban renewals can prevent natural disasters. Integrating green infrastructure and urban renewals may have great effect on adapting the impact of climate change. To highlight the economic value of green infrastructure development on urban renewals, some strategies need to be carry on to reduce environmental impact. A number of urban renewals studies has been conducted on right transfer, financial risk, urban renewal policy, and public participation. Little research has been devoted on the subject of the economic value of green infrastructure development on urban renewals. The purpose of this study is to investigate the affecting factors on the economic value of green infrastructure development on urban renewals. This study will present the benefits of green infrastructure development and summarize the critical factors of green infrastructure develop on urban renewals for real essence and non-real essence on economic value from literature. Our results indicate that factors of housing price, land value, floor area incentive, and facilitation of the construction industry affect the outcome of real essence economic value. Factors of enhancement of urban disaster prevention, improvement of urban environment and landscape, crime reduction, climate control, pollution reduction, biological diversity, health impacts, and leisure space affects the outcome of non-real essence economic value.Keywords: economic value, green infrastructure, urban renewals, urban development
Procedia PDF Downloads 41921716 Multi-Perspective Learning in a Real Production Plant Using Experiential Learning in Heterogeneous Groups to Develop System Competencies for Production System Improvements
Authors: Marlies Achenbach
Abstract:
System competencies play a key role to ensure an effective and efficient improvement of production systems. Thus, there can be observed an increasing demand for developing system competencies in industry as well as in engineering education. System competencies consist of the following two main abilities: Evaluating the current state of a production system and developing a target state. The innovative course ‘multi-perspective learning in a real production plant (multi real)’ is developed to create a learning setting that supports the development of these system competencies. Therefore, the setting combines two innovative aspects: First, the Learning takes place in heterogeneous groups formed by students as well as professionals and managers from industry. Second, the learning takes place in a real production plant. This paper presents the innovative didactic concept of ‘multi real’ in detail, which will initially be implemented in October/November 2016 in the industrial engineering, logistics and mechanical master’s program at TU Dortmund University.Keywords: experiential learning, heterogeneous groups, improving production systems, system competencies
Procedia PDF Downloads 42621715 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 40921714 Design of Multi-Loop Controller for Minimization of Energy Consumption in the Distillation Column
Authors: Vinayambika S. Bhat, S. Shanmuga Priya, I. Thirunavukkarasu, Shreeranga Bhat
Abstract:
An attempt has been made to design a decoupling controller for systems with more inputs more outputs with dead time in it. The de-coupler is designed for the chemical process industry 3×3 plant transfer function with dead time. The Quantitative Feedback Theory (QFT) based controller has also been designed here for the 2×2 distillation column transfer function. The developed control techniques were simulated using the MATLAB/Simulink. Also, the stability of the process was analyzed, together with the presence of various perturbations in it. Time domain specifications like setting time along with overshoot and oscillations were analyzed to prove the efficiency of the de-coupler method. The load disturbance rejection was tested along with its performance. The QFT control technique was synthesized based on the stability and performance specifications in the presence of uncertainty in time constant of the plant transfer function through sequential loop shaping technique. Further, the energy efficiency of the distillation column was improved by proper tuning of the controller. A distillation column consumes 3% of the total energy consumption of the world. A suitable control technique is very important from an economic point of view. The real time implementation of the process is under process in our laboratory.Keywords: distillation, energy, MIMO process, time delay, robust stability
Procedia PDF Downloads 41421713 Detection of Extrusion Blow Molding Defects by Airflow Analysis
Authors: Eva Savy, Anthony Ruiz
Abstract:
In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.Keywords: extrusion blow molding, signal, sensor, defects, detection
Procedia PDF Downloads 15121712 A Comprehensive Approach to Mitigate Return-Oriented Programming Attacks: Combining Operating System Protection Mechanisms and Hardware-Assisted Techniques
Authors: Zhang Xingnan, Huang Jingjia, Feng Yue, Burra Venkata Durga Kumar
Abstract:
This paper proposes a comprehensive approach to mitigate ROP (Return-Oriented Programming) attacks by combining internal operating system protection mechanisms and hardware-assisted techniques. Through extensive literature review, we identify the effectiveness of ASLR (Address Space Layout Randomization) and LBR (Last Branch Record) in preventing ROP attacks. We present a process involving buffer overflow detection, hardware-assisted ROP attack detection, and the use of Turing detection technology to monitor control flow behavior. We envision a specialized tool that views and analyzes the last branch record, compares control flow with a baseline, and outputs differences in natural language. This tool offers a graphical interface, facilitating the prevention and detection of ROP attacks. The proposed approach and tool provide practical solutions for enhancing software security.Keywords: operating system, ROP attacks, returning-oriented programming attacks, ASLR, LBR, CFI, DEP, code randomization, hardware-assisted CFI
Procedia PDF Downloads 9521711 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 57521710 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection
Authors: Martin Pumera
Abstract:
Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.Keywords: graphene, 2D nanomaterials, biosensing, chip design
Procedia PDF Downloads 55021709 Design, Optimize the Damping System for Optical Scanning Equipment
Authors: Duy Nhat Tran, Van Tien Pham, Quang Trung Trinh, Tien Hai Tran, Van Cong Bui
Abstract:
In recent years, artificial intelligence and the Internet of Things have experienced significant advancements. Collecting image data and real-time analysis and processing of tasks have become increasingly popular in various aspects of life. Optical scanning devices are widely used to observe and analyze different environments, whether fixed outdoors, mounted on mobile devices, or used in unmanned aerial vehicles. As a result, the interaction between the physical environment and these devices has become more critical in terms of safety. Two commonly used methods for addressing these challenges are active and passive approaches. Each method has its advantages and disadvantages, but combining both methods can lead to higher efficiency. One solution is to utilize direct-drive motors for position control and real-time feedback within the operational range to determine appropriate control parameters with high precision. If the maximum motor torque is smaller than the inertial torque and the rotor reaches the operational limit, the spring system absorbs the impact force. Numerous experiments have been conducted to demonstrate the effectiveness of device protection during operation.Keywords: optical device, collision safety, collision absorption, precise mechanics
Procedia PDF Downloads 6321708 Engineering the Topological Insulator Structures for Terahertz Detectors
Authors: M. Marchewka
Abstract:
The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds
Procedia PDF Downloads 12221707 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 12721706 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 6621705 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 5121704 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings
Authors: Lotfi O. Gargab, Ruichong R. Zhang
Abstract:
A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake
Procedia PDF Downloads 36921703 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.Keywords: induction machine, fault, DWT, electric
Procedia PDF Downloads 35021702 Detection and Identification of Chlamydophila psittaci in Asymptomatic and Symptomatic Parrots in Isfahan
Authors: Mehdi Moradi Sarmeidani, Peyman Keyhani, Hasan Momtaz
Abstract:
Chlamydophila psittaci is a avian pathogen that may cause respiratory disorders in humans. Conjunctival and cloacal swabs from 54 captive psittacine birds presented at veterinary clinics were collected to determine the prevalence of C. psittaci in domestic birds in Isfahan. Samples were collected during 2014 from a total of 10 different species of parrots, with African gray(33), Cockatiel lutino(3), Cockatiel gray(2), Cockatiel cinnamon(1), Pearl cockatiel(6), Timneh African grey(1), Ringneck parakeet(2), Melopsittacus undulatus(1), Alexander parakeet(2), Green Parakeet(3) being the most representative species sampled. C. psittaci was detected in 27 (50%) birds using molecular detection (PCR) method. The detection of this bacterium in captive psittacine birds shows that there is a potential risk for human whom has a direct contact and there is a possibility of infecting other birds.Keywords: chlamydophila psittaci, psittacine birds, PCR, Isfahan
Procedia PDF Downloads 37121701 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method
Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a
Abstract:
The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.Keywords: damage detection, finite element, tapered pipe, vibration characteristics
Procedia PDF Downloads 17021700 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures
Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski
Abstract:
Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems
Procedia PDF Downloads 34821699 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter
Authors: Amartya Hatua, Trung Nguyen, Andrew Sung
Abstract:
In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter
Procedia PDF Downloads 391