Search results for: data mining challenges
27903 Government Big Data Ecosystem: A Systematic Literature Review
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review
Procedia PDF Downloads 22827902 An Entrepreneurial Culture Led by Creativity and Innovation: Challenges and Competencies for Sri Lanka as a Middle Income Country
Authors: Tissa Ravinda Perera
Abstract:
An open economic policy was introduced by Sri Lanka in 1977, before many other countries in Asia to align her economy to world economic trends and it was affected indigenous businesses since they had to compete with foreign products, processes, technology, innovations and businesses. The year 2010 was a milestone in Sri Lankan history to achieve the developmental goals when Foxbuisness rated Sri Lanka as the best performing global economy. However, Sri Lanka missed her chances of achieving development with the political and social chaos, consequent the regime change in 2015. This paper argues that to support the development of the country, Sri Lanka must develop an entrepreneurial culture. In this endeavor, creativity and innovation will play a pivotal role to achieve the desired level of development. In this study, it was used secondary data from various local and international sources to understand and explore the existing scenario of Sri Lankan economy, state of entrepreneurial culture and innovation, and challenges and competencies for the development of an entrepreneurial culture in Sri Lanka. The data was collected from secondary sources were depicted in tables in this paper in a meaningful manner. Based on the tables many findings were aroused and conclusions were made to support the argument in this paper. This paper revealed that the development of an entrepreneurial culture has to be associated with creativity and innovation to gain a competitive advantage over the development strategies of other countries. It is exposed that an entrepreneurial culture will help minorities, women and underprivileged societies to empower themselves. This product will help to confront and manage youth unrest which has created anarchy in the country from time to time. Throughout this paper, it was highlighted the past, present and future scenario of Sri Lankan economy along with modification to be done to it through the development of an entrepreneur culture in light of innovation and creativity to achieve the desired level of development.Keywords: economy, industry, creativity, innovation, entrepreneurship, entrepreneurial culture
Procedia PDF Downloads 18027901 A Machine Learning Decision Support Framework for Industrial Engineering Purposes
Authors: Anli Du Preez, James Bekker
Abstract:
Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.Keywords: Data analytics, Industrial engineering, Machine learning, Value creation
Procedia PDF Downloads 16827900 The Effect of Feature Selection on Pattern Classification
Authors: Chih-Fong Tsai, Ya-Han Hu
Abstract:
The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.Keywords: data mining, feature selection, pattern classification, dimensionality reduction
Procedia PDF Downloads 66927899 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach
Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip
Abstract:
The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method
Procedia PDF Downloads 12927898 Special Education Teachers’ Knowledge and Application of the Concept of Curriculum Adaptation for Learners with Special Education Needs in Zambia
Authors: Kenneth Kapalu Muzata, Dikeledi Mahlo, Pinkie Mabunda Mabunda
Abstract:
This paper presents results of a study conducted to establish special education teachers’ knowledge and application of curriculum adaptation of the 2013 revised curriculum in Zambia. From a sample of 134 respondents (120 special education teachers, 12 education officers, and 2 curriculum specialists), the study collected both quantitative and qualitative data to establish whether teachers understood and applied the concept of curriculum adaptation in teaching learners with special education needs. To obtain data validity and reliability, the researchers collected data by use of mixed methods. Semi-structured questionnaires and interviews were administered. Lesson Observations and post-lesson discussions were conducted on 12 selected teachers from the 120 sample that answered the questionnaires. Frequencies, percentages, and significant differences were derived through the statistical package for social sciences. Qualitative data were analyzed with the help of NVIVO qualitative software to create themes and obtain coding density to help with conclusions. Both quantitative and qualitative data were concurrently compared and related. The results revealed that special education teachers lacked a thorough understanding of the concept of curriculum adaptation, thus denying learners with special education needs the opportunity to benefit from the revised curriculum. The teachers were not oriented on the revised curriculum and hence facing numerous challenges trying to adapt the curriculum. The study recommended training of special education teachers in curriculum adaptation.Keywords: curriculum adaptation, special education, learners with special education needs, special education teachers
Procedia PDF Downloads 17627897 Obstacles in Integrating ICT in Education: A Cross-Sectional Study in GCC Countries
Authors: Mohammed Alhawiti
Abstract:
This paper investigates the insight of educational practitioners concerning challenges that seriously obstruct the comprehension of ICT-related goals of educational institutes. ICT education is a broad area encircling a variety of discipline; both those traditionally classified as IT such as information systems, engineering etc., as well as recent areas, which cross over a variety of educational fields. The results are from a local survey among national representative samples of institutes across GCC countries. The research entails a brief synopsis of the design of this project, a review of key indicators regarding ICT (Information and Communication Technologies) in various institutions, key obstacles and an investigation of the co-variation between challenges and related factors at the country-level.Keywords: information, communication technology, GCC countries, education sector
Procedia PDF Downloads 43127896 Elite Female Football Coaches’ Experiences and Reflections in a Male-dominated Environment: The Case of Ghana
Authors: Fiona Soraya Addai-Sundiata, Ernest Yeboah Acheampong, Ralph Frimpong
Abstract:
The rationale of this study is to examine the career experiences of elite female football coaches in Ghana. More importantly, it focus on their motives, the challenges of football coaching and their experiences along their career paths. The study draws from literature on female coaches in football to understand their experiences and reflections in their chosen careers. The findings of the study relied on in-depth semi-structured interviews with five elite female football coaches aged between 28 and 50 years. Participants’ responses reveal that both intrinsic and extrinsic motives drive them into football coaching, including learning experiences from abroad, a strong desire to break the gendered hegemony of coaching in Ghana, serving as role models, enjoyment, satisfaction and passion for their chosen careers. Results indicate that they encountered sociocultural, organisational, personal and interpersonal challenges. Also, they experience gender stereotyping, limited career mobility, sexism and marginalisation, which prevent them from becoming elite coaches. The study provides useful data for stakeholders, including Ghana Football Association (GFA), to use effective strategies (e.g., special incentives for women coaches) to attract and retain women in the football coaching space.Keywords: elite female football coaches, career experiences, gender, motives, trajectories
Procedia PDF Downloads 6927895 Elite Female Football Coaches’ Experiences and Reflections in a Male-Dominated Environment: The Case of Ghana
Authors: Fiona Soraya Addai-Sundiata, Ernest Yeboah Acheampong, Ralph Frimpong
Abstract:
The rationale of this study is to examine the career experiences of elite female football coaches in Ghana. More importantly, it focus on their motives, the challenges of football coaching and their experiences along their career paths. The study draws from literature on female coaches in football to understand their experiences and reflections in their chosen careers. The findings of the study relied on in-depth semi-structured interviews with five elite female football coaches aged between 28 and 50 years. Participants’ responses reveal that both intrinsic and extrinsic motives drive them into football coaching including learning experiences from abroad, a strong desire to break the gendered hegemony of coaching in Ghana, serving as role models, enjoyment, satisfaction and passion for their chosen careers. Results indicate that they encountered sociocultural, organisational, personal and interpersonal challenges. Also, they experience gender stereotyping, limited career mobility, sexism and marginalisation, which prevent them from becoming elite coaches. The study provides useful data for stakeholders including Ghana Football Association (GFA) to use effective strategies (e.g., special incentives for women coaches) to attract and retain women in the football coaching space.Keywords: elite female football coaches, career experiences, gender, motives, trajectories
Procedia PDF Downloads 6227894 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 16727893 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 15927892 Implementation of ISO 26262: Issues and Challenges
Authors: Won Jung, Azianti Ismail
Abstract:
Functional safety is about electrical, electronics, and programmable electronic safety-related system focuses on the potential risk of malfunction which may have a significant impact on the safety of humans and/or the environment based on IEC 61508. In November 2011, the automotive industry has been introduced to automotive functional safety ISO 26262 which addresses the complete safety installation from sensor to actuator with its technical as well as management issues. Nowadays, most of the modern automobiles are equipped with embedded electronic systems which include many Electronic Controller Units (ECUs), electronic sensors, signals, bus systems and coding. Due to upcoming more sophisticated systems installed in automobiles, the need to carry out detailed safety is very crucial. Assimilation of existing practices with this new standard is a major challenge for the automotive industry in reducing redundancy, time and resources. Therefore, this paper will analyze the research trends on pre and post introduction of ISO 26262 through publications as well as to take a glimpse in the activities for implementing this standard by the automotive manufacturers around the world. It is going to highlight issues and challenges which have been discussed among the experts in this field. Even though it will take some time for this standard to be fully implemented, the benefits from this implementation will raise the competitiveness in the global automotive market.Keywords: ISO 26262, automotive, functional safety, implementation, standard, challenges
Procedia PDF Downloads 40327891 Vocational Education and Gender Equality in Nigeria: Challenges and Opportunities
Authors: Josephine Emebiziogo Anene-Okeakwa
Abstract:
This study investigates the challenges and opportunities for gender equality in vocational education in Awka South, Anambra State, Nigeria. Recognizing the critical role of vocational education in economic development, the research aims to evaluate the current state of gender equality, identify key barriers faced by female students, assess the impact of government policies, and explore opportunities for enhancing gender equality in this sector. Ten vocational schools within Awka South were randomly selected, and a total of 1,000 questionnaires were distributed among students, with 991 completed and returned, yielding a high response rate of 99.1%, and the retrieved data were analyzed using SPSS. The findings indicate significant gender disparities in vocational education enrollment and participation, with male students overwhelmingly outnumbering female students in most technical and engineering-related programs. Key barriers identified include cultural norms discouraging females from pursuing technical fields, economic constraints, lack of female role models, and social stereotypes regarding gender roles. Despite various government policies aimed at promoting gender equality, their implementation and effectiveness remain inadequate, as reflected in persistent gender disparities. However, opportunities for improving gender equality were identified, such as implementing gender-sensitive curricula, expanding mentorship programs for female students, and adopting best practices from other countries. The study recommends enhancing access to vocational training resources, implementing gender-sensitive curricula, expanding mentorship programs, and strengthening the implementation and monitoring of government policies. Addressing these challenges through targeted interventions is essential for achieving gender parity in vocational education, thereby empowering female students and contributing to Nigeria's socio-economic development.Keywords: vocational education, gender equality, barriers, government policies
Procedia PDF Downloads 3327890 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: case-based reasoning, decision tree, stock selection, machine learning
Procedia PDF Downloads 42027889 Embodying the Ecological Validity in Creating the Sustainable Public Policy: A Study in Strengthening the Green Economy in Indonesia
Authors: Gatot Dwi Hendro, Hayyan ul Haq
Abstract:
This work aims to explore the strategy in embodying the ecological validity in creating the sustainability of public policy, particularly in strengthening the green economy in Indonesia. This green economy plays an important role in supporting the national development in Indonesia, as it is a part of the national policy that posits the primary priority in Indonesian governance. The green economy refers to the national development covering strategic natural resources, such as mining, gold, oil, coal, forest, water, marine, and the other supporting infrastructure for products and distribution, such as fabrics, roads, bridges, and so forth. Thus, all activities in those national development should consider the sustainability. This sustainability requires the strong commitment of the national and regional government, as well as the local governments to put the ecology as the main requirement for issuing any policy, such as licence in mining production, and developing and building new production and supporting infrastructures for optimising the national resources. For that reason this work will focus on the strategy how to embody the ecological values and norms in the public policy. In detail, this work will offer the method, i.e. legal techniques, in visualising and embodying the norms and public policy that valid ecologically. This ecological validity is required in order to maintain and sustain our collective life.Keywords: ecological validity, sustainable development, coherence, Indonesian Pancasila values, environment, marine
Procedia PDF Downloads 48527888 The Experiences of Rural Family Caregivers of Cancer Patients in Newfoundland and Labrador and Their Challenges and Needs in Relocating to Urban Settings for Treatment
Authors: Mei Li, Victor Meddalena
Abstract:
Background: Newfoundland and Labrador (NL) has rapidly aging population and is characterized by its vast geography with high proportion of dispersed rural communities when compared to other provinces in Canada. Structural, demographic and geographic factors have created big gaps for rural residents across NL with respect to accessing various health and social services. While the barriers are well documented for patients’ access to cancer care in rural and remote areas, challenges faced by family caregivers are not fully recognized. Caregiving burden coupled with challenges associated with relocation and frequent travels create situations where caregivers are vulnerable physically, emotionally, financially and socially. This study examines the experiences of family caregivers living in rural NL through a social justice lens. It is expected to identify the gaps existing in social policy and support for rural family caregivers. It will make a novel contribution to the literature in this regard. Methods: Design: This qualitative study adopted the hermeneutic phenomenology to best describe and interpret rural-based family caregivers’ living experiences and explore the meaning, impact, and the influence of both individual experience and contextual factors shaping these experiences. Data Collection: In-depth interviews with key informants were conducted with 12 participants from various rural communities in NL. A case study was also used to explore an individual’s experience in complex social units consisting of multiple variables of in-depth understanding of the reality. Data Analysis: Thematic analysis guided by the Voice-Centred Relational (VCR) method was employed to explore the relationships and contexts of participants. Emerging Themes: Six major emerging themes were identified, namely, overwhelming caregiving burden on rural family caregivers, long existing financial hardship, separation from family and community, low level of social support and self-reliance coping strategies, and social vulnerability and isolation. Conclusion: Understanding the lived experiences of rural-based family caregivers is critical to inform the policy makers the gap of health and social service in NL. The findings of this study also have implications for family caregivers who are vulnerable in other similar contexts. This study adds innovative insights for policy making and service provision in this regard.Keywords: family caregivers, policy, relocation, rural
Procedia PDF Downloads 14127887 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability
Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks
Abstract:
Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.Keywords: open-cut, mining, erosion, rainfall simulator
Procedia PDF Downloads 10127886 Predicting Success and Failure in Drug Development Using Text Analysis
Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev
Abstract:
Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.Keywords: data analysis, drug development, sentiment analysis, text-mining
Procedia PDF Downloads 15727885 Prep: Pause, Reset, Establish Expectations, and Proceed. A Practical Approach for Classroom Transitions
Authors: Shane-Anthony Smith
Abstract:
Teachers across grade levels and content areas face a myriad of challenges in the classroom. From inconsistent attendance to disruptive behaviors, these challenges can have a dire impact on the educational space, untimely leading to a loss of instructional time and student disenfranchisement from learning. While these challenges are not new to the educational landscape, the post-COVID classroom has, in many instances, been more severely impacted by behaviors that are not conducive to learning. Despite the mounting challenges, the role of the teacher remains unchanged - that is, to create and maintain a safe environment that is conducive to learning and promotes successful learning outcomes. Accomplishing this feat is no easy task. Yet, there are steps teachers can - indeed, must - take to better set themselves and their students up for success. The key to achieving this success is effective classroom transitions. This paper presents a four-step approach for teachers to engage in successful classroom transitions to promote meaningful student engagement and active positive learning outcomes. The transition strategy I will explore is called PREP (Pause, Reset, Establish Expectations, and Proceed). I developed this strategy in my work as a Residency Director for my university’s teacher residency program. In this role, I am tasked with coaching emerging teachers and their in-service teaching mentors in the field, as well as providing mentorship to special education resident teachers pursuing teaching degrees in the program. As a teacher educator, being in Middle and High school classrooms provides an intricate and critical understanding of the challenges, opportunities, and possibilities in the classroom. For this paper, I will explore how teachers can optimize the opportunities PREP provides to keep students engaged and, thus, improve student achievement. I will describe the approach, explain its use, and provide case-study examples of its classroom application.Keywords: classroom management, teaching strategies, student engagement, classroom transition
Procedia PDF Downloads 7927884 Territories' Challenges and Opportunities to Promote Circular Economy in the Building Sector
Authors: R. Tirado, G. Habert, A. Mailhac, S. Laurenceau
Abstract:
The rapid development of cities implies significant material inflows and outflows. The construction sector is one of the main consumers of raw materials and producers of waste. The waste from the building sector, for its quantity and potential for recovery, constitutes significant deposits requiring major efforts, by combining different actors, to achieve the circular economy's objectives. It is necessary to understand and know the current construction actors' knowledge of stocks, urban metabolism, deposits, and recovery practices in this context. This article aims to explore the role of local governments in planning strategies by facilitating a circular economy. In particular, the principal opportunities and challenges of communities for applying the principles of the circular economy in the building sector will be identified. The approach used for the study was to conduct semi-structured interviews with those responsible for circular economy projects within local administrations of some communities in France. The results show territories' involvement in the inclusion and application of the principles of the circular economy in the building sector. The main challenges encountered are numerous, hence the importance of having identified and described them so that the different actors can work to meet them.Keywords: building stock, circular economy, interview, local authorities
Procedia PDF Downloads 12727883 Classification of Contexts for Mentioning Love in Interviews with Victims of the Holocaust
Authors: Marina Yurievna Aleksandrova
Abstract:
Research of the Holocaust retains value not only for history but also for sociology and psychology. One of the most important fields of study is how people were coping during and after this traumatic event. The aim of this paper is to identify the main contexts of the topic of love and to determine which contexts are more characteristic for different groups of victims of the Holocaust (gender, nationality, age). In this research, transcripts of interviews with Holocaust victims that were collected during 1946 for the "Voices of the Holocaust" project were used as data. Main contexts were analyzed with methods of network analysis and latent semantic analysis and classified by gender, age, and nationality with random forest. The results show that love is articulated and described significantly differently for male and female informants, nationality is shown results with lower values of quality metrics, as well as the age.Keywords: Holocaust, latent semantic analysis, network analysis, text-mining, random forest
Procedia PDF Downloads 18027882 Model-Free Distributed Control of Dynamical Systems
Authors: Javad Khazaei, Rick Blum
Abstract:
Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.Keywords: consensus tracking, distributed control, model-free control, sparse identification of dynamical systems
Procedia PDF Downloads 26527881 Use of AI for the Evaluation of the Effects of Steel Corrosion in Mining Environments
Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento
Abstract:
Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH and, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics. Acknowledgments: This work has been supported by MCIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.Keywords: carbon steel, corrosion, acid mine drainage, artificial intelligence, fuzzy logic
Procedia PDF Downloads 2027880 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm
Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima
Abstract:
In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.Keywords: cloud space, AES, FTP, NetBeans IDE
Procedia PDF Downloads 20627879 Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry
Authors: Abhishek Khupsare, Ajay Parmar, Ajay Agarwal, Swapnil Wanjari
Abstract:
The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash.Keywords: polymer sand, fly ash, bottom ash, HSPCE plasticizer, river sand mining
Procedia PDF Downloads 7727878 Stationary Gas Turbines in Power Generation: Past, Present and Future Challenges
Authors: Michel Moliere
Abstract:
In the next decades, the thermal power generation segment will survive only if it achieves deep mutations, including drastical abatements of CO2 emissions and strong efficiency gains. In this challenging perspective, stationary gas turbines appear as serious candidates to lead the energy transition. Indeed, during the past decades, these turbomachines have made brisk technological advances in terms of efficiency, reliability, fuel flex (including the combustion of hydrogen), and the ability to hybridize with regenrables. It is, therefore, timely to summarize the progresses achieved by gas turbines in the recent past and to examine what are their assets to face the challenges of the energy transition.Keywords: energy transition, gas turbines, decarbonization, power generation
Procedia PDF Downloads 20827877 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks
Procedia PDF Downloads 29427876 Integration of “FAIR” Data Principles in Longitudinal Mental Health Research in Africa: Lessons from a Landscape Analysis
Authors: Bylhah Mugotitsa, Jim Todd, Agnes Kiragga, Jay Greenfield, Evans Omondi, Lukoye Atwoli, Reinpeter Momanyi
Abstract:
The INSPIRE network aims to build an open, ethical, sustainable, and FAIR (Findable, Accessible, Interoperable, Reusable) data science platform, particularly for longitudinal mental health (MH) data. While studies have been done at the clinical and population level, there still exists limitations in data and research in LMICs, which pose a risk of underrepresentation of mental disorders. It is vital to examine the existing longitudinal MH data, focusing on how FAIR datasets are. This landscape analysis aimed to provide both overall level of evidence of availability of longitudinal datasets and degree of consistency in longitudinal studies conducted. Utilizing prompters proved instrumental in streamlining the analysis process, facilitating access, crafting code snippets, categorization, and analysis of extensive data repositories related to depression, anxiety, and psychosis in Africa. While leveraging artificial intelligence (AI), we filtered through over 18,000 scientific papers spanning from 1970 to 2023. This AI-driven approach enabled the identification of 228 longitudinal research papers meeting inclusion criteria. Quality assurance revealed 10% incorrectly identified articles and 2 duplicates, underscoring the prevalence of longitudinal MH research in South Africa, focusing on depression. From the analysis, evaluating data and metadata adherence to FAIR principles remains crucial for enhancing accessibility and quality of MH research in Africa. While AI has the potential to enhance research processes, challenges such as privacy concerns and data security risks must be addressed. Ethical and equity considerations in data sharing and reuse are also vital. There’s need for collaborative efforts across disciplinary and national boundaries to improve the Findability and Accessibility of data. Current efforts should also focus on creating integrated data resources and tools to improve Interoperability and Reusability of MH data. Practical steps for researchers include careful study planning, data preservation, machine-actionable metadata, and promoting data reuse to advance science and improve equity. Metrics and recognition should be established to incentivize adherence to FAIR principles in MH researchKeywords: longitudinal mental health research, data sharing, fair data principles, Africa, landscape analysis
Procedia PDF Downloads 8927875 Optimum Drilling States in Down-the-Hole Percussive Drilling: An Experimental Investigation
Authors: Joao Victor Borges Dos Santos, Thomas Richard, Yevhen Kovalyshen
Abstract:
Down-the-hole (DTH) percussive drilling is an excavation method that is widely used in the mining industry due to its high efficiency in fragmenting hard rock formations. A DTH hammer system consists of a fluid driven (air or water) piston and a drill bit; the reciprocating movement of the piston transmits its kinetic energy to the drill bit by means of stress waves that propagate through the drill bit towards the rock formation. In the literature of percussive drilling, the existence of an optimum drilling state (Sweet Spot) is reported in some laboratory and field experimental studies. An optimum rate of penetration is achieved for a specific range of axial thrust (or weight-on-bit) beyond which the rate of penetration decreases. Several authors advance different explanations as possible root causes to the occurrence of the Sweet Spot, but a universal explanation or consensus does not exist yet. The experimental investigation in this work was initiated with drilling experiments conducted at a mining site. A full-scale drilling rig (equipped with a DTH hammer system) was instrumented with high precision sensors sampled at a very high sampling rate (kHz). Data was collected while two boreholes were being excavated, an in depth analysis of the recorded data confirmed that an optimum performance can be achieved for specific ranges of input thrust (weight-on-bit). The high sampling rate allowed to identify the bit penetration at each single impact (of the piston on the drill bit) as well as the impact frequency. These measurements provide a direct method to identify when the hammer does not fire, and drilling occurs without percussion, and the bit propagate the borehole by shearing the rock. The second stage of the experimental investigation was conducted in a laboratory environment with a custom-built equipment dubbed Woody. Woody allows the drilling of shallow holes few centimetres deep by successive discrete impacts from a piston. After each individual impact, the bit angular position is incremented by a fixed amount, the piston is moved back to its initial position at the top of the barrel, and the air pressure and thrust are set back to their pre-set values. The goal is to explore whether the observed optimum drilling state stems from the interaction between the drill bit and the rock (during impact) or governed by the overall system dynamics (between impacts). The experiments were conducted on samples of Calca Red, with a drill bit of 74 millimetres (outside diameter) and with weight-on-bit ranging from 0.3 kN to 3.7 kN. Results show that under the same piston impact energy and constant angular displacement of 15 degrees between impact, the average drill bit rate of penetration is independent of the weight-on-bit, which suggests that the sweet spot is not caused by intrinsic properties of the bit-rock interface.Keywords: optimum drilling state, experimental investigation, field experiments, laboratory experiments, down-the-hole percussive drilling
Procedia PDF Downloads 8927874 The Curse of Oil: Unpacking the Challenges to Food Security in the Nigeria's Niger Delta
Authors: Abosede Omowumi Babatunde
Abstract:
While the Niger Delta region satisfies the global thirst for oil, the inhabitants have not been adequately compensated for the use of their ancestral land. Besides, the ruthless exploitation and destruction of the natural environment upon which the inhabitants of the Niger Delta depend for their livelihood and sustenance by the activities of oil multinationals, pose major threats to food security in the region and by implication, Nigeria in general, Africa, and the world, given the present global emphasis on food security. This paper examines the effect of oil exploitation on household food security, identify key gaps in measures put in place to address the changes to livelihoods and food security and explore what should be done to improve the local people access to sufficient, safe and culturally acceptable food in the Niger Delta. Data is derived through interviews with key informants and Focus Group Discussions (FGDs) conducted with respondents in the local communities in the Niger Delta states of Delta, Bayelsa and Rivers as well as relevant extant studies. The threat to food security is one important aspect of the human security challenges in the Niger Delta which has received limited scholarly attention. In addition, successive Nigerian governments have not meaningfully addressed the negative impacts of oil-induced environmental degradation on traditional livelihoods given the significant linkages between environmental sustainability, livelihood security, and food security. The destructive impact of oil pollution on the farmlands, crops, economic trees, creeks, lakes, and fishing equipment is so devastating that the people can no longer engage in productive farming and fishing. Also important is the limited access to modern agricultural methods for fishing and subsistence farming as fishing and farming are done using mostly crude implements and traditional methods. It is imperative and urgent to take stock of the negative implications of the activities of oil multinationals for environmental and livelihood sustainability, and household food security in the Niger Delta.Keywords: challenges, food security, Nigeria's Niger delta, oil
Procedia PDF Downloads 249