Search results for: impregnated active layer mode
6517 Introduction of Mass Rapid Transit System and Its Impact on Para-Transit
Authors: Khalil Ahmad Kakar
Abstract:
In developing countries increasing the automobile and low capacity public transport (para-transit) which are creating congestion, pollution, noise, and traffic accident are the most critical quandary. These issues are under the analysis of assessors to break down the puzzle and propose sustainable urban public transport system. Kabul city is one of those urban areas that the inhabitants are suffering from lack of tolerable and friendly public transport system. The city is the most-populous and overcrowded with around 4.5 million population. The para-transit is the only dominant public transit system with a very poor level of services and low capacity vehicles (6-20 passengers). Therefore, this study after detailed investigations suggests bus rapid transit (BRT) system in Kabul City. It is aimed to mitigate the role of informal transport and decreases congestion. The research covers three parts. In the first part, aggregated travel demand modelling (four-step) is applied to determine the number of users for para-transit and assesses BRT network based on higher passenger demand for public transport mode. In the second part, state preference (SP) survey and binary logit model are exerted to figure out the utility of existing para-transit mode and planned BRT system. Finally, the impact of predicted BRT system on para-transit is evaluated. The extracted outcome based on high travel demand suggests 10 km network for the proposed BRT system, which is originated from the district tenth and it is ended at Kabul International Airport. As well as, the result from the disaggregate travel mode-choice model, based on SP and logit model indicates that the predicted mass rapid transit system has higher utility with the significant impact regarding the reduction of para-transit.Keywords: BRT, para-transit, travel demand modelling, Kabul City, logit model
Procedia PDF Downloads 1836516 Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model
Authors: Justin Zhengjie Tan, Yang Zhao
Abstract:
Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening.Keywords: quantum electrodynamics, adiabatic rapid passage, Landau-Zener transitions, dissipative environment
Procedia PDF Downloads 866515 Understanding the Role of Alkali-Free Accelerators in Wet-Mix Shotcrete
Authors: Ezgi Yurdakul, Klaus-Alexander Rieder, Richard Sibbick
Abstract:
Most of the shotcrete projects require compliance with meeting a specified early-age strength target (e.g., reaching 1 MPa in 1 hour) that is selected based on the underground conditions. To meet the desired early-age performance characteristics, accelerators are commonly used as they increase early-age strength development rate and accelerate the setting thereby reducing sagging and rebound. The selection of accelerator type and its dosage is made by the setting time and strength required for the shotcrete application. While alkaline and alkali-free accelerators are the two main types used in wet-mix shotcrete; alkali-free admixtures increasingly substitute the alkaline accelerators to improve the performance and working safety. This paper aims to evaluate the impact of alkali-free accelerators in wet-mix on various tests including set time, early and later-age compressive strength, boiled absorption, and electrical resistivity. Furthermore, the comparison between accelerated and non-accelerated samples will be made to demonstrate the interaction between cement and accelerators. Scanning electron microscopy (SEM), fluorescent resin impregnated thin section and cut and polished surface images will be used to understand the microstructure characterization of mixes in the presence of accelerators.Keywords: accelerators, chemical admixtures, shotcrete, sprayed concrete
Procedia PDF Downloads 1706514 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water
Authors: Nadia Hammouda, K. Belmokre
Abstract:
Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water
Procedia PDF Downloads 4816513 Development of Dye Sensitized Solar Window by Physical Parameters Optimization
Authors: Tahsin Shameem, Chowdhury Sadman Jahan, Mohammad Alam
Abstract:
Interest about Net Zero Energy Buildings have gained traction in recent years following the need to sustain energy consumption with generations on site and to reduce dependence on grid supplied energy from large plants using fossil fuel. With this end in view, building integrated photovoltaics are being studied attempting to utilize all exterior facades of a building to generate power. In this paper, we have looked at the physical parameters defining a dye sensitized solar cell (DSSC) and discussed their impact on energy harvest. Following our discussion and experimental data obtained from literature, we have attempted to optimize these physical parameters accordingly so as to allow maximum light absorption for a given active layer thickness. We then modified a planer DSSC design with our optimized properties to allow adequate light transmission which demonstrated a high fill factor and an External Quantum Efficiency (EQE) of greater than 9% by computer aided design and simulation. In conclusion, a DSSC based solar window with such high output values even after such high light transmission through it definitely flags a promising future for this technology and our work elicits the need for further study and practical experimentation.Keywords: net zero energy building, integrated photovoltaics, dye sensitized solar cell, fill factor, External Quantum Efficiency
Procedia PDF Downloads 1416512 The Contact between a Rigid Substrate and a Thick Elastic Layer
Authors: Nicola Menga, Giuseppe Carbone
Abstract:
Although contact mechanics has been widely focused on the study of contacts between half-space, it has been recently pointed out that in presence of finite thickness elastic layers the results of the contact problem show significant difference in terms of the main contact quantities (e.g. contact area, penetration, mean pressure, etc.). Actually, there exist a wide range of industrial application demanding for this kind of studies, such as seals leakage prediction or pressure-sensitive coatings for electrical applications. In this work, we focus on the contact between a rigid profile and an elastic layer of thickness h confined under two different configurations: rigid constrain and applied uniform pressure. The elastic problem at hand has been formalized following Green’s function method and then numerically solved by means of a matrix inversion. We study different contact conditions, both considering and neglecting adhesive interactions at the interface. This leads to different solution techniques: Adhesive contacts equilibrium solution is found, in term of contact area for given penetration, making stationary the total free energy of the system; whereas, adhesiveless contacts are addressed defining an equilibrium criterion, again on the contact area, relying on the fracture mechanics stress intensity factor KI. In particular, we make the KI vanish at the edges of the contact area, as peculiar for adhesiveless elastic contacts. The results are obtained in terms of contact area, penetration, and mean pressure for both adhesive and adhesiveless contact conditions. As expected, in the case of a uniform applied pressure the slab turns out much more compliant than the rigidly constrained one. Indeed, we have observed that the peak value of the contact pressure, for both the adhesive and adhesiveless condition, is much higher for the rigidly constrained configuration than in the case of applied uniform pressure. Furthermore, we observed that, for little contact area, both systems behave the same and the pull-off occurs at approximately the same contact area and mean contact pressure. This is an expected result since in this condition the ratio between the layers thickness and the contact area is very high and both layer configurations recover the half-space behavior where the pull-off occurrence is mainly controlled by the adhesive interactions, which are kept constant among the cases.Keywords: contact mechanics, adhesion, friction, thick layer
Procedia PDF Downloads 5106511 Assessment of the Tectonic Effects on Soil Radon Activity along the Margin of the Arabian Plate Boundary in Northwestern Syria
Authors: Mohamed Al-Hilal
Abstract:
The main purpose of the present study is to assess the role of active tectonics in influencing the emanation level of soil radon across two tectonically active structures of the Northern Dead Sea Fault (NDSF) in northwestern Syria: namely, the Qastoon and Al-Harif fault segments. The radon measurements were basically directed by the results drawn from earlier studies of archaeoseismic and paleoseismic investigation in Al-Harif, besides integrated geophysical and morphotectonic survey at the Qastoon site. In view of that, a total of 80 soil gas radon points were measured in this work with a sampling depth of 75 cm, using the AlphaGUARD PQ 2000Pro radon detector. The background range of normal radon emission from local soil was determined in area located away from the influence of the tectonic disturbances. The obtained radon data were statistically analyzed, and the mean values have been standardized in terms of probability of magnitude, which enhances the comparison process and so facilitating the separation of normal radon variations from other anomalous or geotectonic related values. The overall results revealed remarkable occurrences of fault-associated radon anomalies with maximum peak values of ~6 to 7 times above the background, trending in accordance with the predicted traces of the fault ruptures at the Qastoon and Al-Harif, respectively.Keywords: soil gas radon, active tectonic structure, northern dead sea fault, western Syria
Procedia PDF Downloads 1756510 Characterization of Penicillin V Acid and Its Related Compounds by HPLC
Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul
Abstract:
Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.Keywords: characterization, HPLC, Penicillin V acid, related substances
Procedia PDF Downloads 2786509 Allylation of Active Methylene Compounds with Cyclic Baylis-Hillman Alcohols: Why Is It Direct and Not Conjugate?
Authors: Karim Hrratha, Khaled Essalahb, Christophe Morellc, Henry Chermettec, Salima Boughdiria
Abstract:
Among the carbon-carbon bond formation types, allylation of active methylene compounds with cyclic Baylis-Hillman (BH) alcohols is a reliable and widely used method. This reaction is a very attractive tool in organic synthesis of biological and biodiesel compounds. Thus, in view of an insistent and peremptory request for an efficient and straightly method for synthesizing the desired product, a thorough analysis of various aspects of the reaction processes is an important task. The product afforded by the reaction of active methylene with BH alcohols depends largely on the experimental conditions, notably on the catalyst properties. All experiments reported that catalysis is needed for this reaction type because of the poor ability of alcohol hydroxyl group to be as a suitable leaving group. Within the catalysts, several transition- metal based have been used such as palladium in the presence of acid or base and have been considered as reliable methods. Furthemore, acid catalysts such as BF3.OEt2, BiX3 (X= Cl, Br, I, (OTf)3), InCl3, Yb(OTf)3, FeCl3, p-TsOH and H-montmorillonite have been employed to activate the C-C bond formation through the alkylation of active methylene compounds. Interestingly a report of a smoothly process for the ability of 4-imethyaminopyridine(DMAP) to catalyze the allylation reaction of active methylene compounds with cyclic Baylis-Hillman (BH) alcohol appeared recently. However, the reaction mechanism remains ambiguous, since the C- allylation process leads to an unexpected product (noted P1), corresponding to a direct allylation instead of conjugate allylation, which involves the most electrophilic center according to the electron withdrawing group CO effect. The main objective of the present theoretical study is to better understand the role of the DMAP catalytic activity as well as the process leading to the end- product (P1) for the catalytic reaction of a cyclic BH alcohol with active methylene compounds. For that purpose, we have carried out computations of a set of active methylene compounds varying by R1 and R2 toward the same alcohol, and we have attempted to rationalize the mechanisms thanks to the acid–base approach, and conceptual DFT tools such as chemical potential, hardness, Fukui functions, electrophilicity index and dual descriptor, as these approaches have shown a good prediction of reactions products.The present work is then organized as follows: In a first part some computational details will be given, introducing the reactivity indexes used in the present work, then Section 3 is dedicated to the discussion of the prediction of the selectivity and regioselectivity. The paper ends with some concluding remarks. In this work, we have shown, through DFT method at the B3LYP/6-311++G(d,p) level of theory that: The allylation of active methylene compounds with cyclic BH alcohol is governed by orbital control character. Hence the end- product denoted P1 is generated by direct allylation.Keywords: DFT calculation, gas phase pKa, theoretical mechanism, orbital control, charge control, Fukui function, transition state
Procedia PDF Downloads 3066508 Effect of Environmental Conditions on the Substrate Cu(In,Ga)Se2 Solar Cell Performances
Authors: Mekhannene Amine
Abstract:
In this paper, we began in the first step by two-dimensional simulation of a CIGS solar cell, in order to increase the current record efficiency of 20.48% for a single CIGS cell. Was created by utilizing a set of physical and technological parameters a solar cell of reference (such as layer thicknesses, gallium ratio, doping levels and materials properties) documented in bibliography and very known in the experimental field. This was accomplished through modeling and simulation using Atlas SILVACO-TCAD, an tool two and three dimensions very powerful and very adapted. This study has led us to determine the influence of different environmental parameters such as illumination (G) and temperature (T). In the second step, we continued our study by determining the influence of physical parameters (the acceptor of concentration NA) and geometric (thickness t) of the CIGS absorber layer, were varied to produce an optimum efficiency of 24.36%. This approach is promising to produce a CIGS classic solar cell to conduct a maximum performance.Keywords: solar cell, cigs, photovoltaic generator, illumination, temperature, Atlas SILVACO-TCAD
Procedia PDF Downloads 6456507 Acute Effects of Active Dynamic, Static Stretching and Passive Static Stretching Exercise on Hamstrings Flexibility and Muscle Strength
Authors: Yi Tse Wang, Che Hsiu Chen, Zih Jian Huang, Hon Wen Cheng
Abstract:
Stretching treatments enhanced flexibility. On the other hand, decreases in hamstrings strength have been reported after stretching, especially with static stretching or passive stretching. Stretching has been shown to be more effective than static stretching to improve muscle performance, but a clear consensus for the effect of dynamic stretching on muscle performance has not been achieved. The purpose of this study was to compare the acute effect of a dynamic stretching, static stretching and eccentric exercise protocol on hamstrings stiffness, flexibility and muscle strength. Forty-five healthy active men (height 179.9 cm; weight 71.5 kg; age 22.5 years) were participated in 3 randomly ordered testing sessions: dynamic stretching (DS), active static stretching (ASS), and passive static stretching (PSS). All the stretch were performed 30 seconds and repeated 6 times. There was a 30-second interval between repetitions. The outcome measures were isokinetic concentric contraction (60°/s), eccentric contraction (30°/s) peak torque, muscle flexibility after stretching. The results showed that the muscle flexibility (3.6%, 3.9% and 1.59%, respectively) increased significantly after DS, PSS and ASS. Hamstring isokinetic concentric peak torque (-6.4%, -8.0% and -5.8%, respectively) and eccentric peak torque (-5.8%, -4.5% and -5.4%, respectively) decreased significantly after DS, PSS and ASS. Hence, although the stretching protocols improve hamstrings flexibility immediately, reduced hamstring muscle eccentric and concentric peak torque.Keywords: hamstrings injury, warm-up, muscle performance, muscle stretching
Procedia PDF Downloads 3836506 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion
Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen
Abstract:
In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm
Procedia PDF Downloads 4456505 Atomic Layer Deposition of Metal Oxides on Si/C Materials for the Improved Cycling Stability of High-Capacity Lithium-Ion Batteries
Authors: Philipp Stehle, Dragoljub Vrankovic, Montaha Anjass
Abstract:
Due to its high availability and extremely high specific capacity, silicon (Si) is the most promising anode material for next generation lithium-ion batteries (LIBs). However, Si anodes are suffering from high volume changes during cycling causing unstable solid-electrolyte interface (SEI). One approach for mitigation of these effects is to embed Si particles into a carbon matrix to create silicon/carbon composites (Si/C). These typically show more stable electrochemical performance than bare silicon materials. Nevertheless, the same failure mechanisms mentioned earlier appear in a less pronounced form. In this work, we further improved the cycling performance of two commercially available Si/C materials by coating thin metal oxide films of different thicknesses on the powders via Atomic Layer Deposition (ALD). The coated powders were analyzed via ICP-OES and AFM measurements. Si/C-graphite anodes with automotive-relevant loadings (~3.5 mAh/cm2) were processed out of the materials and tested in half coin cells (HCCs) and full pouch cells (FPCs). During long-term cycling in FPCs, a significant improvement was observed for some of the ALD-coated materials. After 500 cycles, the capacity retention was already up to 10% higher compared to the pristine materials. Cycling of the FPCs continued until they reached a state of health (SOH) of 80%. By this point, up to the triple number of cycles were achieved by ALD-coated compared to pristine anodes. Post-mortem analysis via various methods was carried out to evaluate the differences in SEI formation and thicknesses.Keywords: silicon anodes, li-ion batteries, atomic layer deposition, silicon-carbon composites, surface coatings
Procedia PDF Downloads 1216504 Antireflection Performance of Graphene Directly Deposited on Silicon Substrate by the Atmospheric Pressure Chemical Vapor Deposition Method
Authors: Samira Naghdi, Kyong Yop Rhee
Abstract:
Transfer-free synthesis of graphene on dielectric substrates is highly desirable but remains challenging. Here, by using a thin sacrificial platinum layer as a catalyst, graphene was deposited on a silicon substrate through a simple and transfer-free synthesis method. During graphene growth, the platinum layer evaporated, resulting in direct deposition of graphene on the silicon substrate. In this work, different growth conditions of graphene were optimized. Raman spectra of the produced graphene indicated that the obtained graphene was bilayer. The sheet resistance obtained from four-point probe measurements demonstrated that the deposited graphene had high conductivity. Reflectance spectroscopy of graphene-coated silicon showed a decrease in reflectance across the wavelength range of 200-800 nm, indicating that the graphene coating on the silicon surface had antireflection capabilities.Keywords: antireflection coating, chemical vapor deposition, graphene, the sheet resistance
Procedia PDF Downloads 1806503 Free Vibration Analysis of Composite Beam with Non-Uniform Section Using Analytical, Numerical and Experimental Method
Authors: Kadda Boumediene, Mohamed Ziani
Abstract:
Mainly because of their good ratio stiffness/mass, and in addition to adjustable mechanical properties, composite materials are more and more often used as an alternative to traditional materials in several domains. Before using these materials in practical application, a detailed and precise characterization of their mechanical properties is necessary. In the present work, we will find a dynamic analyze of composite beam (natural frequencies and mode shape), an experimental vibration technique, which presents a powerful tool for the estimation of mechanical characteristics, is used to characterize a dissimilar beam of a Mortar/ natural mineral fiber. The study is completed by an analytic (Rayleigh & Rayleigh-Ritz), experimental and numerical application for non-uniform composite beam of a Mortar/ natural mineral fiber. The study is supported by a comparison between numerical and analytic results as well as a comparison between experimental and numerical results.Keywords: composite beam, mortar/ natural mineral fiber, mechanical characteristics, natural frequencies, mode shape
Procedia PDF Downloads 3536502 Development and Metrological Validation of a Control Strategy in Embedded Island Grids Using Battery-Hybrid-Systems
Authors: L. Wilkening, G. Ackermann, T. T. Do
Abstract:
This article presents an approach for stand-alone and grid-connected mode of a German low-voltage grid with high share of photovoltaic. For this purpose, suitable dynamic system models have been developed. This allows the simulation of dynamic events in very small time ranges and the operation management over longer periods of time. Using these simulations, suitable control parameters could be identified, and their effects on the grid can be analyzed. In order to validate the simulation results, a LV-grid test bench has been implemented at the University of Technology Hamburg. The developed control strategies are to be validated using real inverters, generators and different realistic loads. It is shown that a battery hybrid system installed next to a voltage transformer makes it possible to operate the LV-grid in stand-alone mode without using additional information and communication technology and without intervention in the existing grid units. By simulating critical days of the year, suitable control parameters for stable stand-alone operations are determined and set point specifications for different control strategies are defined.Keywords: battery, e-mobility, photovoltaic, smart grid
Procedia PDF Downloads 1436501 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform
Authors: Shield B. Lin, Sameer Abdali
Abstract:
Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 1496500 A Comparative Study of Active Release Technique and Myofascial Release Technique in Treatment of Patients with Upper Trapezius Spasm
Authors: Daxa Mishra, R. Harihara, Ankita
Abstract:
Trapezius muscle pain is the most common musculoskeletal disorder occurring in individuals who work with awkward positions, have repetitive movements and movements with precision demands. Treatment techniques like active release technique (ART) and myofascial release (MFR) can be used to relieve muscle spasm. The aim of the study is to compare the effect of ART and MFR on the upper trapezius muscle spasm. Methodology: A series of 60 patients of both sexes between the age group of 20 and 55 with upper trapezius spasm were divided into two groups by computerized randomization. Subjects in each group received treatment in the form of either ART or MFR for the period of seven days. cervical range of motion (ROM), neck disability index scale (NDI) and visual analog scale (VAS) tools were used to measure the outcome. Results: Paired Sample ‘t’ test was used to compare the Outcome differences within each group, while Independent ‘t’ test was used to compare the differences between the two groups for the same outcome measures. The improvement was found in both the groups at 7th day following intervention, but the group which received ART showed significant improvements as compared to group which received MFR. Conclusion: Although both techniques are effective in alleviation of symptoms and associated disability in upper trapezius muscle spasm, ART gave better results as compared to MRF.Keywords: goniometer, myofascial release, active release, physiotherapy
Procedia PDF Downloads 2446499 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 2786498 Exploring the Role of Phosphorylation on the β-lactamase Activity of OXA24/40
Authors: Dharshika Rajalingam, Jeffery W. Peng
Abstract:
Acinetobacter baumannii is a challenging threat to global health, recognized as a multidrug-resistant pathogen. -lactamase is one of the principal resistant mechanisms developed by A. baumannii to survive against -lactam antibiotics. OXA24/40 is one of the types of -lactamases, a well-documented carbapenem hydrolyzing class D -lactamases (CHDL). It was revealed that OXA24/40 showed resistivity against doripenem, one of the carbapenems, by two different mechanisms as hydrolysis and -lactonization. Furthermore, it undergoes genetic mutations to broaden the -lactamase activity to survive against antibiotic environments. One of the crucial characterizations of prokaryotes to develop adaptation is post-translational modification (PTM), mainly phosphorylation. However, the PTM of OXA24/40 is an unknown feature, and the impact of PTM on antibiotic resistivity is yet to be explored. We approached these hypotheses using NMR and MS techniques and found that the OXA24/40 could be phosphorylated in vitro. The Ser81 at the active STFK motif of OXA24/40 of catalytic pocket was identified as the site of phosphorylation using 1D 31P NMR experiment, whereas S81 is required to form an acyl-enzyme complex between enzyme and -lactam antibiotics. The activity of completely phosphorylated OXA24/40 wild type against doripenem revealed that the phosphorylation of active Ser inactivates the -lactamases activity of OXA24/40. The 1D 1H CPMG NMR-based activity assay of phosphorylated OXA24/40 against doripenem confirmed that both deactivating mechanisms are inhibited by phosphorylation. Carbamylated Lysine at the active STFK motif is one of the critical features of CHDL required for the acylation and deacylation reactions of the enzyme. The 1D 13C NMR experiment confirmed that the K84 of phosphorylated OXA24/40 is de-carbamylated. Phosphorylation of OXA24/40 affects both active S81 and carbamylated K84 of OXA24 that are required for the resistivity of -lactamase. So, phosphorylation could be one of the reasons for the genetic mutation of OXA24/40 for the development of antibiotic resistivity. Further research can lead to an understanding of the effect of phosphorylation on the clinical mutants of the OXA24-like -lactamase family on the broadening of -lactamase activity.Keywords: OXA24/40, phosphorylation, clinical mutants, resistivity
Procedia PDF Downloads 796497 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network
Authors: Parisa Mansour
Abstract:
Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence
Procedia PDF Downloads 656496 Design of a Dual Polarized Resonator Antenna for Mobile Communication System
Authors: N. Fhafhiem, P. Krachodnok, R. Wongsan
Abstract:
This paper proposes the development and design of double layer metamaterials based on electromagnetic band gap (EBG) rods as a superstrate of a resonator antenna to enhance required antenna characteristics for the mobile base station. The metallic rod type metamaterial can partially reflect wave of a primary radiator. The antenna was designed and analyzed by a simulation result from CST Microwave Studio and designed technique could be confirmed by a measurement results from prototype antenna that agree with simulation results. The results indicate that the antenna can also generate a dual polarization by using a 45˚ oriented curved strip dipole located at the center of the reflector plane with double layer superstrate. It can be used to simplify the feed system of an antenna. The proposed antenna has a bandwidth covering the frequency range of 1920 – 2200 MHz, the gain of the antenna increases up to 14.06 dBi. In addition, an interesting sectoral 60˚ pattern is presented in horizontal plane.Keywords: metamaterial, electromagnetic band gap, dual polarization, resonator antenna
Procedia PDF Downloads 3876495 In Vitro Antimycoplasmal Activity of Peganum harmala on Mycoplasma hominis Tunisian Strains
Authors: Nadine khadraoui, Rym Essid, Olfa Tabbene, Imen Chniba, Safa Boujemaa, Selim Jallouli, Nadia Fares, Behija Mlik, Boutheina Ben Abdelmoumen Mardassi
Abstract:
Background and aim: Mycoplasma hominis is an opportunistic pathogen that can cause various gynecological infections such cervicitis, infertility, and, less frequently, extra-genital infections. Previous studies on the antimicrobial susceptibility of Mycoplasma hominis Tunisian strains have highlighted a significant resistance, even multi-resistance, to the most used antibiotic in the therapy of consequential infections. To address this concern, the present study aimed for the alternative of phytotherapy. Peganum harmala seed extract was tested as an antibacterial agent against multidrug-resistant M.hominis clinical strains. Material and Methods: Peganum harmala plant was collected from Ain Sebaa, Tabarka, North West region of Tunisia in April 2018, air-dried, grounded and extracted by different solvents.The crude methanolic extract was further partitioned with n-HEX, DCM, EtOAC and n-BuOl. Antibacterial activity was evaluated against M. hominis ATCC 23114 and 20 M. hominis clinical strains.The antimycoplasmal activity was tested by the microdilution method, and MIC values were determined. Phytochemical analysis and hemolytic activity on human erythrocytes were also performed. The active fraction was then subjected to purification, and the chemical identification of the active compound was investigated. Results: Among the tested fractions, the n-BuOH extract was the most active fraction since it exhibited an inhibitory effect against M. hominis ATCC 23114 and 80% of the tested clinical strains with MIC between 125 and 1000 µg/ml. The phytochemical analysis of the n-BuOH revealed its metabolic abundance in polyphenols, flavonoids and condensed tannin with levels of 257.37 mg AGE/g, 172.27 mg EC/g and 58.27 mg EC/g, respectively. In addition, P. harmala n-BuOH extract exhibited potent bactericidal activity against all M. hominis isolates with CMB values ranging between 125 and 4000 µg/ml. Further, the active fraction exhibited weak cytotoxicity effect at active concentrations when tested on human erythrocytes. The active compound was identified by gas chromatography–mass spectrometry as an indole alkaloid harmaline. Conclusion: In summary, Peganum harmala extract demonstrated an interesting anti-mycoplasmal activity against M. hominis Tunisian strains. Therefore, it could be considered as a potential candidate for the treatment of consequential infections. However, further studies are necessary to evaluate its mechanism of action in mycoplasmas.Keywords: mycoplasma hominis, peganum harmala, antibioresistance, phytotherapy, phytochemical analysis
Procedia PDF Downloads 1176494 Numerical Studies on 2D and 3D Boundary Layer Blockage and External Flow Choking at Wing in Ground Effect
Authors: K. Dhanalakshmi, N. Deepak, E. Manikandan, S. Kanagaraj, M. Sulthan Ariff Rahman, P. Chilambarasan C. Abhimanyu, C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar
Abstract:
In this paper using a validated double precision, density-based implicit standard k-ε model, the detailed 2D and 3D numerical studies have been carried out to examine the external flow choking at wing-in-ground (WIG) effect craft. The CFD code is calibrated using the exact solution based on the Sanal flow choking condition for adiabatic flows. We observed that at the identical WIG effect conditions the numerically predicted 2D boundary layer blockage is significantly higher than the 3D case and as a result, the airfoil exhibited an early external flow choking than the corresponding wing, which is corroborated with the exact solution. We concluded that, in lieu of the conventional 2D numerical simulation, it is invariably beneficial to go for a realistic 3D simulation of the wing in ground effect, which is analogous and would have the aspects of a real-time parametric flow. We inferred that under the identical flying conditions the chances of external flow choking at WIG effect is higher for conventional aircraft than an aircraft facilitating a divergent channel effect at the bottom surface of the fuselage as proposed herein. We concluded that the fuselage and wings integrated geometry optimization can improve the overall aerodynamic performance of WIG craft. This study is a pointer to the designers and/or pilots for perceiving the zone of danger a priori due to the anticipated external flow choking at WIG effect craft for safe flying at the close proximity of the terrain and the dynamic surface of the marine.Keywords: boundary layer blockage, chord dominated ground effect, external flow choking, WIG effect
Procedia PDF Downloads 2716493 Failure Localization of Bipolar Integrated Circuits by Implementing Active Voltage Contrast
Authors: Yiqiang Ni, Xuanlong Chen, Enliang Li, Linting Zheng, Shizheng Yang
Abstract:
Bipolar ICs are playing an important role in military applications, mainly used in logic gates, such as inverter and NAND gate. The defect of metal break located on the step is one of the main failure mechanisms of bipolar ICs, resulting in open-circuit or functional failure. In this situation, general failure localization methods like optical beam-induced resistance change (OBIRCH) and photon emission microscopy (PEM) might not be fully effective. However, active voltage contrast (AVC) can be used as a voltage probe, which may pinpoint the incorrect potential and thus locate the failure position. Two case studies will be present in this paper on how to implement AVC for failure localization, and the detailed failure mechanism will be discussed.Keywords: bipolar IC, failure localization, metal break, open failure, voltage contrast
Procedia PDF Downloads 2916492 Labview-Based System for Fiber Links Events Detection
Authors: Bo Liu, Qingshan Kong, Weiqing Huang
Abstract:
With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising
Procedia PDF Downloads 1236491 Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light
Authors: Claudia L. Bianchi, Giuseppina Cerrato, Federico Galli, Federica Minozzi, Valentino Capucci
Abstract:
At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017.Keywords: Ag-doped microsized TiO₂, eco-active ceramic, photocatalysis, digital coating
Procedia PDF Downloads 2296490 Performance of an Anaerobic Osmotic Membrane Bioreactor Hybrid System for Wastewater Treatment and Phosphorus Recovery
Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
The submerged anaerobic osmotic membrane bioreactor (AnOMBR) integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR used cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5 L bioreactor at 30-35 ℃. Active layer was orientated to feed stream for minimizing membrane fouling and scaling. Additionally, a peristaltic pump was used to circulate magnesium sulphate (MgSO₄) solution applied as draw solution (DS). Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneously control the salt accumulation in the bioreactor. During experiment progress, the average water flux was around 1.6 LMH. The AnOMBR process showed greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial of ammonia was removed. On the other hand, the average methane production of 0.22 L/g sCOD was obtained. Subsequently, the overall performance demonstrates that a novel submerged AnOMBR system is potential for simultaneous wastewater treatment and resource recovery from wastewater. Therefore, the new concept of this system can be used to replace for the conventional AnMBR in the future.Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor
Procedia PDF Downloads 2366489 Nonlinear Porous Diffusion Modeling of Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach
Authors: Eloise C. Tredenick, Troy W. Farrell, W. Alison Forster, Steven T. P. Psaltis
Abstract:
The agriculture industry requires improved efficacy of sprays being applied to crops. More efficacious sprays provide many environmental and financial benefits. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The importance of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted, as the results of each uptake experiments are specific to each formulation of active ingredient and plant species. In this work we develop a mathematical model and numerical simulation for the uptake of ionic agrochemicals through aqueous pores in plant cuticles. We propose a nonlinear porous diffusion model of ionic agrochemicals in isolated cuticles, which provides additions to a simple diffusion model through the incorporation of parameters capable of simulating plant species' variations, evaporation of surface droplet solutions and swelling of the aqueous pores with water. The model could feasibly be adapted to other ionic active ingredients diffusing through other plant species' cuticles. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms.Keywords: aqueous pores, ionic active ingredient, mathematical model, plant cuticle, porous diffusion
Procedia PDF Downloads 2626488 Half Mode Substrate Integrated Wave Guide of Band Pass Filter Based to Defected Ground Structure Cells
Authors: Damou Mehdi, Nouri Keltoum, Feham Mohammed, Khazini Mohammed, Bouazza Tayb Habibi Chawki
Abstract:
The Half mode SIW filter is treated by two softwares (HFSS (High Frequency Structure Simulator) and CST (Computer Simulation Technology)). The filter HMSIW has a very simple structure and a very compact size. The simulated results by CST are presented and compared with the results simulated by a high-frequency structure simulator. Good agreement between the simulated CST and simulated results by HFSS is observed. By cascading two of them according to design requirement, a X-band bandpass filter is designed and simulated to meet compact size, low insertion loss, good return loss as well as second harmonic suppression. As an example, we designed the proposed HMSIW filter at X band by HFSS. The filter has a pass-band from 7.3 GHz to 9.8 GHz, and its relative operating fraction bandwidth is 29.5 %. There are one transmission zeros are located at 14.4 GHz.Keywords: substrate integrated waveguide, filter, HMSIW, defected ground structures (DGS), simulation BPF
Procedia PDF Downloads 587