Search results for: fuel theft
404 Generation of Renewable Energy Through Photovoltaic Panels, Albania Photovoltaic Capacity
Authors: Dylber Qema
Abstract:
Driven by recent developments in technology and the growing concern about the sustainability and environmental impact of conventional fuel use, the possibility of producing clean and sustainable energy in significant quantities from renewable energy sources has sparked interest all over the world. Solar energy is one of the sources for the generation of electricity, with no emissions or environmental pollution. The electricity produced by photovoltaics can supply a home or business and can even be sold or exchanged with the grid operator. A very positive effect of using photovoltaic modules is that they do not produce greenhouse gases and do not produce chemical waste, unlike all other forms of energy production. Photovoltaics are becoming one of the largest investments in the field of renewable generating units. Improving the reliability of the electric power system is one of the most important impacts of the installation of photovoltaics (PV). Renewable energy sources are so large that they can meet the energy demands of the whole world, thus enabling sustainable supply as well as reducing local and global atmospheric emissions. Albania is rated by experts as one of the most favorable countries in Europe for the production of electricity from solar panels. But the country currently produces about 1% of its energy from the sun, while the rest of the needs are met by hydropower plants and imports. Albania has very good characteristics in terms of solar radiation (about 1300–1400 kW/m2). Solar energy has great potential and is a permanent source of energy with greater economic efficiency. Photovoltaic energy is also seen as an alternative, as long periods of drought in Albania have produced crises and high costs for securing energy in the foreign market.Keywords: capacity, ministry of tourism and environment, obstacles, photovoltaic energy, sustainable
Procedia PDF Downloads 59403 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India
Authors: A. Kumar, V. Devadas
Abstract:
Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.Keywords: appliance, consumption, electricity, households
Procedia PDF Downloads 116402 The Effect of Sulfur and Calcium on the Formation of Dioxin in a Bubbling Fluidized Bed Incinerator
Authors: Chien-Song Chyang, Wei-Chih Wang
Abstract:
For the incineration process, the inhibition of dioxin formation is an important issue. Many investigations indicate that adding sulfur compounds in the combustion process can be an effectively inhibition for the dioxin formation. In the process, the ratio of sulfur-to-chlorine plays an important role for the reduction efficiency of dioxin formation. Ca-base sorbent is also a common used for the acid gas removing. Moreover, that is also the indirectly way for dioxin inhibition. Although sulfur and calcium can reduce the dioxin formation, it still have some confusion exists between these additives. To understand and clarify the relationship between the dioxin and simultaneous addition of sulfur and calcium are presented in this study. The experimental data conducted in a pilot scale fluidized bed combustion system at various operating conditions are analysis comprehensively. The focus is on the dioxin of fly ash in this study. The experimental data in this study showed that the PCDD/Fs concentration in the fly ash collected from the baghouse is increased slightly as the simultaneous addition of sulfur and calcium. This work described the CO concentration with the addition of sulfur and calcium at the freeboard temperature from 800°C to 900°C, which is raised by the fuel complexity. The positive correlation exists between the dioxin concentration and CO concentration and carbon contained in the fly ash.. At the same sulfur/chlorine ratio, the toxic equivalent quantity (TEQ) can be reduced by increasing the actual concentration of sulfur and calcium. The homologue profiles showed that the P₅CDD and P₅CDF were the two major sources for the toxicity of dioxin. 2,3,7,8-TCDD and 2,3,7,8-TCDF reduced by the addition of pyrite and hydrated lime. The experimental results showed that the trend of PCDD/Fs concentration in the fly ash was different by the different sulfur/chlorine ratio with the addition of sulfur at 800°C.Keywords: reduction of dioxin emissions, sulfur-to-chlorine ratio, de-chlorination, Ca-based sorbent
Procedia PDF Downloads 147401 Biomass Energy: "The Boon for the Would"
Authors: Shubham Giri Goswami, Yogesh Tiwari
Abstract:
In today’s developing world, India and other countries are developing different instruments and accessories for the better standard and life to be happy and prosper. But rather than this we human-beings have been using different energy sources accordingly, many persons such as scientist, researchers etc have developed many Energy sources like renewable and non-renewable energy sources. Like fossil fuel, coal, gas, petroleum products as non-renewable sources, and solar, wind energy as renewable energy source. Thus all non-renewable energy sources, these all Created pollution as in form of air, water etc. due to ultimate use of these sources by human the future became uncertain. Thus to minimize all this environmental affects and destroy the healthy environment we discovered a solution as renewable energy source. Renewable energy source in form of biomass energy, solar, wind etc. We found different techniques in biomass energy, that good energy source for people. The domestic waste, and is a good source of energy as daily extract from cow in form of dung and many other domestic products naturally can be used eco-friendly fertilizers. Moreover, as from my point of view the cow is able to extract 08-12 kg of dung which can be used to make wormy compost fertilizers. Furthermore, the calf urine as insecticides and use of such a compounds will lead to destroy insects and thus decrease communicable diseases. Therefore, can be used by every person and biomass energy can be in those areas such as rural areas where non-renewable energy sources cannot reach easily. Biomass can be used to develop fertilizers, cow-dung plants and other power generation techniques, and this energy is clean and pollution free and is available everywhere thus saves our beautiful planet or blue or life giving planet called as “EARTH”. We can use the biomass energy, which may be boon for the world in future.Keywords: biomass, energy, environment, human, pollution, renewable, solar energy, sources, wind
Procedia PDF Downloads 526400 Wind Resource Estimation and Economic Analysis for Rakiraki, Fiji
Authors: Kaushal Kishore
Abstract:
Immense amount of imported fuels are used in Fiji for electricity generation, transportation and for carrying out miscellaneous household work. To alleviate its dependency on fossil fuel, paramount importance has been given to instigate the utilization of renewable energy sources for power generation and to reduce the environmental dilapidation. Amongst the many renewable energy sources, wind has been considered as one of the best identified renewable sources that are comprehensively available in Fiji. In this study the wind resource assessment for three locations in Rakiraki, Fiji has been carried out. The wind resource estimation at Rokavukavu, Navolau and at Tuvavatu has been analyzed. The average wind speed at 55 m above ground level (a.g.l) at Rokavukavu, Navolau, and Tuvavatu sites are 5.91 m/s, 8.94 m/s and 8.13 m/s with the turbulence intensity of 14.9%, 17.1%, and 11.7% respectively. The moment fitting method has been used to estimate the Weibull parameter and the power density at each sites. A high resolution wind resource map for the three locations has been developed by using Wind Atlas Analysis and Application Program (WAsP). The results obtained from WAsP exhibited good wind potential at Navolau and Tuvavatu sites. A wind farm has been proposed at Navolau and Tuvavatu site that comprises six Vergnet 275 kW wind turbines at each site. The annual energy production (AEP) for each wind farm is estimated and an economic analysis is performed. The economic analysis for the proposed wind farms at Navolau and Tuvavatu sites showed a payback period of 5 and 6 years respectively.Keywords: annual energy production, Rakiraki Fiji, turbulence intensity, Weibull parameter, wind speed, Wind Atlas Analysis and Application Program
Procedia PDF Downloads 188399 Experimental Study of Particle Deposition on Leading Edge of Turbine Blade
Authors: Yang Xiao-Jun, Yu Tian-Hao, Hu Ying-Qi
Abstract:
Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition.Keywords: deposition, experiment, film cooling, leading edge, paraffin particles
Procedia PDF Downloads 146398 The Effect of Additive Acid on the Phytoremediation Efficiency
Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh
Abstract:
Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.Keywords: phytoremediation, heavy metal, wheat, soil
Procedia PDF Downloads 338397 A Mixed-Integer Nonlinear Program to Optimally Pace and Fuel Ultramarathons
Authors: Kristopher A. Pruitt, Justin M. Hill
Abstract:
The purpose of this research is to determine the pacing and nutrition strategies which minimize completion time and carbohydrate intake for athletes competing in ultramarathon races. The model formulation consists of a two-phase optimization. The first-phase mixed-integer nonlinear program (MINLP) determines the minimum completion time subject to the altitude, terrain, and distance of the race, as well as the mass and cardiovascular fitness of the athlete. The second-phase MINLP determines the minimum total carbohydrate intake required for the athlete to achieve the completion time prescribed by the first phase, subject to the flow of carbohydrates through the stomach, liver, and muscles. Consequently, the second phase model provides the optimal pacing and nutrition strategies for a particular athlete for each kilometer of a particular race. Validation of the model results over a wide range of athlete parameters against completion times for real competitive events suggests strong agreement. Additionally, the kilometer-by-kilometer pacing and nutrition strategies, the model prescribes for a particular athlete suggest unconventional approaches could result in lower completion times. Thus, the MINLP provides prescriptive guidance that athletes can leverage when developing pacing and nutrition strategies prior to competing in ultramarathon races. Given the highly-variable topographical characteristics common to many ultramarathon courses and the potential inexperience of many athletes with such courses, the model provides valuable insight to competitors who might otherwise fail to complete the event due to exhaustion or carbohydrate depletion.Keywords: nutrition, optimization, pacing, ultramarathons
Procedia PDF Downloads 189396 Bi-Liquid Free Surface Flow Simulation of Liquid Atomization for Bi-Propellant Thrusters
Authors: Junya Kouwa, Shinsuke Matsuno, Chihiro Inoue, Takehiro Himeno, Toshinori Watanabe
Abstract:
Bi-propellant thrusters use impinging jet atomization to atomize liquid fuel and oxidizer. Atomized propellants are mixed and combusted due to auto-ignitions. Therefore, it is important for a prediction of thruster’s performance to simulate the primary atomization phenomenon; especially, the local mixture ratio can be used as indicator of thrust performance, so it is useful to evaluate it from numerical simulations. In this research, we propose a numerical method for considering bi-liquid and the mixture and install it to CIP-LSM which is a two-phase flow simulation solver with level-set and MARS method as an interfacial tracking method and can predict local mixture ratio distribution downstream from an impingement point. A new parameter, beta, which is defined as the volume fraction of one liquid in the mixed liquid within a cell is introduced and the solver calculates the advection of beta, inflow and outflow flux of beta to a cell. By validating this solver, we conducted a simple experiment and the same simulation by using the solver. From the result, the solver can predict the penetrating length of a liquid jet correctly and it is confirmed that the solver can simulate the mixing of liquids. Then we apply this solver to the numerical simulation of impinging jet atomization. From the result, the inclination angle of fan after the impingement in the bi-liquid condition reasonably agrees with the theoretical value. Also, it is seen that the mixture of liquids can be simulated in this result. Furthermore, simulation results clarify that the injecting condition affects the atomization process and local mixture ratio distribution downstream drastically.Keywords: bi-propellant thrusters, CIP-LSM, free-surface flow simulation, impinging jet atomization
Procedia PDF Downloads 279395 Synthesis and Characterization of Some Novel Carbazole Schiff Bases (OLED)
Authors: Baki Cicek, Umit Calisir
Abstract:
Carbazoles have been replaced lots of studies from 1960's to present and also still continues. In 1987, the first diode device had been developed. Thanks to that study, light emitting devices have been investigated and developed and also have been used on commercial applications. Nowadays, OLED (Organic Light Emitting Diodes) technology is using on lots of electronic screen such as (mobile phone, computer monitors, televisions, etc.) Carbazoles were subject a lot of study as a semiconductor material. Although this technology is used commen and widely, it is still development stage. Metal complexes of these compounds are using at pigment dyes because of colored substances, polymer technology, medicine industry, agriculture area, preparing rocket fuel-oil, determine some of biological events, etc. Becides all of these to preparing of schiff base synthesis is going on intensely. In this study, some of novel carbazole schiff bases were synthesized starting from carbazole. For that purpose, firstly, carbazole was alkylated. After purification of N-substituted-carbazole was nitrated to sythesized 3-nitro-N-substituted and 3,6-dinitro-N-substituted carbazoles. At next step, nitro group/groups were reduced to amines. Purified with using a type of silica gel-column chromatography. At the last step of our study, with sythesized 3,6-diamino-N-substituted carbazoles and 3-amino-N-substituted carbazoles were reacted with aldehydes to condensation reactions. 3-(imino-p-hydroxybenzyl)-N-isobutyl -carbazole, 3-(imino-2,3,4-trimethoxybenzene)-N-butylcarbazole, 3-(imino-3,4-dihydroxybenzene)-N-octylcarbazole, 3-(imino-2,3-dihydroxybenzene)-N-octylkarbazole and 3,6-di(α-imino-β-naphthol) -N-hexylcarbazole compounds were synthesized. All of synthesized compounds were characterized with FT-IR, 1H-NMR, 13C-NMR, and LC-MS.Keywords: carbazole, carbazol schiff base, condensation reactions, OLED
Procedia PDF Downloads 441394 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement
Authors: Issam Lakdhar, Akram Alhussein, Juan Creus
Abstract:
With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties
Procedia PDF Downloads 184393 Appliance of the Analytic Hierarchy Process Methodology for the Selection of a Small Modular Reactors to Enhance Maritime Traffic Decarbonisation
Authors: Sara Martín, Ying Jie Zheng, César Hueso
Abstract:
International shipping is considered one of the largest sources of pollution in the world, accounting for 812 million tons of CO2 emissions in the year 2018. Current maritime decarbonisation is based on the implementation of new fuel alternatives, such as LNG, biofuels, and methanol, among others, which are less polluting as well as less efficient. Despite being a carbon-free and highly-developed technology, nuclear propulsion is hardly discussed as an alternative. Scientifically, it is believed that Small Modular Reactors (SMR) could be a promising solution to decarbonized maritime traffic due to their small dimensions and safety capabilities. However, as of today, there are no merchant ships powered by nuclear systems. Therefore, this project aims to understand the challenges of the development of nuclear-fuelled vessels by analysing all SMR designs to choose the most suitable one. In order not to fall into subjectivities, the Analytic Hierarchy Process (AHP) will be used to make the selection. This multiple-criteria evaluation technique analyses complex decisions by pairwise comparison of a number of evaluation criteria that can be applied to each SMR. The state-of-the-art 72 SMRs presented by the International Atomic Energy Agency (IAEA) will be analysed and ranked by a global parameter, calculated by applying the AHP methodology. The main target of the work is to find an adequate SMR system to power a ship. Top designs will be described in detail, and conclusions will be drawn from the results. This project has been conceived as an effort to foster the near-term development of zero-emission maritime traffic.Keywords: international shipping, decarbonization, SMR, AHP, nuclear-fuelled vessels
Procedia PDF Downloads 125392 Fragment Domination for Many-Objective Decision-Making Problems
Authors: Boris Djartov, Sanaz Mostaghim
Abstract:
This paper presents a number-based dominance method. The main idea is how to fragment the many attributes of the problem into subsets suitable for the well-established concept of Pareto dominance. Although other similar methods can be found in the literature, they focus on comparing the solutions one objective at a time, while the focus of this method is to compare entire subsets of the objective vector. Given the nature of the method, it is computationally costlier than other methods and thus, it is geared more towards selecting an option from a finite set of alternatives, where each solution is defined by multiple objectives. The need for this method was motivated by dynamic alternate airport selection (DAAS). In DAAS, pilots, while en route to their destination, can find themselves in a situation where they need to select a new landing airport. In such a predicament, they need to consider multiple alternatives with many different characteristics, such as wind conditions, available landing distance, the fuel needed to reach it, etc. Hence, this method is primarily aimed at human decision-makers. Many methods within the field of multi-objective and many-objective decision-making rely on the decision maker to initially provide the algorithm with preference points and weight vectors; however, this method aims to omit this very difficult step, especially when the number of objectives is so large. The proposed method will be compared to Favour (1 − k)-Dom and L-dominance (LD) methods. The test will be conducted using well-established test problems from the literature, such as the DTLZ problems. The proposed method is expected to outperform the currently available methods in the literature and hopefully provide future decision-makers and pilots with support when dealing with many-objective optimization problems.Keywords: multi-objective decision-making, many-objective decision-making, multi-objective optimization, many-objective optimization
Procedia PDF Downloads 91391 Deciphering Electrochemical and Optical Properties of Folic Acid for the Applications of Tissue Engineering and Biofuel Cell
Authors: Sharda Nara, Bansi Dhar Malhotra
Abstract:
Investigation of the vitamins as an electron transfer mediator could significantly assist in merging the area of tissue engineering and electronics required for the implantable therapeutic devices. The present study report that the molecules of folic acid released by Providencia rettgeri via fermentation route under the anoxic condition of the microbial fuel cell (MFC) exhibit characteristic electrochemical and optical properties, as indicated by absorption spectroscopy, photoluminescence (PL), and cyclic voltammetry studies. The absorption spectroscopy has depicted an absorption peak at 263 nm with a small bulge around 293 nm on day two of bacterial culture, whereas an additional peak was observed at 365 nm on the twentieth day. Furthermore, the PL spectra has indicated that the maximum emission occurred at various wavelengths 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm. The change of emission spectra with varying excitation wavelength might be indicating the presence of tunable optical bands in the folic acid molecules co-related with the redox activity of the molecules. The results of cyclic voltammetry studies revealed that the oxidation and reduction occurred at 0.25V and 0.12V, respectively, indicating the electrochemical behavior of the folic acid. This could be inferred that the released folic acid molecules in a MFC might undergo inter as well as intra molecular electron transfer forming different intermediate states while transferring electrons to the electrode surface. Synchronization of electrochemical and optical properties of folic acid molecules could be potentially promising for the designing of electroactive scaffold and biocompatible conductive surface for the applications of tissue engineering and biofuel cells, respectively.Keywords: biofuel cell, electroactivity, folic acid, tissue engineering
Procedia PDF Downloads 131390 Microgrid: An Alternative of Electricity Supply to an Island in Thailand
Authors: Pawitchaya Srijaiwong, Surin Khomfoi
Abstract:
There are several solutions to supply electricity to an island in Thailand such as diesel generation, submarine power cable, and renewable energy power generation. However, each alternative has its own limitation like fuel and pollution of diesel generation, submarine power cable length resulting in loss of cable and cost of investment, and potential of renewable energy in the local area. This paper shows microgrid system which is a new alternative for power supply to an island. It integrates local power plant from renewable energy, energy storage system, and microgrid controller. The suitable renewable energy power generation on an island is selected from geographic location and potential evaluation. Thus, photovoltaic system and hydro power plant are taken into account. The capacity of energy storage system is also estimated by transient stability study in order to supply electricity demand sufficiently under normal condition. Microgrid controller plays an important role in conducting, communicating and operating for both sources and loads on an island so that its functions are discussed in this study. The conceptual design of microgrid operation is investigated in order to analyze the reliability and power quality. The result of this study shows that microgrid is able to operate in parallel with the main grid and in case of islanding. It is applicable for electricity supply to an island and a remote area. The advantages of operating microgrid on an island include the technical aspect like improving reliability and quality of power system and social aspects like outage cost saving and CO₂ reduction.Keywords: energy storage, islanding, microgrid, renewable energy
Procedia PDF Downloads 328389 Hybridization and Evaluation of Jatropha to Improve High Yield Varieties in Indonesia
Authors: Rully D. Purwati, Tantri D.A. Anggraeni, Bambang Heliyanto, M. Machfud, Joko Hartono
Abstract:
The availability of fuel in the world will be reduced in next few years, it is necessary to find alternative energy sources. Jatropha curcas L. is one of oil crops producing non-edible oil which is potential for bio-diesel. Jatropha cultivation and development program in Indonesia is facing several problems especially low seed yield resulting in inefficient crop cultivation cost. To cope with the problem, development of high yielding varieties is necessary. Development of new varieties to improve seed yield was conducted by hybridization and selection and resulted in fourteen potential genotypes. The yield potential of the fourteen genotypes were evaluated and compared with two check varieties. The objective of the evaluation was to find Jatropha hybrids with some characters i.e. their productivity was higher than check varieties, oil content > 40% and harvesting age ≤ 110 days. Hybridization and individual plant selection were carried out from 2010 to 2014. Evaluation of high yield was conducted in Asembagus experimental station, Situbondo, East Java in three years (2015-2017). The experimental designed was Randomized Complete Block Design with three replication, and plot size 10 m x 8 m. The characters observed were number of capsules per plant, dry seed yield (kg/ha) and seed oil content (%). The results of this experiment indicated that all the hybrids evaluated have higher productivity than check variety IP-3A. There were two superior hybrids i.e. HS-49xSP-65/32 and HS-49xSP-19/28 with highest seed yield per hectare and number of capsules per plant for three years.Keywords: Jatropha, bio energy, hybrid, high seed yield
Procedia PDF Downloads 145388 Natural Patterns for Sustainable Cooling in the Architecture of Residential Buildings in Iran (Hot and Dry Climate)
Authors: Elnaz Abbasian, Mohsen Faizi
Abstract:
In its thousand-year development, architecture has gained valuable patterns. Iran’s desert regions possess developed patterns of traditional architecture and outstanding skeletal features. Unfortunately increasing population and urbanization growth in the past decade as well as the lack of harmony with environment’s texture has destroyed such permanent concepts in the building’s skeleton, causing a lot of energy waste in the modern architecture. The important question is how cooling patterns of Iran’s traditional architecture can be used in a new way in the modern architecture of residential buildings? This research is library-based and documental that looks at sustainable development, analyzes the features of Iranian architecture in hot and dry climate in terms of sustainability as well as historical patterns, and makes a model for real environment. By methodological analysis of past, it intends to suggest a new pattern for residential buildings’ cooling in Iran’s hot and dry climate which is in full accordance to the ecology of the design and at the same time possesses the architectural indices of the past. In the process of cities’ physical development, ecological measures, in proportion to desert’s natural background and climate conditions, has kept the natural fences, preventing buildings from facing climate adversities. Designing and construction of buildings with this viewpoint can reduce the energy needed for maintaining and regulating environmental conditions and with the use of appropriate building technology help minimizing the consumption of fossil fuels while having permanent patterns of desert buildings’ architecture.Keywords: sustainability concepts, sustainable development, energy climate architecture, fossil fuel, hot and dry climate, patterns of traditional sustainability for residential buildings, modern pattern of cooling
Procedia PDF Downloads 308387 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System
Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer
Abstract:
The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling
Procedia PDF Downloads 246386 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy
Authors: Yasam Palguna, Rajesh Korla
Abstract:
The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures
Procedia PDF Downloads 165385 High Titer Cellulosic Ethanol Production Achieved by Fed-Batch Prehydrolysis Simultaneous Enzymatic Saccharification and Fermentation of Sulfite Pretreated Softwood
Authors: Chengyu Dong, Shao-Yuan Leu
Abstract:
Cellulosic ethanol production from lignocellulosic biomass can reduce our reliance on fossil fuel, mitigate climate change, and stimulate rural economic development. The relative low ethanol production (60 g/L) limits the economic viable of lignocellulose-based biorefinery. The ethanol production can be increased up to 80 g/L by removing nearly all the non-cellulosic materials, while the capital of the pretreatment process increased significantly. In this study, a fed-batch prehydrolysis simultaneously saccharification and fermentation process (PSSF) was designed to converse the sulfite pretreated softwood (~30% residual lignin) to high concentrations of ethanol (80 g/L). The liquefaction time of hydrolysis process was shortened down to 24 h by employing the fed-batch strategy. Washing out the spent liquor with water could eliminate the inhibition of the pretreatment spent liquor. However, the ethanol yield of lignocellulose was reduced as the fermentable sugars were also lost during the process. Fed-batch prehydrolyzing the while slurry (i.e. liquid plus solid fraction) pretreated softwood for 24 h followed by simultaneously saccharification and fermentation process at 28 °C can generate 80 g/L ethanol production. Fed-batch strategy is very effectively to eliminate the “solid effect” of the high gravity saccharification, so concentrating the cellulose to nearly 90% by the pretreatment process is not a necessary step to get high ethanol production. Detoxification of the pretreatment spent liquor caused the loss of sugar and reduced the ethanol yield consequently. The tolerance of yeast to inhibitors was better at 28 °C, therefore, reducing the temperature of the following fermentation process is a simple and valid method to produce high ethanol production.Keywords: cellulosic ethanol, sulfite pretreatment, Fed batch PSSF, temperature
Procedia PDF Downloads 367384 Environment-Friendly Biogas Technology: Comparative Analysis of Benefits as Perceived by Biogas Users and Non-User Livestock Farmers of Tehsil Jhang
Authors: Anees Raza, Liu Chunyan
Abstract:
Renewable energy technologies are need of the time and are already making the big impact in the climatic outlook of the world. Biogas technology is one of those, and it has a lot of benefits for its users. It is cost effective because it is produced from the raw material which is available free of cost to the livestock farmers. Bio-slurry, a by-product of biogas, is being used as fertilizer for the crops production and increasing soil fertility. There are many other household benefits of technology. Research paper discusses the benefits of biogas as perceived by the biogas users as well as non-users of Tehsil Jhang. Data were collected from 60 respondents (30 users and 30 non-users) selected purposively through validated and pre-tested interview schedule from the respondents. Collected data were analyzed by using Statistical Package for Social Sciences (SPSS). Household benefits like ‘makes cooking easy,’ ‘Less breathing issues for working women in kitchens’ and ‘Use of bio-slurry as organic fertilizer’ had the highly significant relationship between them with t-values of 3.24, 4.39 and 2.80 respectively. Responses of the respondents about environmental benefits of biogas technology showed that ‘less air pollution’ had a significant relationship between them while ‘less temperature rise up than due to the burning of wood /dung’ had the non-significant relationship in the responses of interviewed respondents. It was clear from the research that biogas users were becoming influential in convincing non-users to adopt this technology due to its noticeable benefits. Research area where people were depending on wood to be used as fire fuel could be helped in reduction of cutting of trees which will help in controlling deforestation and saving the environment.People should be encouraged in using of biogas technology through providing them subsidies and low mark up loans.Keywords: biogas technology, deforestation, environmental benefits, renewable energy
Procedia PDF Downloads 265383 Disrupting Patriarchy: Transforming Gender Oppression through Dialogue between Women and Men at a South African University
Authors: S. van Schalkwyk
Abstract:
On international levels and across disciplines gender scholars have argued that patriarchal scripts of masculinity and femininity are harmful as they negatively impact constructions of selfhood and relations between women and men. Patriarchal ideologies serve as a scaffolding for dominance and subordination and fuel violence against women. Toxic masculinity—social discourses of men as violent, unemotional, and sexually dominant—are embedded in South African culture and are rooted in the high rates of gender violence occurring in the country. Finding strategies that can open up space for the interrogation of toxic masculinity is crucial in order to disrupt the destructive consequences of patriarchy in educational and social contexts. The University of the Free State (UFS) in South Africa in collaboration with the non-profit organization Gender Reconciliation International conducted a year-long series of workshops with male and female students. The aim of these workshops was to facilitate healing between men and women through collective dialogue processes. Drawing on a collective biography methodology outlined by feminist poststructuralists, this paper explores the impact of these workshops on gender relations. Findings show that the students experienced significant psychological connections with others during these dialogues, through which they began to interrogate their own gendered conditioning and harmful patriarchal assumptions and practices. This paper enhances insights into the possibilities for disrupting patriarchy in South African universities through feminist collective research efforts.Keywords: collective biography methodology, South Africa, toxic masculinity, transforming gender oppression, violence against women
Procedia PDF Downloads 480382 Nanoparticulated (U,Gd)O2 Characterization
Authors: A. Fernandez Zuvich, I. Gana Watkins, H. Zolotucho, H. Troiani, A. Caneiro, M. Prado, A. L. Soldati
Abstract:
The study of actinide nanoparticles (NPs) has attracted the attention of the scientific community not only because the lack of information about their ecotoxicological effects but also because the use of NPs could open a new way in the production of nuclear energy. Indeed, it was recently demonstrated that UO2 NPs sintered pellets exhibit closed porosity with improved fission gas retention and radiation-tolerance , ameliorated mechanical properties, and less detriment of the thermal conductivity upon use, making them an interesting option for new nuclear fuels. In this work, we used a combination of diffraction and microscopy tools to characterize the morphology, the crystalline structure and the composition of UO2 nanoparticles doped with 10%wt Gd2O3. The particles were synthesized by a modified sol-gel method at low temperatures. X-ray Diffraction (XRD) studies determined the presence of a unique phase with the cubic structure and Fm3m spatial group, supporting that Gd atoms substitute U atoms in the fluorite structure of UO2. In addition, Field Emission Gun Scanning (FEG-SEM) and Transmission (FEG-TEM) Electron Microscopy images revealed the presence of micrometric agglomerates of nanoparticles, with rounded morphology and an average crystallite size < 50 nm. Energy Dispersive Spectroscopy (EDS) coupled to TEM determined the presence of Gd in all the analyzed crystallites. Besides, FEG-SEM-EDS showed a homogeneous concentration distribution at the micrometer scale indicating that the small size of the crystallites compensates the variation in composition by averaging a large number of crystallites. These techniques, as combined tools resulted thus essential to find out details of morphology and composition distribution at the sub-micrometer scale, and set a standard for developing and analyzing nanoparticulated nuclear fuels.Keywords: actinide nanoparticles, burnable poison, nuclear fuel, sol-gel
Procedia PDF Downloads 332381 Automation of Embodied Energy Calculations for Buildings through Building Information Modelling
Authors: Ahmad Odeh
Abstract:
Researchers are currently more concerned about the calculations of energy at the operational stage, mainly due to its larger environmental impact, but the fact remains, embodied energies represent a substantial contributor unaccounted for in the overall energy computation method. The calculation of materials’ embodied energy during the construction stage is complicated. This is due to the various factors involved. The equipment used, fuel needed, and electricity required for each type of materials varies with location and thus the embodied energy will differ for each project. Moreover, the method used in manufacturing, transporting and putting in place will have significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at calculating embodied energies based on such variabilities. It presents a systematic approach that uses an efficient method of calculation to provide a new insight for the selection of construction materials. The model is developed in a BIM environment. The quantification of materials’ energy is determined over the three main stages of their lifecycle: manufacturing, transporting and placing. The model uses three major databases each of which contains set of the construction materials that are most commonly used in building projects. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by machinery to place the materials in their intended locations. Through geospatial data analysis, the model automatically calculates the distances between the suppliers and construction sites and then uses dataset information for energy computations. The computational sum of all the energies is automatically calculated and then the model provides designers with a list of usable equipment along with the associated embodied energies.Keywords: BIM, lifecycle energy assessment, building automation, energy conservation
Procedia PDF Downloads 189380 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications
Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita
Abstract:
Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution
Procedia PDF Downloads 384379 Synthesis of Highly Efficient Bio-Octane Number Booster Using Nano Au-NiAlZr-Layered Double Hydroxides Catalyst
Authors: Bachir Redouane, Dib Nihel, Bedrane Sumeya, Blanco Ginesa, Calvino José Juan
Abstract:
Furfural, a key biomass-derived platform compound, holds significant potential for biofuel production and the synthesis of high-value intermediates. This study investigates the hydrogenation-condensation reaction of furfural issued from lignocellulosique biomass with isopropyl alcohol to produce isopropylfurfuryl ether (iPFE), a next-generation synfuel with a high-octane number. iPFE’s water stability and resistance to methanol absorption make it a sustainable alternative to conventional gasoline additives, offering comparable performance. The catalyst used in this reaction is based on NiAl layered double hydroxides (LDH), with zirconium incorporated to enhance the distribution and structure of active sites. Gold (Au) was deposited on the NiAlZr-LDH support to improve selectivity and yield. The addition of Zr improved the thermal and mechanical stability of the catalyst, while the Au modification further increased selectivity toward iPFE. Extensive catalytic experiments were conducted to optimize reaction conditions, including temperature, hydrogen pressure, and Au loading, to maximize iPFE yield. The results demonstrate a high conversion rate of furfural, exceeding 90% under optimal conditions, with enhanced selectivity toward iPFE. Moreover, iPFE was shown to have a higher-octane number compared to traditional furfuryl ethers, making it a highly promising candidate for advanced fuel applications.Keywords: Au-NiAlZr-LDH, biofuels, furfural, green chemistry, hydrogenation, isopropylfurfuryl ether, octane number.
Procedia PDF Downloads 10378 Energy-Saving Methods and Principles of Energy-Efficient Concept Design in the Northern Hemisphere
Authors: Yulia A. Kononova, Znang X. Ning
Abstract:
Nowadays, architectural development is getting faster and faster. Nevertheless, modern architecture often does not meet all the points, which could help our planet to get better. As we know, people are spending an enormous amount of energy every day of their lives. Because of the uncontrolled energy usage, people have to increase energy production. As energy production process demands a lot of fuel sources, it courses a lot of problems such as climate changes, environment pollution, animals’ distinction, and lack of energy sources also. Nevertheless, nowadays humanity has all the opportunities to change this situation. Architecture is one of the most popular fields where it is possible to apply new methods of saving energy or even creating it. Nowadays we have kinds of buildings, which can meet new willing. One of them is energy effective buildings, which can save or even produce energy, combining several energy-saving principles. The main aim of this research is to provide information that helps to apply energy-saving methods while designing an environment-friendly building. The research methodology requires gathering relevant information from literature, building guidelines documents and previous research works in order to analyze it and sum up into a material that can be applied to energy-efficient building design. To mark results it should be noted that the usage of all the energy-saving methods applied to a design project of building results in ultra-low energy buildings that require little energy for space heating or cooling. As a conclusion it can be stated that developing methods of passive house design can decrease the need of energy production, which is an important issue that has to be solved in order to save planet sources and decrease environment pollution.Keywords: accumulation, energy-efficient building, storage, superinsulation, passive house
Procedia PDF Downloads 262377 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction
Procedia PDF Downloads 298376 Study on Hydrogen Isotope Permeability of High Entropy Alloy Coating
Authors: Long Wang, Yongjin Feng, Xiaofang Luo
Abstract:
Tritium permeation through structural materials is a significant issue for fusion demonstration (DEMO) reactor blankets in terms of fuel cycle efficiency and radiological safety. Reduced activation ferritic (RAFM) steel CLF-1 is a prime candidate for the China’s CFETR blanket structural material, facing high permeability of hydrogen isotopes at reactor operational temperature. To confine tritium as much as possible in the reactor, surface modification of the steels including fabrication of tritium permeation barrier (TPB) attracts much attention. As a new alloy system, high entropy alloy (HEA) contains at least five principal elements, each of which ranges from 5 at% to 35 at%. This high mixing effect entitles HEA extraordinary comprehensive performance. So it is attractive to lead HEA into surface alloying for protective use. At present, studies on the hydrogen isotope permeability of HEA coatings is still insufficient and corresponding mechanism isn’t clear. In our study, we prepared three kinds of HEA coatings, including AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O. After comprehensive characterization of SEM, XPS, AFM, XRD and TEM, the structure and composition of the HEA coatings were obtained. Deuterium permeation tests were conducted to evaluate the hydrogen isotope permeability of AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings. Results proved that the (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings had better hydrogen isotope permeation resistance. Through analyzing and characterizing the hydrogen isotope permeation results of the corroded samples, an internal link between hydrogen isotope permeation behavior and structure of HEA coatings was established. The results provide valuable reference in engineering design of structural and TPB materials for future fusion device.Keywords: high entropy alloy, hydrogen isotope permeability, tritium permeation barrier, fusion demonstration reactor
Procedia PDF Downloads 172375 Characterization of Oxide Layer Developed during Tribo-Interaction of Zircaloys
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. The present work simulates the contact between the calandria tube and the liquid injection shutdown system (LISS) nozzle. The Calandria tube is the outer covering of the pressure tube. Water flows inside the pressure tube through fuel claddings which produces vibration in the pressure tube along with vibration in the calandria tube. Fretting wear takes place at the point of contact between the calandria tube and the LISS nozzle. Fretting tests were performed under different conditions, such as; varying fretting duration (i.e., 1 to 4 hours), varying frequency (i.e., 5 to 6.5 Hz), and varying amplitude (100 to 400 µm). The formation of the oxide layer was observed during the fretting wear test; as a result, the worn product. The worn surfaces were analyzed with scanning electron microscopy (SEM) to analyze the wear mechanism involved in the fretting test, and Energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy were used to confirm the presence of an oxide layer on the worn surface. The oxide layer becomes more uniform with fretting duration in case of water submerged condition as compared to dry contact condition. The oxide layer is deeply removed at high amplitude due to the change of wear mechanism from adhesion to abrasion, as confirmed by the presence of micro ploughing and micro cutting. Low amplitude fretting favors the formation of the tribo-oxide layer.Keywords: tribo-oxide layer, wear, mechanically mixed layer, zircaloy
Procedia PDF Downloads 85