Search results for: medical image analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31919

Search results for: medical image analysis

30629 Architectural Framework to Preserve Information of Cardiac Valve Control

Authors: Lucia Carrion Gordon, Jaime Santiago Sanchez Reinoso

Abstract:

According to the relation of Digital Preservation and the Health field as a case of study, the architectural model help us to explain that definitions. .The principal goal of Data Preservation is to keep information for a long term. Regarding of Mediacal information, in order to perform a heart transplant, physicians need to preserve this organ in an adequate way. This approach between the two perspectives, the medical and the technological allow checking the similarities about the concepts of preservation. Digital preservation and medical advances are related in the same level as knowledge improvement.

Keywords: medical management, digital, data, heritage, preservation

Procedia PDF Downloads 420
30628 Adaptive Motion Compensated Spatial Temporal Filter of Colonoscopy Video

Authors: Nidhal Azawi

Abstract:

Colonoscopy procedure is widely used in the world to detect an abnormality. Early diagnosis can help to heal many patients. Because of the unavoidable artifacts that exist in colon images, doctors cannot detect a colon surface precisely. The purpose of this work is to improve the visual quality of colonoscopy videos to provide better information for physicians by removing some artifacts. This work complements a series of work consisting of three previously published papers. In this paper, Optic flow is used for motion compensation, and then consecutive images are aligned/registered to integrate some information to create a new image that has or reveals more information than the original one. Colon images have been classified into informative and noninformative images by using a deep neural network. Then, two different strategies were used to treat informative and noninformative images. Informative images were treated by using Lucas Kanade (LK) with an adaptive temporal mean/median filter, whereas noninformative images are treated by using Lucas Kanade with a derivative of Gaussian (LKDOG) with adaptive temporal median images. A comparison result showed that this work achieved better results than that results in the state- of- the- art strategies for the same degraded colon images data set, which consists of 1000 images. The new proposed algorithm reduced the error alignment by about a factor of 0.3 with a 100% successfully image alignment ratio. In conclusion, this algorithm achieved better results than the state-of-the-art approaches in case of enhancing the informative images as shown in the results section; also, it succeeded to convert the non-informative images that have very few details/no details because of the blurriness/out of focus or because of the specular highlight dominate significant amount of an image to informative images.

Keywords: optic flow, colonoscopy, artifacts, spatial temporal filter

Procedia PDF Downloads 113
30627 Computer-Aided Detection of Liver and Spleen from CT Scans using Watershed Algorithm

Authors: Belgherbi Aicha, Bessaid Abdelhafid

Abstract:

In the recent years a great deal of research work has been devoted to the development of semi-automatic and automatic techniques for the analysis of abdominal CT images. The first and fundamental step in all these studies is the semi-automatic liver and spleen segmentation that is still an open problem. In this paper, a semi-automatic liver and spleen segmentation method by the mathematical morphology based on watershed algorithm has been proposed. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological to extract the liver and spleen. The second step consists to improve the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce the over-segmentation problem by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. The aim of this work is to develop a method for semi-automatic segmentation liver and spleen based on watershed algorithm, improve the accuracy and the robustness of the liver and spleen segmentation and evaluate a new semi-automatic approach with the manual for liver segmentation. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work. The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts. Liver segmentation has achieved the sensitivity and specificity; sens Liver=96% and specif Liver=99% respectively. Spleen segmentation achieves similar, promising results sens Spleen=95% and specif Spleen=99%.

Keywords: CT images, liver and spleen segmentation, anisotropic diffusion filter, morphological filters, watershed algorithm

Procedia PDF Downloads 325
30626 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data

Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene

Abstract:

Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.

Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging

Procedia PDF Downloads 270
30625 Comparative Study of Medical and Fine Art Students on the Level of Perceived Stress and Coping Skills

Authors: Bushra Mussawar, Saleha Younus

Abstract:

Students often view their academic life demanding and stressful. However, apart from academics, stress springs from various other sources namely, finance, family, health, friends etc. The present study aims to assess the level of perceived stress in medical and fine arts students, and to determine the coping strategies used by the students to mitigate stress. The sample of the study consisted of 178 medical and fine arts students. The sample was selected through purposive sampling. Pearson correlation coefficient and T-test were used to analyze data. Results of the study revealed that there exists a positive relationship between perceived stress and coping strategies. Additionally, the two groups showed marked differences in terms of stress perception and coping styles. The level of perceived stress was found to be high in medical students nonetheless, they employed more positive coping strategies than fine arts students who scored high on negative coping strategies which are deleterious to the overall wellbeing.

Keywords: perceived stress, coping strategies, medical, fine arts students

Procedia PDF Downloads 308
30624 Limbic Involvement in Visual Processing

Authors: Deborah Zelinsky

Abstract:

The retina filters millions of incoming signals into a smaller amount of exiting optic nerve fibers that travel to different portions of the brain. Most of the signals are for eyesight (called "image-forming" signals). However, there are other faster signals that travel "elsewhere" and are not directly involved with eyesight (called "non-image-forming" signals). This article centers on the neurons of the optic nerve connecting to parts of the limbic system. Eye care providers are currently looking at parvocellular and magnocellular processing pathways without realizing that those are part of an enormous "galaxy" of all the body systems. Lenses are modifying both non-image and image-forming pathways, taking A.M. Skeffington's seminal work one step further. Almost 100 years ago, he described the Where am I (orientation), Where is It (localization), and What is It (identification) pathways. Now, among others, there is a How am I (animation) and a Who am I (inclination, motivation, imagination) pathway. Classic eye testing considers pupils and often assesses posture and motion awareness, but classical prescriptions often overlook limbic involvement in visual processing. The limbic system is composed of the hippocampus, amygdala, hypothalamus, and anterior nuclei of the thalamus. The optic nerve's limbic connections arise from the intrinsically photosensitive retinal ganglion cells (ipRGC) through the "retinohypothalamic tract" (RHT). There are two main hypothalamic nuclei with direct photic inputs. These are the suprachiasmatic nucleus and the paraventricular nucleus. Other hypothalamic nuclei connected with retinal function, including mood regulation, appetite, and glucose regulation, are the supraoptic nucleus and the arcuate nucleus. The retino-hypothalamic tract is often overlooked when we prescribe eyeglasses. Each person is different, but the lenses we choose are influencing this fast processing, which affects each patient's aiming and focusing abilities. These signals arise from the ipRGC cells that were only discovered 20+ years ago and do not address the campana retinal interneurons that were only discovered 2 years ago. As eyecare providers, we are unknowingly altering such factors as lymph flow, glucose metabolism, appetite, and sleep cycles in our patients. It is important to know what we are prescribing as the visual processing evaluations expand past the 20/20 central eyesight.

Keywords: neuromodulation, retinal processing, retinohypothalamic tract, limbic system, visual processing

Procedia PDF Downloads 88
30623 Mobile Microscope for the Detection of Pathogenic Cells Using Image Processing

Authors: P. S. Surya Meghana, K. Lingeshwaran, C. Kannan, V. Raghavendran, C. Priya

Abstract:

One of the most basic and powerful tools in all of science and medicine is the light microscope, the fundamental device for laboratory as well as research purposes. With the improving technology, the need for portable, economic and user-friendly instruments is in high demand. The conventional microscope fails to live up to the emerging trend. Also, adequate access to healthcare is not widely available, especially in developing countries. The most basic step towards the curing of a malady is the diagnosis of the disease itself. The main aim of this paper is to diagnose Malaria with the most common device, cell phones, which prove to be the immediate solution for most of the modern day needs with the development of wireless infrastructure allowing to compute and communicate on the move. This opened up the opportunity to develop novel imaging, sensing, and diagnostics platforms using mobile phones as an underlying platform to address the global demand for accurate, sensitive, cost-effective, and field-portable measurement devices for use in remote and resource-limited settings around the world.

Keywords: cellular, hand-held, health care, image processing, malarial parasites, microscope

Procedia PDF Downloads 267
30622 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture

Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko

Abstract:

Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.

Keywords: classification, feature selection, texture analysis, tree algorithms

Procedia PDF Downloads 179
30621 Lithological Mapping and Iron Deposits Identification in El-Bahariya Depression, Western Desert, Egypt, Using Remote Sensing Data Analysis

Authors: Safaa M. Hassan; Safwat S. Gabr, Mohamed F. Sadek

Abstract:

This study is proposed for the lithological and iron oxides detection in the old mine areas of El-Bahariya Depression, Western Desert, using ASTER and Landsat-8 remote sensing data. Four old iron ore occurrences, namely; El-Gedida, El-Haraa, Ghurabi, and Nasir mine areas found in the El-Bahariya area. This study aims to find new high potential areas for iron mineralization around El-Baharyia depression. Image processing methods such as principle component analysis (PCA) and band ratios (b4/b5, b5/b6, b6/b7, and 4/2, 6/7, band 6) images were used for lithological identification/mapping that includes the iron content in the investigated area. ASTER and Landsat-8 visible and short-wave infrared data found to help mapping the ferruginous sandstones, iron oxides as well as the clay minerals in and around the old mines area of El-Bahariya depression. Landsat-8 band ratio and the principle component of this study showed well distribution of the lithological units, especially ferruginous sandstones and iron zones (hematite and limonite) along with detection of probable high potential areas for iron mineralization which can be used in the future and proved the ability of Landsat-8 and ASTER data in mapping these features. Minimum Noise Fraction (MNF), Mixture Tuned Matched Filtering (MTMF), pixel purity index methods as well as Spectral Ange Mapper classifier algorithm have been successfully discriminated the hematite and limonite content within the iron zones in the study area. Various ASTER image spectra and ASD field spectra of hematite and limonite and the surrounding rocks are compared and found to be consistent in terms of the presence of absorption features at range from 1.95 to 2.3 μm for hematite and limonite. Pixel purity index algorithm and two sub-pixel spectral methods, namely Mixture Tuned Matched Filtering (MTMF) and matched filtering (MF) methods, are applied to ASTER bands to delineate iron oxides (hematite and limonite) rich zones within the rock units. The results are validated in the field by comparing image spectra of spectrally anomalous zone with the USGS resampled laboratory spectra of hematite and limonite samples using ASD measurements. A number of iron oxides rich zones in addition to the main surface exposures of the El-Gadidah Mine, are confirmed in the field. The proposed method is a successful application of spectral mapping of iron oxides deposits in the exposed rock units (i.e., ferruginous sandstone) and present approach of both ASTER and ASD hyperspectral data processing can be used to delineate iron-rich zones occurring within similar geological provinces in any parts of the world.

Keywords: Landsat-8, ASTER, lithological mapping, iron exploration, western desert

Procedia PDF Downloads 146
30620 Targeting Mineral Resources of the Upper Benue trough, Northeastern Nigeria Using Linear Spectral Unmixing

Authors: Bello Yusuf Idi

Abstract:

The Gongola arm of the Upper Banue Trough, Northeastern Nigeria is predominantly covered by the outcrops of Limestone-bearing rocks in form of Sandstone with intercalation of carbonate clay, shale, basaltic, felsphatic and migmatide rocks at subpixel dimension. In this work, subpixel classification algorithm was used to classify the data acquired from landsat 7 Enhance Thematic Mapper (ETM+) satellite system with the aim of producing fractional distribution image for three most economically important solid minerals of the area: Limestone, Basalt and Migmatide. Linear Spectral Unmixing (LSU) algorithm was used to produce fractional distribution image of abundance of the three mineral resources within a 100Km2 portion of the area. The results show that the minerals occur at different proportion all over the area. The fractional map could therefore serve as a guide to the ongoing reconnaissance for the economic potentiality of the formation.

Keywords: linear spectral un-mixing, upper benue trough, gongola arm, geological engineering

Procedia PDF Downloads 375
30619 The Ethics of Corporate Social Responsibility Statements in Undercutting Sustainability: A Communication Perspective

Authors: Steven Woods

Abstract:

The use of Corporate Social Responsibility Statements has become ubiquitous in society. The appeal to consumers by being a well-behaved social entity has become a strategy not just to ensure brand loyalty but also to further larger scale projects of corporate interests. Specifically, the use of CSR to position corporations as good planetary citizens involves not just self-promotion but also a way of transferring responsibility from systems to individuals. By using techniques labeled as “greenwashing” and emphasizing ethical consumption choices as the solution, corporations present themselves as good members of the community and pursuing sustainability. Ultimately, the primary function of Corporate Social Responsibility statements is to maintain the economic status quo of ongoing growth and consumption while presenting and environmentally progressive image to the public, as well as reassuring them corporate behavior is superior to government intervention. By analyzing the communication techniques utilized through content analysis of specific examples, along with an analysis of the frames of meaning constructed in the CSR statements, the practices of Corporate Responsibility and Sustainability will be addressed from an ethical perspective.

Keywords: corporate social responsibility, ethics, greenwashing, sustainability

Procedia PDF Downloads 71
30618 An Analysis of the Impact of Immunosuppression upon the Prevalence and Risk of Cancer

Authors: Aruha Khan, Brynn E. Kankel, Paraskevi Papadopoulou

Abstract:

In recent years, extensive research upon ‘stress’ has provided insight into its two distinct guises, namely the short–term (fight–or–flight) response versus the long–term (chronic) response. Specifically, the long–term or chronic response is associated with the suppression or dysregulation of immune function. It is also widely noted that the occurrence of cancer is greatly correlated to the suppression of the immune system. It is thus necessary to explore the impact of long–term or chronic stress upon the prevalence and risk of cancer. To what extent can the dysregulation of immune function caused by long–term exposure to stress be controlled or minimized? This study focuses explicitly upon immunosuppression due to its ability to increase disease susceptibility, including cancer itself. Based upon an analysis of the literature relating to the fundamental structure of the immune system alongside the prospective linkage of chronic stress and the development of cancer, immunosuppression may not necessarily correlate directly to the acquisition of cancer—although it remains a contributing factor. A cross-sectional analysis of the survey data from the University of Tennessee Medical Center (UTMC) and Harvard Medical School (HMS) will provide additional supporting evidence (or otherwise) for the hypothesis of the study about whether immunosuppression (caused by the chronic stress response) notably impacts the prevalence of cancer. Finally, a multidimensional framework related to education on chronic stress and its effects is proposed.

Keywords: immune system, immunosuppression, long–term (chronic) stress, risk of cancer

Procedia PDF Downloads 134
30617 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning

Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker

Abstract:

Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.

Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16

Procedia PDF Downloads 149
30616 Synthesis, Characterization and Application of Undoped and Fe Doped TiO₂ (Ti₁₋ₓFeₓO₂; X=0.01, 0.02, 0.03) Nanoparticles

Authors: Sudhakar Saroj, Satya Vir Singh

Abstract:

Undoped and Fe doped TiO₂, Ti₁₋ₓFeₓO₂ (x=0.00, 0.01, 0.03, 0.05, 0.07 and 0.09) have been synthesized by solution combustion method using Titanium (IV) oxide as a precursor, and also were characterized by XRD, DRS, FTIR, XPS, SEM, and EDX. The formation of anatase phase of undoped and Fe TiO₂ nanoparticles were confirmed by XRD, and the average crystallite size was determined by Debye-Scherer's equation. The DRS analysis indicates the shifting of light absorbance in visible region from UV region with increasing the doping concentration in TiO₂. The vibrational band of the Ti-O lattice was confirmed by the FT-IR spectrum. The XPS results confirm the presence of elements of titanium, oxygen and iron in the synthesized samples and determine the binding energy of elements. SEM image of the above-synthesized nanoparticles showed the spherical shape of nanoparticles. The purities of the synthesized nanoparticles were confirmed by EDX analysis. The photocatalytic activities of the synthesized nanoparticles were tested by studying the degradation of dye (Direct Blue 199) in the photocatalytic reactor. The Ti₀.₉₇Fe₀.₀₃O₂ photocatalyst shows highest photodegradation activity among all the synthesized undoped and Fe doped TiO₂ photocatalyst.

Keywords: direct blue 199, nanoparticles, TiO₂, photodegradation

Procedia PDF Downloads 236
30615 Reproducibility of Dopamine Transporter Density Measured with I-123-N-ω-Fluoropropyl-2β-Carbomethoxy-3β-(4-Iodophenyl)Nortropane SPECT in Phantom Studies and Parkinson’s Disease Patients

Authors: Yasuyuki Takahashi, Genta Hoshi, Kyoko Saito

Abstract:

Objectives: The objective of this study was to evaluate the reproducibility of I-123-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4- iodophenyl) nortropane (I-123 FP-CIT) SPECT by using specific binding ratio (SBR) in phantom studies and Parkinson’s Disease (PD) patients. Methods: We made striatum phantom originally and confirmed reproducibility. The phantom studies changed head position and accumulation of FP-CIT, each. And image processing confirms influence on SBR by 30 cases. 30 PD received a SPECT for 3 hours post injection of I-123 FP-CIT 167MBq. Results: SBR decreased in rotatory direction by the patient position by the phantom studies. And, SBR improved the influence after the attenuation and the scatter correction in the cases (y=0.99x+0.57 r2=0.83). However, Stage II recognized dispersion in SBR by low accumulation. Conclusion: Than the phantom studies that assumed the normal cases, the SPECT image after the attenuation and scatter correction had better reproducibility.

Keywords: 123I-FP-CIT, specific binding ratio, Parkinson’s disease

Procedia PDF Downloads 429
30614 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu

Authors: Ammarah Irum, Muhammad Ali Tahir

Abstract:

Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.

Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language

Procedia PDF Downloads 72
30613 A Five-Year Follow-up Survey Using Regression Analysis Finds Only Maternal Age to Be a Significant Medical Predictor for Infertility Treatment

Authors: Lea Stein, Sabine Rösner, Alessandra Lo Giudice, Beate Ditzen, Tewes Wischmann

Abstract:

For many couples bearing children is a consistent life goal; however, it cannot always be fulfilled. Undergoing infertility treatment does not guarantee pregnancies and live births. Couples have to deal with miscarriages and sometimes even discontinue infertility treatment. Significant medical predictors for the outcome of infertility treatment have yet to be fully identified. To further our understanding, a cross-sectional five-year follow-up survey was undertaken, in which 95 women and 82 men that have been treated at the Women’s Hospital of Heidelberg University participated. Binary logistic regressions, parametric and non-parametric methods were used for our sample to determine the relevance of biological (infertility diagnoses, maternal and paternal age) and lifestyle factors (smoking, drinking, over- and underweight) on the outcome of infertility treatment (clinical pregnancy, live birth, miscarriage, dropout rate). During infertility treatment, 72.6% of couples became pregnant and 69.5% were able to give birth. Suffering from miscarriages 27.5% of couples and 20.5% decided to discontinue an unsuccessful fertility treatment. The binary logistic regression models for clinical pregnancies, live births and dropouts were statistically significant for the maternal age, whereas the paternal age in addition to maternal and paternal BMI, smoking, infertility diagnoses and infections, showed no significant predicting effect on any of the outcome variables. The results confirm an effect of maternal age on infertility treatment, whereas the relevance of other medical predictors remains unclear. Further investigations should be considered to increase our knowledge of medical predictors.

Keywords: advanced maternal age, assisted reproductive technology, female factor, male factor, medical predictors, infertility treatment, reproductive medicine

Procedia PDF Downloads 110
30612 Metamorphosis in Nature through Adéquation: An Ecocritical Reading of Charles Tomlinson's Poetry

Authors: Zahra Barzegar, Reza Deedari, Behzad Pourgharib

Abstract:

This study examines how metamorphosis in nature is depicted in Charles Tomlinson's poetry through Lawrence Buell's mimesis and referential strategy of adéquation. This study aims to answer the questions that what is the relationship between Tomlinson's selected poems and nature, and how does Tomlinson's poetry bring the reader close to the natural environment. Adéquation is a way that brings the reader close to nature, not by imitating nature but by referring to it imaginatively and creating a stylized image. Using figurative language, namely imagery, metaphor, and analogy, adéquation creates a stylized image of metamorphosis in a nature scene that acts as a middle way between the reader and nature. This paper proves that adéquation reinvents the metamorphosis in natural occurrences in Charles Tomlinson's selected poems. Thus, a reader whose imagination is addressed achieves closeness with nature and a caring outlook toward natural happenings. This article confirms that Tomlinson's poems are potential enough to represent metamorphosis in nature through adéquation. Therefore, the reader understands nature beyond the poem as the poem presents a gist of nature through adéquation.

Keywords: adéquation, metamorphosis, nature, referentiality

Procedia PDF Downloads 186
30611 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: agricultural engineering, image processing, computer vision, flower detection

Procedia PDF Downloads 329
30610 The Hidden Characteristics That Tutors Hope Dundee Mmed Graduates Might Have after Graduation

Authors: Afnan Khoja, Ittisak Subrungruang, Kritchaya Ritruechai, Linda Jones, David Wall

Abstract:

Background: Some characteristics might be stated as an objective of the curriculum and some might be hidden. The hidden curriculum is the unwritten and unintended lessons and perspectives that students absorb in school. Though, the hidden characteristics are expected that tutors hope students might have in order to become medical educators. We suspected our faculty hoped we would develop skills, know and develop beyond the written outcomes. Our research question aimed to explore the hidden curriculum; as part of our learning; we had to design and report findings. Summary of Work: We undertook semi-structured interviews with a sample of the centre for medical education faculty at Dundee. Participants answered the question , of what are the hidden characteristics that they hope Dundee MMed graduates might have after graduation. Thematic analysis was carried out on the interview scripts. Summary of Results: A thematic analysis was carried out on the interview transcripts. Three main themes were identified from all respondents' comments. These were lifelong learners, being flexible and problem solvers. In addition individual respondents also described sense of humour, collaboration, humility, role model, inquisitiveness, optimism, and ability to express oneself clearly. Discussion: Tutors put great value on three behaviours lifelong learner, flexible, and problem solver, which are part of professional characteristics in leadership. Therefore, leadership characteristics is incorporated as the outcomes of hidden characteristics that tutors would like to see. Conclusion: Tutors in the Master's program of medical education at the University of Dundee hope that medical education students should present the three main hidden characteristics, which are lifelong learner, flexible, and problem solver after graduation. Take-home Messages: These hidden characteristics are considered as informal unless a change has been made to the formal curriculum. Therefore, to reach the tutors’ expectations, further studies might be held to make this personal characteristics transformation more accessible.

Keywords: characteristics, hidden curriculum, transformation, informal

Procedia PDF Downloads 89
30609 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.

Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition

Procedia PDF Downloads 25
30608 Education in Personality Development and Grooming for Airline Business Program's Students of International College, Suan Sunandha Rajabhat University

Authors: Taksina Bunbut

Abstract:

Personality and grooming are vital for creating professionalism and safety image for all staffs in the airline industry. Airline Business Program also has an aim to educate students through the subject Personality Development and Grooming in order to elevate the quality of students to meet standard requirements of the airline industry. However, students agree that there are many difficulties that cause unsuccessful learning experience in this subject. The research is to study problems that can afflict students from getting good results in the classroom. Furthermore, exploring possible solutions to overcome challenges are also included in this study. The research sample consists of 140 students who attended the class of Personality Development and Grooming. The employed research instrument is a questionnaire. Statistic for data analysis is t-test and Multiple Regression Analysis. The result found that although students are satisfied with teaching and learning of this subject, they considered that teaching in English and teaching topics in social etiquette in different cultures are difficult for them to understand.

Keywords: personality development, grooming, Airline Business Program, soft skill

Procedia PDF Downloads 238
30607 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 524
30606 Evolution of Pop Art Pattern on Modern Ao Dai

Authors: Mai Anh Pham Ho

Abstract:

Ao Dai is the traditional dress of Vietnamese women that consists of a long tunic with slits on either side and wide trousers. This is the Vietnamese national costume which most common worn by women in daily life. The Vietnamese men may wear Ao Dai on special occasions like New Year Eve or Wedding Ceremony. Ao Dai is one of the few Vietnamese words that appear in English language dictionaries. Nowadays, there are variations in modern Ao Dai that consist of a short tunic on knee and slim trousers with the other materials like kaki or jeans. This paper aims to apply Pop art pattern on modern Ao Dai through the image of Vietnamese women by modifying the creation process of fashion design. It reflects on how modern culture is involved in Ao Dai and how it affects on fashion design. The research method of this paper is done through surveying the various examples of technological applications to fashion design, then the pop art pattern with the image of Vietnamese women is applied on modern Ao Dai. The results of this paper have shown through the collection of modern Ao Dai with three artworks applied the pop art pattern. In conclusion, the role of fashion technology supports and evolves the traditional value in order to establish the Vietnamese national personality as well as distinguish to other cultural values in the world.

Keywords: pop art pattern, Vietnamese national costume, modern ao dai, fashion design

Procedia PDF Downloads 283
30605 NFResNet: Multi-Scale and U-Shaped Networks for Deblurring

Authors: Tanish Mittal, Preyansh Agrawal, Esha Pahwa, Aarya Makwana

Abstract:

Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three differ-ent loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.

Keywords: multi-scale, Unet, deblurring, FFT, resblock, NAF-block, nfresnet, charbonnier, edge, frequency reconstruction

Procedia PDF Downloads 136
30604 Ambivalence in Embracing Artificial Intelligence in the Units of a Public Hospital in South Africa

Authors: Sanele E. Nene L., Lia M. Hewitt

Abstract:

Background: Artificial intelligence (AI) has a high value in healthcare, various applications have been developed for the efficiency of clinical operations, such as appointment/surgery scheduling, diagnostic image analysis, prognosis, prediction and management of specific ailments. Purpose: The purpose of this study was to explore, describe, contrast, evaluate, and develop the various leadership strategies as a conceptual framework, applied by public health Operational Managers (OMs) to embrace AI benefits, with the aim to improve the healthcare system in a public hospital. Design and Method: A qualitative, exploratory, descriptive and contextual research design was followed and a descriptive phenomenological approach. Five phases were followed to conduct this study. Phenomenological individual interviews and focus groups were used to collect data and a phenomenological thematic data analysis method was used. Findings and conclusion: Three themes surfaced as the experiences of AI by the OMs; Positive experiences related to AI, Management and leadership processes in AI facilitation, and Challenges related to AI.

Keywords: ambivalence, embracing, Artificial intelligence, public hospital

Procedia PDF Downloads 79
30603 Nanostructural Analysis of the Polylactic Acid (PLA) Fibers Functionalized by RF Plasma Treatment

Authors: J. H. O. Nascimento, F. R. Oliveira, K. K. O. S. Silva, J. Neves, V. Teixeira, J. Carneiro

Abstract:

These the aliphatic polyesters such as Polylactic Acid (PLA) in the form of fibers, nanofibers or plastic films, generally possess chemically inert surfaces, free porosity, and surface free energy (ΔG) lesser than 32 mN/m. It is therefore considered a low surface energy material, consequently has a low work of adhesion. For this reason, the products manufactured using these polymers are often subjected to surface treatments in order to change its physic-chemical surface, improving their wettability and the Work of Adhesion (WA). Plasma Radio Frequency low pressure (RF) treatment was performed in order to improve the Work of Adhesion (WA) on PLA fibers. Different parameters, such as, power, ratio of working gas (Argon/Oxygen) and treatment time were used to optimize the plasma conditions to modify the PLA surface properties. With plasma treatment, a significant increase in the work of adhesion on PLA fiber surface was observed. The analysis performed by XPS showed an increase in polar functional groups and the SEM and AFM image revealed a considerable increase in roughness.

Keywords: RF plasma, surface modification, PLA fabric, atomic force macroscopic, Nanotechnology

Procedia PDF Downloads 537
30602 Tool for Maxillary Sinus Quantification in Computed Tomography Exams

Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina

Abstract:

The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.

Keywords: maxillary sinus, support vector machine, region growing, volume quantification

Procedia PDF Downloads 504
30601 Biofeedback-Driven Sound and Image Generation

Authors: Claudio Burguez, María Castelló, Mikaela Pisani, Marcos Umpiérrez

Abstract:

BIOFEEDBACK exhibition offers a unique experience for each visitor, combining art, neuroscience, and technology in an interactive way. Using a headband that captures the bioelectric activity of the brain, the visitors are able to generate sound and images in a sequence loop, making them an integral part of the artwork. Through this interactive exhibit, visitors gain a deeper appreciation of the beauty and complexity of the brain. As a special takeaway, visitors will receive an NFT as a present, allowing them to continue their engagement with the exhibition beyond the physical space. We used the EEG Biofeedback technique following a closed-loop neuroscience approach, transforming EEG data captured by a Muse S headband in real-time into audiovisual stimulation. PureData is used for sound generation and Generative Adversarial Networks (GANs) for image generation. Thirty participants have experienced the exhibition. For some individuals, it was easier to focus than others. Participants who said they could focus during the exhibit stated that at one point, they felt that they could control the sound, while images were more abstract, and they did not feel that they were able to control them.

Keywords: art, audiovisual, biofeedback, EEG, NFT, neuroscience, technology

Procedia PDF Downloads 72
30600 Urban Catalyst through Traditional Market Revitalization towards the MICE Tourism in Surakarta

Authors: Istijabatul Aliyah, Bambang Setioko, Rara Sugiarti

Abstract:

Surakarta is one of the cities which are formed with the concept of Javanese cosmology. As a traditional town of Java, Surakarta is known as ‘the paradise’ of traditional markets. Since its establishment, Surakarta is formed with Catur Gatra Tunggal or Four Single-Slot concept (palace, square, mosques, and markets). Current development in Surakarta downtown today indicates that traditional markets have improved themselves in both physical and non-physical aspects. The efforts start from the market façade revitalization, restoration and the overall development of market; up to social activities, competition between traders or large celebrations in the neighbourhood market. This research was conducted in Surakarta, which is aimed at: identifying the role of traditional market revitalization efforts in the development of a city. This study employs several methods of analysis, namely: 1) Spatial analysis for mapping the distribution of traditional markets in the city constellation, 2) Category-Based Analysis (CBA) to classify the revitalization of traditional markets that has an influence in the development of the city, and 3) Interactive Method of Analysis. The results of this research indicate that the presence of a constellation of traditional markets in Surakarta is dominated by the presence of Gede Market, not only as the oldest traditional market, but also as a center of economic and socio-cultural activities of the community. The role of traditional market revitalization in the development of a town is as an Urban Catalyst towards a MICE city in the sense that the revitalization effort, even done in a relatively short time and not yet covering the overall objects, is able to establish brand image of Surakarta as a city of culture which is friendly and ready to be MICE tourism city.

Keywords: traditional market revitalization, urban catalyst, MICE tourism, Surakarta

Procedia PDF Downloads 381