Search results for: construction noise
3704 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley
Authors: Bal Deep Sharma, Suresh Ray Yadav
Abstract:
Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength
Procedia PDF Downloads 803703 Method for Predicting the Deformation of a Swelling Clay of the Region of N’Gaous (Batna, in Algeria)
Authors: Ferrah F., Baheddi M.
Abstract:
This study relates to how water content in some clay soils affects their structure by increasing or decreasing the volume. These cyclic phenomena of swelling-shrinkage cause parasitic stresses in structures and at the foundation. These stresses create damage in buildings, highways, pavements, airports and structures lightly loaded. This study was conducted on soil from a site near the hospital of N'gaous (Batna), whose soil is at the origin of cracks in the filler walls of the hospital. After a few years of exploitation, and according to the findings of experts in subdivision of construction and urbanism (SUCH), cracks appeared just after the heavy rains that the region experienced in 1987. Our study shows the need to become aware of the importance of damages occasioned by swellings by adopting construction techniques to solve this problem. The study is to determine a methodology to take into account the effects of swelling in calculating long-term foundations.Keywords: clay, swelling, shrinkage, swelling pressure, compressibility
Procedia PDF Downloads 303702 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 543701 Public Participation and Decision-Making towards Planning Legislation: A Case for GCC Countries
Authors: Saad Saeed Althiabi
Abstract:
There is great progress in formulating and executing legislative policies in GCC, however, the public participation in formulating and in major decision making still remains weak. Drawing attention on the international law of public participation in construction and natural resource management, this paper aims in creating a feasible legislative framework for extensive public participation in the industries such as construction and oil and gas decision-making that GCC can implement. This paper would address the conflicts associated with the management and creation of legislation and ensuring public participation for the creation of a practical framework. A feasible legislative framework must take into account the various factors that shape the effectiveness of participation and the elements that promote the objectives of participation. It is premised on the ground that viewing to international prescriptions might help to reveal gaps in domestic laws, as well as alternatives to overcome them.Keywords: legislative policies, public participation, planning legislation, GCC countries, international law
Procedia PDF Downloads 5343700 Introduction of Dams Impacts on Downstream Wetlands: Case Study in Ahwar Delta in Yemen
Authors: Afrah Saad Mohsen Al-Mahfadi
Abstract:
The construction of dams can provide various ecosystem services, but it can also lead to ecological changes such as habitat loss and coastal degradation. Yemen faces multiple risks, including water crises and inadequate environmental policies, which are particularly detrimental to coastal zones like the Ahwar Delta in Abyan. This study aims to examine the impacts of dam construction on downstream wetlands and propose sustainable management approaches. Research Aim: The main objective of this study is to assess the different impacts of dam construction on downstream wetlands, specifically focusing on the Ahwar Delta in Yemen. Methodology: The study utilizes a literature review approach to gather relevant information on dam impacts and adaptation measures. Interviews with decision-making stakeholders and local community members are conducted to gain insights into the specific challenges faced in the Ahwar Delta. Additionally, sensing data, such as Arc-GIS and precipitation data from 1981 to 2020, are analyzed to examine changes in hydrological dynamics. Questions Addressed: This study addresses the following questions: What are the impacts of dam construction on downstream wetlands in the Ahwar delta? How can environmental management planning activities be implemented to minimize these impacts? Findings: The results indicate several future issues arising from dam construction in the coastal areas, including land loss due to rising sea levels and increased salinity in drinking water wells. Climate change has led to a decrease in rainfall rates, impacting vegetation and increasing sedimentation and erosion. Downstream areas with dams exhibit lower sediment levels and slower flowing habitats compared to those without dams. Theoretical Importance: The findings of this study provide valuable insights into the ecological impacts of dam construction on downstream wetlands. Understanding these dynamics can inform decision-makers about the need for adaptation measures and their potential benefits in improving coastal biodiversity under dam impacts. Data Collection and Analysis Procedures: The study collects data through a literature review, interviews, and sensing technology. The literature review helps identify relevant studies on dam impacts and adaptation measures. Interviews with stakeholders and local community members provide firsthand information on the specific challenges faced in the Ahwar Delta. Sensing data, such as Arc-GIS and precipitation data, are analyzed to understand changes in hydrological dynamics over time. Conclusion: The study concludes that while the situation can worsen due to dam construction, practical adaptation measures can help mitigate the impacts. Recommendations include improving water management, developing integrated coastal zone planning, raising awareness among stakeholders, improving health and education, and implementing emergency projects to combat climate change.Keywords: dam impact, delta wetland, hydrology, Yemen
Procedia PDF Downloads 683699 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 393698 Empirical Study on Causes of Project Delays
Authors: Khan Farhan Rafat, Riaz Ahmed
Abstract:
Renowned offshore organizations are drifting towards collaborative exertion to win and implement international projects for business gains. However, devoid of financial constraints, with the availability of skilled professionals, and despite improved project management practices through state-of-the-art tools and techniques, project delays have become a norm these days. This situation calls for exploring the factor(s) affecting the bonding between project management performance and project success. In the context of the well-known 3M’s of project management (that is, manpower, machinery, and materials), machinery and materials are dependent upon manpower. Because the body of knowledge inveterate on the influence of national culture on men, hence, the realization of the impact on the link between project management performance and project success need to be investigated in detail to arrive at the possible cause(s) of project delays. This research initiative was, therefore, undertaken to fill the research gap. The unit of analysis for the proposed research excretion was the individuals who had worked on skyscraper construction projects. In reverent studies, project management is best described using construction examples. It is due to this reason that the project oriented city of Dubai was chosen to reconnoiter on causes of project delays. A structured questionnaire survey was disseminated online with the courtesy of the Project Management Institute local chapter to carry out the cross-sectional study. The Construction Industry Institute, Austin, of the United States of America along with 23 high-rise builders in Dubai were also contacted by email requesting for their contribution to the study and providing them with the online link to the survey questionnaire. The reliability of the instrument was warranted using Cronbach’s alpha coefficient of 0.70. The appropriateness of sampling adequacy and homogeneity in variance was ensured by keeping Kaiser–Meyer–Olkin (KMO) and Bartlett’s test of sphericity in the range ≥ 0.60 and < 0.05, respectively. Factor analysis was used to verify construct validity. During exploratory factor analysis, all items were loaded using a threshold of 0.4. Four hundred and seventeen respondents, including members from top management, project managers, and project staff, contributed to the study. The link between project management performance and project success was significant at 0.01 level (2-tailed), and 0.05 level (2-tailed) for Pearson’s correlation. Before initiating the moderator analysis test for linearity, multicollinearity, outliers, leverage points and influential cases, test for homoscedasticity and normality were carried out which are prerequisites for conducting moderator review. The moderator analysis, using a macro named PROCESS, was performed to verify the hypothesis that national culture has an influence on the said link. The empirical findings, when compared with Hofstede's results, showed high power distance as the cause of construction project delays in Dubai. The research outcome calls for the project sponsors and top management to reshape their project management strategy and allow for low power distance between management and project personnel for timely completion of projects.Keywords: causes of construction project delays, construction industry, construction management, power distance
Procedia PDF Downloads 2133697 Exploring Weld Rejection Rate Limits and Tracers Effects in Construction Projects
Authors: Abdalaziz M. Alsalhabi, Loai M. Alowa
Abstract:
This paper investigates Weld Rejection Rate (WRR) limits and tracer effects in construction projects, with a specific focus on a Gas Plant Project, a mega-project held by Saudi Aramco (SA) in Saudi Arabia. The study included a comprehensive examination of various factors impacting WRR limits. It commenced by comparing the Company practices with ASME standards, followed by an in-depth analysis of both weekly and cumulative projects' historical WRR data, evaluation of Radiographic Testing (RT) reports for rejected welds, and proposal of mitigation methods to eliminate future rejections. Additionally, the study revealed the causes of fluctuation in WRR data and benchmarked with the industry practices. Furthermore, a case study was conducted to explore the impact of tracers on WRR, providing insights into their influence on the welding process. This paper aims to achieve three primary objectives. Firstly, it seeks to validate the existing practices of WRR limits and advocate for their inclusion within relevant International Industry Standards. Secondly, it aims to validate the effectiveness of the WRR formula that incorporates tracer effects, ensuring its reliability in assessing weld quality. Lastly, this study aims to identify opportunities for process improvement in WRR control, with the ultimate goal of enhancing project processes and ensuring the integrity, safety, and efficiency of constructed assets.Keywords: weld rejection rate, weld repair rate in joint and linear basis, tracers effects, construction projects
Procedia PDF Downloads 413696 Non-Chronological Approach in Crane Girder and Composite Steel Beam Installation: Case Study
Authors: Govindaraj Ramanathan
Abstract:
The time delay and the structural stability are major issues in big size projects due to several factors. Improper planning and poor coordination lead to delay in construction, which sometimes result in reworking or rebuilding. This definitely increases the cost and time of project. This situation stresses the structural engineers to plan out of the limits of contemporary technology utilizing non-chronological approach with creative ideas. One of the strategies to solve this issue is through structural integrity solutions in a cost-effective way. We have faced several problems in a project worth 470 million USD, and one such issue is crane girder installation with composite steel beams. We have applied structural integrity approach with the proper and revised planning schedule to solve the problem efficiently with minimal expenses.Keywords: construction management, delay, non-chronological approach, composite beam, structural integrity
Procedia PDF Downloads 2373695 Decision Support for Modularisation: Engineering Construction Case Studies
Authors: Rolla Monib, Chris Ian Goodier, Alistair Gibb
Abstract:
This paper aims to investigate decision support strategies in the EC sector to determine the most appropriate degree of modularization. This is achieved through three oil and gas (O&G) and two power plant case studies via semi-structured interviews (n=59 and n=27, respectively), analysis of project documents, and case study-specific semi-structured validation interviews (n=12 and n=8). New terminology to distinguish degrees of modularization is proposed, along with a decision-making support checklist and a diagrammatic decision-making support figure. Results indicate that the EC sub-sectors were substantially more satisfied with the application of component, structural, or traditional modularization compared with system modularization for some types of modules. Key drivers for decisions on the degree of modularization vary across module types. This paper can help the EC sector determine the most suitable degree of modularization via a decision-making support strategy.Keywords: modularization, engineering construction, case study, decision support
Procedia PDF Downloads 943694 The Effect of Engineering Construction in Online Consultancy
Authors: Mariam Wagih Nagib Eskandar
Abstract:
The engineering design process is the activities formulation, to help an engineer raising a plan with a specified goal and performance. The engineering design process is a multi-stage course of action including the conceptualization, research, feasibility studies, establishment of design parameters, preliminary and finally the detailed design. It is a progression from the abstract to the concrete; starting with probably abstract ideas about need, and thereafter elaborating detailed specifications of the object that would satisfy the needs, identified. Engineering design issues, problems, and solutions are discussed in this paper using qualitative approach from an information structure perspective. The objective is to identify the problems, to analyze them and propose solutions by integrating; innovation, practical experience, time and resource management, communications skills, isolating the problem in coordination with all stakeholders. Consequently, this would be beneficial for the engineering community to improve the Engineering design practices.Keywords: education, engineering, math, performanceengineering design, architectural engineering, team-based learning, construction safetyrequirement engineering, models, practices, organizations
Procedia PDF Downloads 803693 Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures
Authors: Manish Kumar
Abstract:
Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair.Keywords: deterioration, functional condition, reinforced cement concrete, resources
Procedia PDF Downloads 2533692 The Effects of Land Grabbing on Livelihood Assets and Its Implication on Food Production in Ghana: A Case Study of Bui Dam Construction Project
Authors: Charles Kwaku Oppong
Abstract:
This study examined the effects of the agricultural land grabbed for the Bui Dam project on the livelihoods assets of the affected people and its implication on food production. Both quantitative and qualitative data were collected through the use of focus group discussions, questionnaire administration, interview guide, and observations. It was found that the land grabbing incident in the study communities as a result of the Bui Dam construction has resulted in the improvements in the physical assets of the affected people. The findings also indicated that local food crop production and the quantity of fish catch have dwindled after the land grabs. Contrary to this, the local people’s access to the natural capital, particularly the local land for agricultural activities has been worsened. The study recommends alternative sustainable livelihood for the affected people by the local government.Keywords: land grabbing, livelihood, asset, food production
Procedia PDF Downloads 1663691 Prioritization Ranking for Managing Moisture Problems in a Building
Authors: Sai Amulya Gollapalli, Dilip A. Patel, Parth Patel K., Lukman E. Mansuri
Abstract:
Accumulation of moisture is one of the most worrisome aspects of a building. Architects and engineers tend to ignore its vitality during the designing and construction stage. Major fatalities in buildings can be caused by it. People avoid spending a lot of money on waterproofing. If the same mistake is repeated, no deep thinking is done. The quality of workmanship and construction is depleting due to negligence. It is important to do an analysis of the water maintenance issues happening in the current buildings and give a database for all the factors that are causing the defect. In this research, surveys are done with two waterproofing consultants, two client engineers, and two project managers. The survey was based on a matrix that was based on the causes of water maintenance issues. There were around 100 causes that were identified. The causes were categorized into six, namely, manpower, finance, method, management, environment, and material. In the matrices, the causes on the x-direction matched with the causes on the y-direction. 3 Likert scale was used to make a pairwise comparison between causes on each cell. Matrices were evaluated for the main categories and for each category separately. A final ranking was done by the weights achieved, and ‘cracks arriving from various construction joints’ was the highest with 0.57 relative significance, and ‘usage of the material’ was the lowest with 0.03 relative significance. Twelve defects due to water leakage were identified, and interviewees were asked to make a pairwise comparison of them, too, to understand the priorities. When the list of causes is achieved, the prioritization as per the stratification analysis is done. This will be beneficial to the consultants and contractors as they will get a primary idea of which causes to focus on.Keywords: water leakage, survey, causes, matrices, prioritization
Procedia PDF Downloads 983690 Analytical Study on the Shape of T-Type Girder Modular Bridge Connection by Using Parametric
Authors: Jongho Park, Jinwoong Choi, Sungnam Hong, Seung-Kyung Kye, Sun-Kyu Park
Abstract:
Recently, to cope with the rapidly changing construction trend because of aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape examination of the transverse connection of T-type girder newly developed between the segmented modules is not performed. Therefore, the investigation of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verification of model for transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree.Keywords: modular bridge, optimal transverse shape, parameter, FEM
Procedia PDF Downloads 6503689 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 1063688 Structural Behaviour of Small-Scale Fibre-Filled Steel Tubular Planar Frames
Authors: Sadaf Karkoodi, Hassan Karampour
Abstract:
There is a growing interest in the construction industry towards hybrid systems. The hybrid systems use construction materials such as timber, steel, and concrete smartly, can be prefabricated, and are cost-effective and sustainable solutions to an industry targeting reduced carbon footprint. Moreover, in case of periodical shortage in timber resources, reusable and waste wood such as fibres can be used in the hybrid modules, which facilitates the circular economy. In this research, a hybrid frame is proposed and experimentally validated by introducing dried wood fibre products inside cold-formed steel square hollow sections without using any adhesives. As such, fibre-filled steel tubular (FFST) columns, beams, and 2D frames are manufactured and tested. The results show that the FFST columns have stiffness and strength 44% and 55% higher than cold-formed steel columns, respectively. The bearing strength of the FFST beams shows an increase of 39.5% compared to steel only. The flexural stiffness and strength of the FFST beams are 8.5% and 28% higher than the bare steel beams, respectively. The FFST frame depicted an 18.4% higher ultimate load capacity than the steel-only frame under a mid-point concentrated load. Moreover, the FFST beam-to-column bolted connection showed high ductile performance. The initial results and the proposed simple manufacturing process suggest that the proposed FFST concept can be upscaled and used in real structures.Keywords: wood fibre, reusing wood, fibre-filled steel, hybrid construction
Procedia PDF Downloads 793687 Developing a Framework to Aid Sustainable Assessment in Indian Buildings
Authors: P. Amarnath, Albert Thomas
Abstract:
Buildings qualify to be the major consumer of energy and resources thereby urging the designers, architects and policy makers to place a great deal of effort in achieving and implementing sustainable building strategies in construction. Green building rating systems help a great deal in this by measuring the effectiveness of these strategies along with the escalation of building performance in social, environmental and economic perspective, and construct new sustainable buildings. However, for a country like India, enormous population and its rapid rate of growth impose an increasing burden on the country's limited and continuously degrading natural resource base, which also includes the land available for construction. In general, the number of sustainable rated buildings in India is very minimal primarily due to the complexity and obstinate nature of the assessment systems/regulations that restrict the stakeholders and designers in proper implementation and utilization of these rating systems. This paper aims to introduce a data driven and user-friendly framework which cross compares the present prominent green building rating systems such as LEED, BREEAM, and GRIHA and subsequently help the users to rate their proposed building design as per the regulations of these assessment frameworks. This framework is validated using the input data collected from green buildings constructed globally. The proposed system has prospects to encourage the users to test the efficiency of various sustainable construction practices and thereby promote more sustainable buildings in the country.Keywords: BREEAM, GRIHA, green building rating systems, LEED, sustainable buildings
Procedia PDF Downloads 1383686 A Review on Building Information Modelling in Nigeria and Its Potentials
Authors: Mansur Hamma-Adama, Tahar Kouider
Abstract:
Construction Industry has been evolving since the development of Building Information Modelling (BIM). This technological process is unstoppable; it is out to the market with remarkable case studies of solving the long industry’s history of fragmentation. This industry has been changing over time; United States has recorded the most significant development in construction digitalization, Australia, United Kingdom and some other developed nations are also amongst promoters of BIM process and its development. Recently, a developing country like China and Malaysia are keying into the industry’s digital shift, while very little move is seen in South Africa whose development is considered higher and perhaps leader in the digital transition amongst the African countries. To authors’ best knowledge, Nigerian construction industry has never engaged in BIM discussions hence has no attention at national level. Consequently, Nigeria has no “Noteworthy BIM publications.” Decision makers and key stakeholders need to be informed on the current trend of the industry’s development (BIM in specific) and the opportunities of adopting this digitalization trend in relation to the identified challenges. BIM concept can be traced mostly in Architectural practices than engineering practices in Nigeria. A superficial BIM practice is found to be at organisational level only and operating a model based - “BIM stage 1.” Research to adopting this innovation has received very little attention. This piece of work is literature review based, aimed at exploring BIM in Nigeria and its prospects. The exploration reveals limitations in the literature availability as to extensive research in the development of BIM in the country. Numerous challenges were noticed including building collapse, inefficiencies, cost overrun and late project delivery. BIM has potentials to overcome the above challenges and even beyond. Low level of BIM adoption with reasonable level of awareness is noticed. However, lack of policy and guideline as well as serious lack of experts in the field are amongst the major barriers to BIM adoption. The industry needs to embrace BIM to possibly compete with its global counterpart.Keywords: adoption, BIM, CAD, construction industry, Nigeria, opportunities
Procedia PDF Downloads 1543685 Enhancing Problem Communication and Management Using Civil Information Modeling for Infrastructure Projects
Authors: Yu-Cheng Lin, Yu-Chih Su
Abstract:
Generally, there are many numerous existing problems during the construction phase special in civil engineering. The problems communication and management (PCM) of civil engineering are important and necessary to enhance the performance of construction management. The civil information modelling (CIM) approach is used to retain information with digital format and assist easy updating and transferring of information in the 3D environment for all related civil and infrastructure projects. When the application of CIM technology is adopted in infrastructure projects, all the related project participants can discuss problems and obtain feedback and responds among project participants integrated with the assistance of CIM models 3D illustration. Usually, electronic mail (e-mail) is one of the most popular communication tools among all related participants for rapid transit system (MRT), also known as a subway or metro, construction project in Taiwan. Furthermore, all interfaces should be traced and managed effectively during the process. However, there are many problems with the use of e-mail for communication of all interfaces. To solve the above problems, this study proposes a CIM-based Problem Communication and Management (CPCM) system to improve performance of problem communication and management. The CPCM system is applied to a case study of an MRT project in Taiwan to identify its CPCM effectiveness. Case study results show that the proposed CPCM system and Markup-enabled CIM Viewer are effective CIM-based communication tools in CIM-supported PCM work of civil engineering. Finally, this study identifies conclusion, suggestion, benefits, and limitations for further applications.Keywords: building information modeling, civil information modeling, infrastructure, general contractor
Procedia PDF Downloads 1523684 Modeling of Geotechnical Data Using GIS and Matlab for Eastern Ahmedabad City, Gujarat
Authors: Rahul Patel, S. P. Dave, M. V Shah
Abstract:
Ahmedabad is a rapidly growing city in western India that is experiencing significant urbanization and industrialization. With projections indicating that it will become a metropolitan city in the near future, various construction activities are taking place, making soil testing a crucial requirement before construction can commence. To achieve this, construction companies and contractors need to periodically conduct soil testing. This study focuses on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical Geo-database involves three essential steps. Firstly, borehole data is collected from reputable sources. Secondly, the accuracy and redundancy of the data are verified. Finally, the geotechnical information is standardized and organized for integration into the database. Once the Geo-database is complete, it is integrated with GIS. This integration allows users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. The GIS map generated by this study enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This approach highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers. The information generated by this study can be utilized by engineers to make informed decisions during construction activities. For instance, they can use the data to optimize foundation designs and improve site selection. In conclusion, the rapid growth experienced by Ahmedabad requires extensive construction activities, necessitating soil testing. This study focused on the process of creating a comprehensive geotechnical database integrated with GIS. The database was developed by collecting borehole data from reputable sources, verifying its accuracy and redundancy, and organizing the information for integration. The GIS map generated by this study is an efficient solution that offers greater accuracy and generates valuable information that can be used as input for correlation analysis. It also serves as a decision support tool for geotechnical engineers, allowing them to make informed decisions during construction activities.Keywords: arcGIS, borehole data, geographic information system (GIS), geo-database, interpolation, SPT N-value, soil classification, φ-value, bearing capacity
Procedia PDF Downloads 683683 Effects of Rising Cost of Building Materials in Nigeria: A Case Study of Adamawa State
Authors: Ibrahim Yerima Gwalem, Jamila Ahmed Buhari
Abstract:
In recent years, there has been an alarming rate of increase in the costs of building materials in Nigeria, and this ugly phenomenon threatens the contributions of the construction industry in national development. The purpose of this study was to assess the effects of the rising cost of building materials in Adamawa State Nigeria. Four research questions in line with the purpose of the study were raised to guide the study. Two null hypotheses were formulated and tested at 0.05 level of significance. The study adopted a survey research design. The population of the study comprises registered contractors, registered builders, selected merchants, and consultants in Adamawa state. Data were collected using researcher designed instrument tagged effects of the rising cost of building materials questionnaire (ERCBMQ). The instrument was subjected to face and content validation by two experts, one from Modibbo Adama University of Technology Yola and the other from Federal Polytechnic Mubi. The reliability of the instrument was determined by the Cronbach Alpha method and yielded a reliability index of 0.85 high enough to ascertain the reliability. Data collected from a field survey of 2019 was analyzed using mean and percentage. The means of the prices were used in the calculations of price indices and rates of inflation on building materials. Findings revealed that factors responsible for the rising cost of building materials are the exchange rate of the Nigeria Naira with a mean rating (MR) = 4.4; cost of fuel and power supply, MR = 4.3; and changes in government policies and legislation, MR = 4.2, while fluctuations in the construction cost with MR = 2.8; reduced volume of construction output, MR = 2.52; and risk of project abandonment, MRA = 2.51, were the three effects. The study concluded that adverse effects could result in a downward effect on the contributions of the construction industries on the gross domestic product (GDP) in the nation’s economy. Among the recommendations proffered include that the government should formulate a policy that will play down the agitations on the use of imported building materials by encouraging research in the production of local building materials.Keywords: effects, rising, cost, building, materials
Procedia PDF Downloads 1393682 Self-Compacting White Concrete Mix Design Using the Particle Matrix Model
Authors: Samindi Samarakoon, Ørjan Sletbakk Vie, Remi Kleiven Fjelldal
Abstract:
White concrete facade elements are widely used in construction industry. It is challenging to achieve the desired workability in casting of white concrete elements. Particle Matrix model was used for proportioning the self-compacting white concrete (SCWC) to control segregation and bleeding and to improve workability. The paper presents how to reach the target slump flow while controlling bleeding and segregation in SCWC. The amount of aggregates, binders and mixing water, as well as type and dosage of superplasticizer (SP) to be used are the major factors influencing the properties of SCWC. Slump flow and compressive strength tests were carried out to examine the performance of SCWC, and the results indicate that the particle matrix model could produce successfully SCWC controlling segregation and bleeding.Keywords: white concrete, particle matrix model, mix design, construction industry
Procedia PDF Downloads 2703681 Environmental Resilience in Sustainability Outcomes of Spatial-Economic Model Structure on the Topology of Construction Ecology
Authors: Moustafa Osman Mohammed
Abstract:
The resilient and sustainable of construction ecology is essential to world’s socio-economic development. Environmental resilience is crucial in relating construction ecology to topology of spatial-economic model. Sustainability of spatial-economic model gives attention to green business to comply with Earth’s System for naturally exchange patterns of ecosystems. The systems ecology has consistent and periodic cycles to preserve energy and materials flow in Earth’s System. When model structure is influencing communication of internal and external features in system networks, it postulated the valence of the first-level spatial outcomes (i.e., project compatibility success). These instrumentalities are dependent on second-level outcomes (i.e., participant security satisfaction). These outcomes of model are based on measuring database efficiency, from 2015 to 2025. The model topology has state-of-the-art in value-orientation impact and correspond complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic model; develop a set of sustainability indicators associated with model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate environmental resilience. The model is managing and developing schemes from perspective of multiple sources pollutants through the input–output criteria. These criteria are evaluated the external insertions effects to conduct Monte Carlo simulations and analysis for using matrices in a unique spatial structure. The balance “equilibrium patterns” such as collective biosphere features, has a composite index of the distributed feedback flows. These feedback flows have a dynamic structure with physical and chemical properties for gradual prolong of incremental patterns. While these structures argue from system ecology, static loads are not decisive from an artistic/architectural perspective. The popularity of system resilience, in the systems structure related to ecology has not been achieved without the generation of confusion and vagueness. However, this topic is relevant to forecast future scenarios where industrial regions will need to keep on dealing with the impact of relative environmental deviations. The model attempts to unify analytic and analogical structure of urban environments using database software to integrate sustainability outcomes where the process based on systems topology of construction ecology.Keywords: system ecology, construction ecology, industrial ecology, spatial-economic model, systems topology
Procedia PDF Downloads 193680 X-Ray Detector Technology Optimization In CT Imaging
Authors: Aziz Ikhlef
Abstract:
Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts
Procedia PDF Downloads 2713679 Acausal and Causal Model Construction with FEM Approach Using Modelica
Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Junji Kaneko, Ken Kaminishi
Abstract:
Modelica has many advantages and it is very useful in modeling and simulation especially for the multi-domain with a complex technical system. However, the big obstacle for a beginner is to understand the basic concept and to build a new system model for a real system. In order to understand how to solve the simple circuit model by hand translation and to get a better understanding of how modelica works, we provide a detailed explanation about solver ordering system in horizontal and vertical sorting and make some proposals for improvement. In this study, some difficulties in using modelica software with the original concept and the comparison with Finite Element Method (FEM) approach is discussed. We also present our textual modeling approach using FEM concept for acausal and causal model construction. Furthermore, simulation results are provided that demonstrate the comparison between using textual modeling with original coding in modelica and FEM concept.Keywords: FEM, a causal model, modelica, horizontal and vertical sorting
Procedia PDF Downloads 3083678 Feasibility Analysis of Active and Passive Technical Integration of Rural Buildings
Authors: Chanchan Liu
Abstract:
In the process of urbanization in China, the rapid development of urban construction has been achieved, but a large number of rural buildings still continue the construction mode many years ago. This paper mainly analyzes the rural residential buildings in the hot summer and cold winter regions analyze the active and passive technologies of the buildings. It explored the feasibility of realizing the sustainable development of rural buildings in an economically reasonable range, using mainly passive technologies, innovative building design methods, reducing the buildings’ demand for conventional energy, and supplementing them with renewable energy sources. On this basis, appropriate technology and regional characteristics are proposed to keep the rural architecture retain its characteristics in the development process. It is hoped that this exploration can provide reference and help for the development of rural buildings in the hot summer and cold winter regions.Keywords: the rural building, active technology, passive technology, sustainable development
Procedia PDF Downloads 2173677 Building Information Modelling in Eastern Province Municipality of KSA
Authors: Banan Aljumaiah
Abstract:
In recent years, the construction industry has leveraged the information revolution, which makes it possible to view the entire construction process of new buildings before they are built with the advent of Building Information Modelling (BIM). Although BIM is an integration of the building model with the data and documents about the building, however, its implementation is limited to individual buildings missing the large picture of the city infrastructure. This limitation of BIM led to the birth of City Information Modelling. Three years ago, Eastern Province Municipality (EPM) in Saudi Arabia mandated that all major projects be delivered with collaborative 3D BIM. After three years of implementation, EPM started to implement City Information Modelling (CIM) as a part of the Smart City Plan to link infrastructure and public services and modelling how people move around and interact with the city. This paper demonstrates a local case study of BIM implementation in EPM and its future as a part of project management automation; the paper also highlights the ambitious plan of EPM to transform CIM towards building smart cities.Keywords: BIM, BIM to CIM
Procedia PDF Downloads 1423676 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling
Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel
Abstract:
Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia
Procedia PDF Downloads 3783675 Assessment of the Thermal and Mechanical Properties of Bio-based Composite Materials for Thermal Insulation
Authors: Nega Tesfie Asfaw, Rafik Absi, Labouda B. A, Ikram El Abbassi
Abstract:
Composite materials have come to the fore a few decades ago because of their superior insulation performances. Recycling natural fiber composites and natural fiber reinforcement of waste materials are other steps for conserving resources and the environment. This paper reviewed the Thermal properties (Thermal conductivity, Effusivity, and Diffusivity) and Mechanical properties (Compressive strength, Flexural strength, and Tensile strength) of bio-composite materials for thermal insulation in the construction industry. For several years, the development of the building materials industry has placed a special emphasis on bio-source materials. According to recent studies, most natural fibers have good thermal insulating qualities and good mechanical properties. To determine the thermal and mechanical performance of bio-composite materials in construction most research used experimental methods. the results of the study show that these natural fibers have allowed us to optimize energy consumption in a building and state that density, porosity, percentage of fiber, the direction of heat flow orientation of the fiber, and the shape of the specimen are the main elements that limit the thermal performance and also showed that density, porosity, Type of Fiber, Fiber length, orientation and weight percentage loading, Fiber-matrix adhesion, Choice of the polymer matrix, Presence of void are the main elements that limit the mechanical performance of the insulation material. Based on the results of this reviewed paper Moss fibers (0.034W/ (m. K)), Wood Fiber (0.043 W/ (m. K)), Wheat straw (0.046 W/ (m. K), and corn husk fibers (0.046 W/ (m. K) are a most promising solution for energy efficiency for construction industry with interesting insulation properties and with good acceptable mechanical properties. Finally, depending on the best fibers used for insulation applications in the construction sector, the thermal performance rate of various fibers reviewed in this article are analyzed. Due to Typha's high porosity, the results indicated that Typha australis fiber had a better thermal performance rate of 89.03% with clay.Keywords: bio-based materials, thermal conductivity, compressive strength, thermal performance
Procedia PDF Downloads 28