Search results for: water quality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16553

Search results for: water quality

3623 Dietary Risk Assessment of Green Leafy Vegetables (GLV) Due to Heavy Metals from Selected Mining Areas

Authors: Simon Mensah Ofosu

Abstract:

Illicit surface mining activities pollutes agricultural lands and water bodies and results in accumulation of heavy metals in vegetables cultivated in such areas. Heavy metal (HM) accumulation in vegetables is a serious food safety issues due to the adverse effects of metal toxicities, hence the need to investigate the levels of these metals in cultivated vegetables in the eastern region. Cocoyam leaves, cabbage and cucumber were sampled from selected farms in mining areas (Atiwa District) and non -mining areas (Yilo Krobo and East Akim District) of the region for the study. Levels of Cadmium, Lead, Mercury and Arsenic were investigated in the vegetables with Atomic Absorption Spectrometer, and the results statistically analyzed with Microsoft Office Excel (2013) Spread Sheet and ANOVA. Cadmium (Cd) and arsenic (As) were the highest and least concentrated HM in the vegetables sampled, respectively. The mean concentrations of Cd and Pb in cabbage (0.564 mg/kg, 0.470 mg/kg), cucumber (0.389 mg/kg, 0.190 mg/kg), cocoyam leaves (0.410 mg/kg, 0.256 mg/kg) respectively from the mining areas exceeded the permissible limits set by Joint FAO/WHO. The mean concentrations of the metals in vegetables from the mining and non-mining areas varied significantly (P<0.05). The Target Hazard Quotient (THQ) was used to assess the health risk posed to the human population via vegetable consumption. The THQ values of cadmium, mercury, and lead in adults and children through vegetable consumption in the mining areas were greater than 1 (THQ >1). This indicates the potential health risk that the children and adults may be facing. The THQ values of adults and children in the non-mining areas were less than the safe limit of 1 (THQ<1), hence no significant health risk posed to the population from such areas.

Keywords: food safety, risk assessment, illicit mining, public health, contaminated vegetables

Procedia PDF Downloads 77
3622 Multi-Objective Multi-Period Allocation of Temporary Earthquake Disaster Response Facilities with Multi-Commodities

Authors: Abolghasem Yousefi-Babadi, Ali Bozorgi-Amiri, Aida Kazempour, Reza Tavakkoli-Moghaddam, Maryam Irani

Abstract:

All over the world, natural disasters (e.g., earthquakes, floods, volcanoes and hurricanes) causes a lot of deaths. Earthquakes are introduced as catastrophic events, which is accident by unusual phenomena leading to much loss around the world. Such could be replaced by disasters or any other synonyms strongly demand great long-term help and relief, which can be hard to be managed. Supplies and facilities are very important challenges after any earthquake which should be prepared for the disaster regions to satisfy the people's demands who are suffering from earthquake. This paper proposed disaster response facility allocation problem for disaster relief operations as a mathematical programming model. Not only damaged people in the earthquake victims, need the consumable commodities (e.g., food and water), but also they need non-consumable commodities (e.g., clothes) to protect themselves. Therefore, it is concluded that paying attention to disaster points and people's demands are very necessary. To deal with this objective, both commodities including consumable and need non-consumable commodities are considered in the presented model. This paper presented the multi-objective multi-period mathematical programming model regarding the minimizing the average of the weighted response times and minimizing the total operational cost and penalty costs of unmet demand and unused commodities simultaneously. Furthermore, a Chebycheff multi-objective solution procedure as a powerful solution algorithm is applied to solve the proposed model. Finally, to illustrate the model applicability, a case study of the Tehran earthquake is studied, also to show model validation a sensitivity analysis is carried out.

Keywords: facility location, multi-objective model, disaster response, commodity

Procedia PDF Downloads 247
3621 Energy and Carbon Footprint Analysis of Food Waste Treatment Alternatives for Hong Kong

Authors: Asad Iqbal, Feixiang Zan, Xiaoming Liu, Guang-Hao Chen

Abstract:

Water, food, and energy nexus is a vital subject to achieve sustainable development goals worldwide. Wastewater (WW) and food waste (FW) from municipal sources are primary contributors to their respective wastage sum from a country. Along with the loss of these invaluable natural resources, their treatment systems also consume a lot of abiotic energy and resources input with a perceptible contribution to global warming. Hence, the global paradigm has evolved from simple pollution mitigation to a resource recovery system (RRS). In this study, the prospects of six alternative FW treatment scenarios are quantitatively evaluated for Hong Kong in terms of energy use and greenhouse emissions (GHEs) potential, using life cycle assessment (LCA). Considered scenarios included: aerobic composting, anaerobic digestion (AD), combine AD and composting (ADC), co-disposal, and treatment with wastewater (CoD-WW), incineration, and conventional landfilling as base-case. Results revealed that in terms of GHEs saving, all-new scenarios performed significantly better than conventional landfilling, with ADC scenario as best-case and incineration, AD alone, CoD-WW ranked as second, third, and fourth best respectively. Whereas, composting was the worst-case scenario in terms of energy balance, while incineration ranked best and AD alone, ADC, and CoD-WW ranked as second, third, and fourth best, respectively. However, these results are highly sensitive to boundary settings, e.g., the inclusion of the impact of biogenic carbon emissions and waste collection and transportation, and several other influential parameters. The study provides valuable insights and policy guidelines for the decision-makers locally and a generic modelling template for environmental impact assessment.

Keywords: food waste, resource recovery, greenhouse emissions, energy balance

Procedia PDF Downloads 95
3620 Dual Metal Organic Framework Derived N-Doped Fe3C Nanocages Decorated with Ultrathin ZnIn2S4 Nanosheets for Efficient Photocatalytic Hydrogen Generation

Authors: D. Amaranatha Reddy

Abstract:

Highly efficient and stable co-catalysts materials is of great important for boosting photo charge carrier’s separation, transportation efficiency, and accelerating the catalytic reactive sites of semiconductor photocatalysts. As a result, it is of decisive importance to fabricate low price noble metal free co-catalysts with high catalytic reactivity, but it remains very challenging. Considering this challenge here, dual metal organic frame work derived N-Doped Fe3C nanocages have been rationally designed and decorated with ultrathin ZnIn2S4 nanosheets for efficient photocatalytic hydrogen generation. The fabrication strategy precisely integrates co-catalyst nanocages with ultrathin two-dimensional (2D) semiconductor nanosheets by providing tightly interconnected nano-junctions and helps to suppress the charge carrier’s recombination rate. Furthermore, constructed highly porous hybrid structures expose ample active sites for catalytic reduction reactions and harvest visible light more effectively by light scattering. As a result, fabricated nanostructures exhibit superior solar driven hydrogen evolution rate (9600 µmol/g/h) with an apparent quantum efficiency of 3.6 %, which is relatively higher than the Pt noble metal co-catalyst systems and earlier reported ZnIn2S4 based nanohybrids. We believe that the present work promotes the application of sulfide based nanostructures in solar driven hydrogen production.

Keywords: photocatalysis, water splitting, hydrogen fuel production, solar-driven hydrogen

Procedia PDF Downloads 121
3619 Health Care using Queuing Theory

Authors: S. Vadivukkarasi, K. Karthi, M. Karthick, C. Dinesh, S. Santhosh, A. Yogaraj

Abstract:

The appointment system was designed to minimize patient’s idle time overlooking patients waiting time in hospitals. This is no longer valid in today’s consumer oriented society. Long waiting times for treatment in the outpatient department followed by short consultations has long been a complaint. Nowadays, customers use waiting time as a decisive factor in choosing a service provider. Queuing theory constitutes a very powerful tool because queuing models require relatively little data and are simple and fast to use. Because of this simplicity and speed, modelers can be used to quickly evaluate and compare various alternatives for providing service. The application of queuing models in the analysis of health care systems is increasingly accepted by health care decision makers. Timely access to care is a key component of high-quality health care. However, patient delays are prevalent throughout health care systems, resulting in dissatisfaction and adverse clinical consequences for patients as well as potentially higher costs and wasted capacity for providers. Arguably, the most critical delays for health care are the ones associated with health care emergencies. The allocation of resources can be divided into three general areas: bed management, staff management, and room facility management. Effective and efficient patient flow is indicated by high patient throughput, low patient waiting times, a short length of stay at the hospital and overtime, while simultaneously maintaining adequate staff utilization rates and low patient’s idle times.

Keywords: appointment system, patient scheduling, bed management, queueing calculation, system analysis

Procedia PDF Downloads 286
3618 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities

Authors: Mehmet Bulent Topkaya, Mustafa Yildirim

Abstract:

Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.

Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment

Procedia PDF Downloads 288
3617 An Active Subsurface Geological Structure Pattern of Mud Volcano Phenomenon as an Environmental Impact of Petroleum Withdrawal in Sidoarjo, East Java, Indonesia

Authors: M. M. S. Prahastomi, M. Muhajir Saputra, Axel Derian

Abstract:

Lapindo mud (LUSI ) phenomenon which occurred in Sidoarjo 2006 is a national scale of the geological phenomenon. This mudflow forms a mud volcano that spreads by time is in the need of serious treatment. Some further research has been conducted either by the application method of geodesy, geophysics, and subsurface geology, but still remains a mystery to this phenomenon. Sidoarjo Physiographic regions are included in the Kendeng zone flanked by Rembang zones in northern and Solo zones in southern. In this region revealed Kabuh formation, Jombang formation, and alluvium. In general, in the northern part of the area is composed of sedimentary rocks Sidoarjo klastika, epiklastic, pyroclastics, and older alluvium of the Early Pleistocene to Resen. The study was conducted with the literature study of the stratigraphy and regional geology as well as secondary data from observations coupled gravity method (Anomaly Bouger). The aim of the study is to reveal the subsurface geology structure pattern and the changes in mass flow. Gravity anomaly data were obtained from the calculation of the value of gravity and altitude, then processed into gravity anomaly contours which reflect changes in density of each group observed gravity. The gravity data could indicate a bottom surface which deformation occur the stronger or more intense to the south. Deformation in the form of gravity impairment was associated with a decrease in future density which is indicated by the presence of gas, water and gas bursts. Sectional analysis of changes in the measured value of gravity at different times indicates a change in the value of gravity caused by the presence of subsurface subsidence. While the gravity anomaly section describes the fault zone causes the zone to be unstable.

Keywords: mud volcano, Lumpur Sidoarjo, Bouger anomaly, Indonesia

Procedia PDF Downloads 455
3616 Importance of Flexibility Training for Older Adults: A Narrative Review

Authors: Andrej Kocjan

Abstract:

Introduction: Mobility has been shown to play an important role of health and quality of life among older adults. Falls, which are often related to decreased mobility, as well as to neuromuscular deficits, represent the most common injury among older adults. Fall risk has been shown to increase with reduced lower extremity flexibility. The aim of the paper is to assess the importance of flexibility training on joint range of motion and functional performance among elderly population. Methods: We performed literature research on PubMed and evaluated articles published until 2000. The articles found in the search strategy were also added. The population of interest included older adults (≥ 65 years of age). Results: Flexibility training programs still represent an important part of several rehabilitation programs. Static stretching and proprioceptive neuromuscular facilitation are the most frequently used techniques to improve the length of the muscle-tendon complex. Although the effectiveness of type of stretching seems to be related to age and gender, static stretching is a more appropriate technique to enhance shoulder, hip, and ankle range of motion in older adults. Stretching should be performed in multiple sets with holds of more than 60 seconds for a single muscle group. Conclusion: The literature suggests that flexibility training is an effective method to increase joint range of motion in older adults. In the light of increased functional outcome, activities such as strengthening, balance, and aerobic exercises should be incorporated into a training program for older people. Due to relatively little published literature, it is still not possible to prescribe detailed recommendations regarding flexibility training for older adults.

Keywords: elderly, exercise, flexibility, falls

Procedia PDF Downloads 170
3615 Toxicological Standardization of Heavy Metals and Microbial Contamination Haematinic Herbal Formulations Marketed in India

Authors: A. V. Chandewar, Sanjay Bais

Abstract:

Backgound: In India, drugs of herbal origin have been used in traditional systems of medicines such as Unani and Ayurveda since ancient times. WHO limit for Escherichia coli is 101/gm cfu, for Staphylococus aureus 105/gm cfu, and for Pseudomonas aeruginosa 103/gm cfu and for Salmonella species nil cfu. WHO mentions maximum permissible limits in raw materials only for arsenic, cadmium, and lead, which amount to 1.0, 0.3, and 10 ppm, respectively. Aim: The main purpose of the investigation was to document evidence for the users, and practitioners of marketed haematinic herbal formulations. In the present study haematinic herbal formulations marketed in Yavatmal India were determined for the presence of microbial and heavy metal content. Method: The investigations were performed by using specific medias and atomic absorption spectrometry. Result: The present work indicates the presence of heavy metal contents in herbal formulations selected for study. It was found that arsenic content in formulations was below the permissible limit in all formulations. The cadmium and lead content in six formulations were above the permissible limits. Such formulations are injurious to health of patient if consumed regularly. The specific medias were used to determining the presence of Escherichia coli 4 samples, Staphylococcus aureus 3 samples, and P. aeruginosa 4 samples. The data indicated suggest that there is requirement of in process improvement to provide better quality for consumer health in order to be competitive in international markets. Summary/Conclusion: The presence of microbial and heavy metal content above WHO limits indicates that the GMP was not followed during manufacturing of herbal formulations marketed in India.

Keywords: toxicological standardization, heavy metals, microbial contamination, haematinic herbal formulations

Procedia PDF Downloads 439
3614 Audit Committee Characteristics and Earnings Quality of Listed Food and Beverages Firms in Nigeria

Authors: Hussaini Bala

Abstract:

There are different opinions in the literature on the relationship between Audit Committee characteristics and earnings management. The mix of opinions makes the direction of their relationship ambiguous. This study investigated the relationship between Audit Committee characteristics and earnings management of listed food and beverages Firms in Nigeria. The study covered the period of six years from 2007 to 2012. Data for the study were extracted from the Firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences. The dependent variable was generated using two steps regression in order to determine the discretionary accrual of the sample Firms. Multiple regression was employed to run the data of the study using Random Model. The results from the analysis revealed a significant association between audit committee characteristics and earnings management of the Firms. While audit committee size and committees’ financial expertise showed an inverse relationship with earnings management, committee’s independence, and frequency of meetings are positively and significantly related to earnings management. In line with the findings, the study recommended among others that listed food and beverages Firms in Nigeria should strictly comply with the provision of Companies and Allied Matters Act (CAMA) and SEC Code of Corporate Governance on the issues regarding Audit Committees. Regulators such as SEC should increase the minimum number of Audit Committee members with financial expertise and also have a statutory position on the maximum number of Audit Committees meetings, which should not be greater than four meetings in a year as SEC code of corporate governance is silent on this.

Keywords: audit committee, earnings management, listed Food and beverages size, leverage, Nigeria

Procedia PDF Downloads 252
3613 Analysis of Vibration of Thin-Walled Parts During Milling Made of EN AW-7075 Alloy

Authors: Jakub Czyżycki, Paweł Twardowski

Abstract:

Thin-walled components made of aluminum alloys are increasingly found in many fields of industry, and they dominate the aerospace industry. The machining of thinwalled structures encounters many difficulties related to the high susceptibility of the workpiece, which causes vibrations including the most unfavorable ones called chatter. The effect of these phenomena is the difficulty in obtaining the required geometric dimensions and surface quality. The purpose of this study is to analyze vibrations arising during machining of thin-walled workpieces made of aluminum alloy EN AW-7075. Samples representing actual thin-walled workpieces were examined in a different range of dimensions characterizing thin-walled workpieces. The tests were carried out in HSM high-speed machining (cutting speed vc = 1400 m/min) using a monolithic solid carbide endmill. Measurement of vibration was realized using a singlecomponent piezoelectric accelerometer 4508C from Brüel&Kjær which was mounted directly on the sample before machining, the measurement was made in the normal feed direction AfN. In addition, the natural frequency of the tested thin-walled components was investigated using a laser vibrometer for an broader analysis of the tested samples. The effect of vibrations on machining accuracy was presented in the form of surface images taken with an optical measuring device from Alicona. A classification of the vibrations produced during the test was carried out, and were analyzed in both the time and frequency domains. Observed significant influence of the thickness of the thin-walled component on the course of vibrations during machining.

Keywords: high-speed machining, thin-walled elements, thin-walled components, milling, vibrations

Procedia PDF Downloads 33
3612 Exploration of a Blockchain Assisted Framework for Through Baggage Interlining: Blocklining

Authors: Mary Rose Everan, Michael McCann, Gary Cullen

Abstract:

International travel journeys, by their nature, incorporate elements provided by multiple service providers such as airlines, rail carriers, airports, and ground handlers. Data needs to be stored by and exchanged between these parties in the process of managing the journey. The fragmented nature of this shared management of mutual clients is a limiting factor in the development of a seamless, hassle-free, end-to-end travel experience. Traditional interlining agreements attempt to facilitate many separate aspects of co-operation between service providers, typically between airlines and, to some extent, intermodal travel operators, including schedules, fares, ticketing, through check-in, and baggage handling. These arrangements rely on pre-agreement. The development of Virtual Interlining - that is, interlining facilitated by a third party (often but not always an airport) without formal pre-agreement by the airlines or rail carriers - demonstrates an underlying demand for a better quality end-to-end travel experience. Blockchain solutions are being explored in a number of industries and offer, at first sight, an immutable, single source of truth for this data, avoiding data conflicts and misinterpretation. Combined with Smart Contracts, they seemingly offer a more robust and dynamic platform for multi-stakeholder ventures, and even perhaps the ability to join and leave consortia dynamically. Applying blockchain to the intermodal interlining space – termed Blocklining in this paper - is complex and multi-faceted because of the many aspects of cooperation outlined above. To explore its potential, this paper concentrates on one particular dimension, that of through baggage interlining.

Keywords: aviation, baggage, blocklining, intermodal, interlining

Procedia PDF Downloads 135
3611 Bioreactor Simulator Design: Measuring Built Environment Health and Ecological Implications from Post-Consumer Textiles

Authors: Julia DeVoy, Olivia Berlin

Abstract:

The United States exports over 1.6 billion pounds of post-consumer textiles every year, primarily to countries in the Global South. These textiles make their way to landfills and open-air dumps where they decompose, contaminating water systems and releasing harmful greenhouse gases. Through this inequitable system of waste disposal, countries with less political and economic power are coerced into accepting the environmental and health consequences of over-consumption in the Global North. Thus, the global trade of post-consumer textile waste represents a serious issue of environmental justice and a public health hazard. Our research located, characterizes, and quantifies the environmental and human health risks that occur when post-consumer textiles are left to decompose in landfills and open-air dumps in the Global South. In our work, we make use of United Nations International Trade Statistics data to map the global distribution of post-consumer textiles exported from the United States. Next, we present our landfill simulating reactor designed to measure toxicity of leachate resulting from the decomposition of textiles in developing countries and to quantify the related greenhouse gas emissions. This design makes use of low-cost and sustainable materials to promote frugal innovation and make landfill reactors more accessible. Finally, we describe how the data generated from these tools can be leveraged to inform individual consumer behaviors, local policies around textile waste disposal, and global advocacy efforts to mitigate the environmental harms caused by textile waste.

Keywords: sustainability, textile design, public health, built environment

Procedia PDF Downloads 114
3610 Theoretical Analysis and Design Consideration of Screened Heat Pipes for Low-Medium Concentration Solar Receivers

Authors: Davoud Jafari, Paolo Di Marco, Alessandro Franco, Sauro Filippeschi

Abstract:

This paper summarizes the results of an investigation into the heat pipe heat transfer for solar collector applications. The study aims to show the feasibility of a concentrating solar collector, which is coupled with a heat pipe. Particular emphasis is placed on the capillary and boiling limits in capillary porous structures, with different mesh numbers and wick thicknesses. A mathematical model of a cylindrical heat pipe is applied to study its behaviour when it is exposed to higher heat input at the evaporator. The steady state analytical model includes two-dimensional heat conduction in the HP’s wall, the liquid flow in the wick and vapor hydrodynamics. A sensitivity analysis was conducted by considering different design criteria and working conditions. Different wicks (mesh 50, 100, 150, 200, 250, and, 300), different porosities (0.5, 0.6, 0.7, 0.8, and 0.9) with different wick thicknesses (0.25, 0.5, 1, 1.5, and 2 mm) are analyzed with water as a working fluid. Results show that it is possible to improve heat transfer capability (HTC) of a HP by selecting the appropriate wick thickness, the effective pore radius, and lengths for a given HP configuration, and there exist optimal design criteria (optimal thick, evaporator adiabatic and condenser sections). It is shown that the boiling and wicking limits are connected and occurs in dependence on each other. As different parts of the HP external surface collect different fractions of the total incoming insolation, the analysis of non-uniform heat flux distribution indicates that peak heat flux is not affecting parameter. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature SC application.

Keywords: screened heat pipes, analytical model, boiling and capillary limits, concentrating collector

Procedia PDF Downloads 546
3609 One-Pot Synthesis of 5-Hydroxymethylfurfural from Hexose Sugar over Chromium Impregnated Zeolite Based Catalyst, Cr/H-ZSM-5

Authors: Samuel K. Degife, Kamal K. Pant, Sapna Jain

Abstract:

The world´s population and industrialization of countries continued to grow in an alarming rate irrespective of the security for food, energy supply, and pure water availability. As a result, the global energy consumption is observed to increase significantly. Fossil energy resources that mainly comprised of crude oil, coal, and natural gas have been used by mankind as the main energy source for almost two centuries. However, sufficient evidences are revealing that the consumption of fossil resource as transportation fuel emits environmental pollutants such as CO2, NOx, and SOx. These resources are dwindling rapidly besides enormous amount of problems associated such as fluctuation of oil price and instability of oil-rich regions. Biomass is a promising renewable energy candidate to replace fossil-based transportation fuel and chemical production. The present study aims at valorization of hexose sugars (glucose and fructose) using zeolite based catalysts in imidazolium based ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIM] Cl) reaction media. The catalytic effect chromium impregnated H-ZSM-5 (Cr/H-ZSM-5) was studied for dehydration of hexose sugars. The wet impregnation method was used to prepare Cr/H-ZSM-5 catalyst. The characterization of the prepared catalyst was performed using techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Temperature-programmed desorption of ammonia (NH3-TPD) and BET-surface area analysis. The dehydration product, 5-hydroxymethylfurfural (5-HMF), was analyzed using high-performance liquid chromatography (HPLC). Cr/H-ZSM-5 was effective in dehydrating fructose with 87% conversion and 55% yield 5-HMF at 180 oC for 30 min of reaction time compared with H-ZSM-5 catalyst which yielded only 31% of 5-HMF at identical reaction condition.

Keywords: chromium, hexose, ionic liquid, , zeolite

Procedia PDF Downloads 161
3608 Fluid Structure Interaction Study between Ahead and Angled Impact of AGM 88 Missile Entering Relatively High Viscous Fluid for K-Omega Turbulence Model

Authors: Abu Afree Andalib, Rafiur Rahman, Md Mezbah Uddin

Abstract:

The main objective of this work is to anatomize on the various parameters of AGM 88 missile anatomized using FSI module in Ansys. Computational fluid dynamics is used for the study of fluid flow pattern and fluidic phenomenon such as drag, pressure force, energy dissipation and shockwave distribution in water. Using finite element analysis module of Ansys, structural parameters such as stress and stress density, localization point, deflection, force propagation is determined. Separate analysis on structural parameters is done on Abacus. State of the art coupling module is used for FSI analysis. Fine mesh is considered in every case for better result during simulation according to computational machine power. The result of the above-mentioned parameters is analyzed and compared for two phases using graphical representation. The result of Ansys and Abaqus are also showed. Computational Fluid Dynamics and Finite Element analyses and subsequently the Fluid-Structure Interaction (FSI) technique is being considered. Finite volume method and finite element method are being considered for modelling fluid flow and structural parameters analysis. Feasible boundary conditions are also utilized in the research. Significant change in the interaction and interference pattern while the impact was found. Theoretically as well as according to simulation angled condition was found with higher impact.

Keywords: FSI (Fluid Surface Interaction), impact, missile, high viscous fluid, CFD (Computational Fluid Dynamics), FEM (Finite Element Analysis), FVM (Finite Volume Method), fluid flow, fluid pattern, structural analysis, AGM-88, Ansys, Abaqus, meshing, k-omega, turbulence model

Procedia PDF Downloads 452
3607 Characterization of Hyaluronic Acid-Based Injections Used on Rejuvenation Skin Treatments

Authors: Lucas Kurth de Azambuja, Loise Silveira da Silva, Gean Vitor Salmoria, Darlan Dallacosta, Carlos Rodrigo de Mello Roesler

Abstract:

This work provides a physicochemical and thermal characterization assessment of three different hyaluronic acid (HA)-based injections used for rejuvenation skin treatments. The three products analyzed are manufactured by the same manufacturer and commercialized for application on different skin levels. According to the manufacturer, all three HA-based injections are crosslinked and have a concentration of 23 mg/mL of HA, and 0.3% of lidocaine. Samples were characterized by Fourier-transformed infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) techniques. FTIR analysis resulted in a similar spectrum when comparing the different products. DSC analysis demonstrated that the fusion points differ in each product, with a higher fusion temperature observed in specimen A, which is used for subcutaneous applications, when compared with B and C, which are used for the middle dermis and deep dermis, respectively. TGA data demonstrated a considerable mass loss at 100°C, which means that the product has more than 50% of water in its composition. TGA analysis also showed that Specimen A had a lower mass loss at 100°C when compared to Specimen C. A mass loss of around 220°C was observed on all samples, characterizing the presence of hyaluronic acid. SEM images displayed a similar structure on all samples analyzed, with a thicker layer for Specimen A when compared with B and C. This series of analyses demonstrated that, as expected, the physicochemical and thermal properties of the products differ according to their application. Furthermore, to better characterize the crosslinking degree of each product and their mechanical properties, a set of different techniques should be applied in parallel to correlate the results and, thereby, relate injection application with material properties.

Keywords: hyaluronic acid, characterization, soft-tissue fillers, injectable gels

Procedia PDF Downloads 79
3606 Effect of Thermal Aging on Low Cycle Fatigue of Alloy 690

Authors: Kushal Gowda Jayaram, Joseph Huret, Jonathan Quibel, Walter-John Chitty, Gilbert Henaff

Abstract:

Thermal aging is one of the concerns for the long-term operation of nuclear power plants. Indeed, components in the primary circuit undergo thermal aging while exposed to the chemically active environment of Pressurized Water Reactors (PWRs) over time. Among the materials used in the reactor components, Alloy 690 can be found in some critical components for nuclear safety. Despite its importance, research on the effect of thermal aging on the microstructural changes and low cycle fatigue (LCF) behavior of Alloy 690 remains limited. This study aims to assess the impact of thermal aging on the fatigue life of Alloy 690. The as-received sample underwent aging at 420°C for 4000 hours, representing the equivalent aging of 60 years in reactor working conditions. First, the characterization of the area and density of intergranular and intragranular precipitates was performed to understand the microstructural changes in the aged specimen. Then, low cycle fatigue tests were conducted on the as received and aged samples at varying strain amplitudes. To investigate the influence of thermal aging on the fatigue behavior of Alloy 690, fracture surfaces were analyzed to estimate fatigue crack growth rates based on striation spacing measurements. Additionally, the axially cut fractured samples have undergone analysis using Electron Backscatter Diffraction (EBSD) to understand the effect of aging on strain localization near the crack path. Results indicate that while the characterization of the area and density of intergranular precipitates in the aged specimen (for 2000 hours, approximately 30 years) showed no significant changes, there was a slight increase in the area and density of intragranular precipitates under the same conditions.

Keywords: alloy 690, thermal aging, low cycle fatigue, precipitates

Procedia PDF Downloads 26
3605 Pistachio Supplementation Ameliorates the Motor and Cognitive Deficits in Rotenone-Induced Rat Model of Parkinson’s Disease

Authors: Saida Haider, Syeda Madiha

Abstract:

Parkinson’s disease (PD) is a common neurological disorder characterized by motor deficits and loss of dopaminergic neurons. Oxidative stress is said to play a pivotal role in the pathophysiology of the disease. In the present study, PD was induced by injection of rotenone (1.5 mg/kg/day, s.c.) for eight days. Pistachio (800 mg/kg/day, p.o.) was given for two weeks. At the end of treatment brains were dissected out and striatum was isolated for biochemical and neurochemical analysis. Morris water maze (MWM) test and novel object recognition (NOR) task was used to test the memory function while motor behavior was determined by open field test (OFT), Kondziela inverted screen test (KIST), pole test (PT), beam walking test (BWT), inclined plane test (IPT) and footprint (FP) test. Several dietary components have been evaluated as potential therapeutic compounds in many neurodegenerative diseases. Increasing evidence shows that nuts have protective effects against various diseases by improving the oxidative status and reducing lipid peroxidation. Pistachio is the only nut that contains anthocyanin, a potent antioxidant having neuroprotective properties. Results showed that pistachio supplementation significantly restored the rotenone-induced motor deficits and improved the memory performance. Moreover, rats treated with pistachio also exhibited enhanced oxidative status and increased dopamine (DA) and 5-hydroxytryptamine (5-HT) concentration in striatum. In conclusion, to our best knowledge, we have for the first time shown that pistachio nut possesses neuroprotective effects against rotenone-induced motor and cognitive deficits. These beneficial effects of pistachio may be attributed to its high content of natural antioxidant and phenolic compounds. Hence, consumption of pistachio regularly as part of a daily diet can be beneficial in the prevention and treatment of PD.

Keywords: rotenone, pistachio, oxidative stress, Parkinson’s disease

Procedia PDF Downloads 92
3604 Physicochemical Properties of Low Viscosity Banana Juice

Authors: Victor Vicent, Oscar Kibazohi

Abstract:

Banana (Musa acuminata) is one of the most largely consumed fruits in the world. It is an excellent source of potassium, antioxidants, and fiber. In East and Central African countries, banana is used to produce low viscosity clear juice using traditional kneading of ripe banana and grasses until juice oozes out. Recently, an improved method involving blending of the banana followed by pressing to separate the juice from pulp has been achieved. This study assessed the physicochemical properties of banana juice prior to product formulation. Two different banana juices from two cultivars: Pisang awak and Mbile an East African Highland Banana (EAHB) were evaluated for viscosity, sugars (sucrose, fructose, and glucose), organic acids (malic, citric and succinic acids) and minerals using the HPLC and AAS. Juice extracted from Pisang awak had a viscosity of 3.43 × 10⁻⁵ N.m⁻² s while EAHB juice had a viscosity of 6.02 × 10⁻⁵ N.m⁻² s. Sugar concentrations varied with banana place of origin. Pisang awak juice had a higher dissolved solids value of 24-28ᵒ Brix then EAHB, whose value was 18-24ᵒ Brix. Juice viscosity was 3.5–5.3 mPa.s, specific gravity was 1.0-1.1, and pH was 4.3-4.8. The average concentration of sucrose, fructose, and glucose was 1.10 g/L, 70 g/L 70 g/l, respectively for Pisang awak from lower altitude compared to 45-200 g/L 45-120 g/l and 45-120 g/L, respectively for Pisang awak from higher altitude. On the other hand, EAHB from North East Tanzania produced juice corresponding concentrations of 45 g/L, 56 g/L, and 55 g/L, respectively while another EAHB from North West of Tanzania had sucrose and fructose and glucose concentration of 155 g/L and 145 g/L. respectively. Dominant acids were malic and citric acids for pisang awak but succinic for EAHB. Dominant minerals in all cultivars were potassium 2.7-3.1 g/L followed by magnesium 0.6-2 g/L.

Keywords: banana juice, sugar content, acids, minerals, quality analysis

Procedia PDF Downloads 135
3603 Project Knowledge Harvesting: The Case of Improving Project Performance through Project Knowledge Sharing Framework

Authors: Eng Rima Al-Awadhi, Abdul Jaleel Tharayil

Abstract:

In a project-centric organization like KOC, managing the knowledge of the project is of critical importance to the success of the project and the organization. However, due to the very nature and complexity involved, each project engagement generates a lot of 'learnings' that need to be factored into while new projects are initiated and thus avoid repeating the same mistake. But, many a time these learnings are localized and remains as ‘tacit knowledge’ leading to scope re-work, schedule overrun, adjustment orders, concession requests and claims. While KOC follows an asset based organization structure, with a multi-cultural and multi-ethnic workforce and larger chunk of the work is carried out through complex, long term project engagement, diffusion of ‘learnings’ across assets while dealing with the natural entropy of the organization is of great significance. Considering the relatively higher number of mega projects, it's important that the issues raised during the project life cycle are centrally harvested, analyzed and the ‘learnings’ from these issues are shared, absorbed and are in-turn utilized to enhance and refine the existing process and practices, leading to improve the project performance. One of the many factors contributing to the successful completion of a project on time is the reduction in the number of variations or concessions triggered during the project life cycle. The project process integrated knowledge sharing framework discusses the knowledge harvesting methodology adopted, the challenges faced, learnings acquired and its impact on project performance. The framework facilitates the proactive identification of issues that may have an impact on the overall quality of the project and improve performance.

Keywords: knowledge harvesting, project integrated knowledge sharing, performance improvement, knowledge management, lessons learn

Procedia PDF Downloads 384
3602 Ecological Art in the Nuclear Anthropocene

Authors: Eve-Andree Laramee

Abstract:

The aesthetics and ethics of the Nuclear Anthropocene are explored through artists responses to the impact of radioactive materials on ecological systems, global issues, energy policies and ourselves. This presentation tracks and reveals the invisible traces of the nuclear weapons complex and the nuclear energy industry, in relation to environmental justice. Radioactive pollution transgresses international borders, boundaries between land and water, contaminating ecological systems. Radioactive waste is never disposed of; it is dispositioned, placed out of sight and out of mind. These materials leave behind an invisible toxic legacy lasting millions of years. As we are learning post-Fukushima, when climate change occurs and vulnerability spectrums shift, nuclear sites and the life forms surrounding them are at increased risk. By visualizing this contamination through art installations, videos, and social-sculpture interventions, information is shared with the public, raising awareness, and activating community participation in remediation and nonproliferation efforts. The emerging Ecological Art genre proposes paradigms sustainable with the life forms and resources of our planet. It is comprised of artists, scientists, philosophers and activists devoted to these. EcoArt is distinguished by a focus on systems and interrelationships within our environment: the ecological, geographic, political, biological and cultural. This presentation will cover artworks addressing the recent Fukushima meltdowns, weapons proliferation, climate change, radioactive waste disposal and environmental justice. Possibilities for art-and-science collaborations will be discussed as projects that sharpen our ethics and politics in our behaviors and social interactions. The presentation will consist of a PowerPoint talk (paper presentation) accompanied by images and video clips.

Keywords: art, ecology, environment, anthropocene, nuclear

Procedia PDF Downloads 219
3601 Effect of Short-Term Enriching of Algae with Selenium and Zinc on Growth and Mineral Composition of Marine Rotifer

Authors: Sirwe Ghaderpour, Nasrollah Ahmadifard, Naser Agh, Zakaria Vahabzadeh

Abstract:

Rotifers are used in many hatcheries for feeding the earliest stages of fish larvae and crustaceans due to their small size, slow movements, fast reproduction, and easy cultivation. One of the disadvantages of using rotifers as live prey is their lower content of some nutrients compared to copepods, so it is necessary to increase the amounts of these nutrients by means of enrichment. Minerals are a group of micro-elements, essential to fish, that is lacking in the rotifers, for example, selenium (30 fold) and zinc (5 fold) are present in lower quantities than the minimum amounts found in copepods. In this study, the condensed Isochrysis aff. galbana (T-ISO) and Nannochloropsis oculata were suspended at concentration of 18 × 109 cell mL⁻¹ of water with 20 ppt of salinity. Four different levels (0, 1000, 2000, and 4000 mg L⁻¹) of each Na₂SeO₃ and ZnSO₄.7H₂O separately were prepared, and 1 mL of each stock was poured to the algae enrichment vessels for 1 h simultaneously. After that, the material was centrifuged (at 4000 rpm for 5 min), and the precipitated enriched algae was used for rotifer feeding. The contents of Se, Zn, Cu, and Mn were determined in enriched microalgae and rotifer by Atomic absorption. The highest content of both minerals was observed in 0.4 Zn + 0.4 Se treatment and also rotifer enriched with these enriched microalgae. The enrichment of microalgae with Zn and Se does not affect the content of Cu in the microalgae. Also, the content of Cu in rotifer fed with the enriched microalgae showed the highest Cu content in the treatments than the control. But, the enrichment with both minerals had a negative effect on the content Mn in enriched mixed microalgae except 0.4 Zn + 0.4 Se. The Mn content in enriched rotifer decreased in the treatments than the control except for 0.1 Zn + 0.1 Se. There was no significant effect on rotifer growth in combined enrichment with both minerals (p < 0.05). Overall, rotifers enrichment with Se and Zn mixed microalgae resulted in increasing Se, Zn, and Cu. This will allow Se and Zn microalgae enriched rotifers to be used as the minerals delivery method for fish larvae nutritional requirements.

Keywords: enrichment, larvae, microalgae, mineral, rotifer

Procedia PDF Downloads 118
3600 Study on the Fabrication and Mechanical Characterization of Pineapple Fiber-Reinforced Unsaturated Polyester Resin Based Composites: Effect of Gamma Irradiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Pineapple leaf fiber (PALF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, PALF composites were manufactured using different percentages of fiber, which were varying from 25-50% on the total weight of the composites. To fabricate the PALF/PP composites, untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact and bending properties were observed precisely. It was found that 45wt% of fiber composites showed better mechanical properties than others. Maximum tensile strength (TS) and bending strength (BS) was observed, 65 MPa and 50 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 1.7 GPa and 0.85 GPa respectively. The PALF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The values of TS, BS, TM, and BM of the irradiated (5.0 kGy) composites were found to improve by 19%, 23%, 17% and 25 % over non-irradiated composites. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated PALF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated PALF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.

Keywords: PALF, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope

Procedia PDF Downloads 136
3599 Microclimate Impacts on Solar Panel Power Generation in Midlands Area, UK

Authors: Stamatis Zoras, Boris Ceranic, Ashley Redfern

Abstract:

Green House Gas emissions from domestic properties currently account for a substantial part of the total UK’s carbon emissions and is a priority area for UK to reach zero carbon emissions. However, GHG emissions of urban complexes depend on building, road, structural developments etc surfaces that form urban microclimate. This in turn may further influence renewable energy system power generation that depend on solar or wind potential. Moreover, urban climatic conditions are also influenced by the installation of those power generation systems that may impact their own power generation efficiency. Increased air temperature is attributed to densely installed roof based solar panels that consequently impact their own production efficiency. Installation of roof based solar panels requires adequate guidance to enable housing businesses, councils and organisations to implement sufficient measures for improved power generation in relation to local urban microclimate. How microclimate is affected and how, in return, it affects solar power productivity. Derby Council & Derby Homes have been collecting solar panel power generation data for a large number of properties. The different building areas and system operation performance will be studied against microclimate conditions through time. It is envisaged that the outcomes of the study will support a working up strategy for Derby city to ensure that owned homes would be able to access information and data of solar photo voltaic PV and solar thermal panels potential on social housing, helping residents on low incomes create their own green energy to power their homes and heat their homeshot water.

Keywords: microclimate, solar power, urban climatology, urban morphology

Procedia PDF Downloads 52
3598 Evaluating the Impact of Landscape Values Associated With the Landscape Developemnt Approach of Neighbourhood Gardens; In Tier Two Cities of India; On Users’ Perception Towards the Space. Case: City of Nashik, Maharashtra, India

Authors: Anandi Anant Lale, Pooja Sadananda Patil

Abstract:

Neighbourhood gardens (NGs), in the rapidly growing tier two cities of India, play a pivotal role in maintaining and enhancing the quality of life of the dwellers in terms of mental, physical and socio- cultural well-being. They are the breathing areas which avail the opportunity of accessing nature while being in the close proximity of modern infrastructural provisions of the neighbourhood. In this article, the landscape values (viz. Cultural, Functional, Environmental and Perceptual) associated with the landscape development approach of neighbourhood gardens in the city of Nashik; one of the major tier two cities of Maharashtra; India, are studied through physical survey of selected NGs and the respective neighborhoods. Contextual study of the selected neighbourhood with the emphasis on dwellers' response in terms of physical as well as mental associations with the NGs is recorded through visitors' interviews. Analysis of interrelation of the landscape values and the users' response to the NGs revealed that each landscape value associated with the landscape development approach, has impact of diverse intensity on the users' perception, in different neighbourhoods. Contextual needs of selected neighbourhoods govern the user's perception towards the respective NGs and eventually define the role of landscape value/s associated with the landscape development approach of NG in deciding the competence of the space. The findings of the study can form the basis to redefine the landscape development approach for the future NGs in tier two cities of India that will justify the contextual needs of every neighbourhood through the emphasis of landscape values.

Keywords: neighbourhood garden, landscape value, user’s perception, context, landscape development

Procedia PDF Downloads 96
3597 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran

Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad

Abstract:

The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.

Keywords: natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings

Procedia PDF Downloads 322
3596 University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB)

Authors: Patricia Mikchaela D. L. Feliciano, Ciela Kadeshka A. Fuentes, Bea Trixia B. Gales, Ethel Princess A. Gepulango, Martin R. Hernandez, Elina Andrea S. Lantion, Jhoe Cynder P. Legaspi, Peter F. Quilala, Gina C. Castro

Abstract:

Propolis is a resin-like material used by bees to fill large gap holes in the beehive. It has been found to possess anti-inflammatory property, which stimulates hair growth in rats by inducing hair keratinocytes proliferation, causing water retention and preventing damage caused by heat, ultraviolet rays, and other microorganisms without abnormalities in hair follicles. The present study aimed to formulate 10% and 30% Propolis Hair Cream for use in enhancing hair properties. Raw propolis sample was tested for heavy metals using Atomic Absorption Spectroscopy; zinc and chromium were found to be present. Likewise, propolis was extracted in a percolator using 70% ethanol and concentrated under vacuum using a rotary evaporator. The propolis extract was analyzed for total flavonoid content. Compatibility of the propolis extract with excipients was evaluated using Differential Scanning Calorimetry (DSC). No significant changes in organoleptic properties, pH and viscosity of the formulated creams were noted after four weeks of storage at 2-8°C, 30°C, and 40°C. The formulated creams were found to be non-irritating based on the Modified Draize Rabbit Test. In vivo efficacy was evaluated based on thickness and tensile strength of hair grown on previously shaved rat skin. Results show that the formulated 30% propolis-based cream had greater hair enhancing properties than the 10% propolis cream, which had a comparable effect with minoxidil.

Keywords: atomic absorption spectroscopy, differential scanning calorimetry (DSC), modified draize rabbit test, propolis

Procedia PDF Downloads 323
3595 Assessment of Toxic Impact of Metals on Different Instars of Silkworm, Bombyx Mori

Authors: Muhammad Dildar Gogi, Muhammad Arshad, Muhammad Ahsan Khan, M. Sufian, Ahmad Nawaz, Mubashir Iqbal, Muhammad Junaid Nisar, Waleed Afzal Naveed

Abstract:

Larvae of silkworm (Bombyx mori) exhibit very high mortality when reared on mulberry leaves collected from mulberry orchards which get contaminated with metallic/nonmetallic compounds through either drift-deposition or chemigation. There is need to screen out such metallic compound for their toxicity at their various concentrations. The present study was carried out to assess toxicity of metals in different instars of silkworm. Aqueous solutions of nine heavy-metal based salts were prepared by dissolving 50, 100, 150, 200, 250, 300, 350 and 400 mg of each salt in one liter of water and were applied on the mulberry leaves by leaf-dip methods. The results reveal that mortality in 1st, 2nd, 3rd, 4th and 5th instar larvae caused by each heavy metal salts increased with an increase in their concentrations. The 1st instar larvae were found more susceptible to metal salts followed by 2nd, 3rd, 4th and 5th instar larvae of silkworm. Overall, Nickel chloride proved more toxic for all larval instar as it demonstrated approximately 40-99% mortality. On the basis of LC2 and larval mortality, the order of toxicity of heavy metals against all five larval instar was Nickel chloride (LC₂ = 1.9-13.9 mg/L; & 15.0±1.2-69.2±1.7% mortality) followed by Chromium nitrate (LC₂ = 3.3-14.8 mg/L; & 13.3±1.4-62.4±2.8% mortality), Cobalt nitrate (LC₂ = 4.3-30.9; &11.4±0.07-54.9±2.0% mortality), Lead acetate (LC₂ =8.8-53.3 mg/L; & 9.5±1.3-46.4±2.9% mortality), Aluminum sulfate (LC₂ = 15.5-76.6 mg/L; & 8.4±0.08-42.1±2.8% mortality), Barium sulfide (LC₂ = 20.9-105.9; & 7.7±1.1-39.2±2.5% mortality), Copper sulfate (LC2 = 28.5-12.4 mg/L; & 7.3±0.06-37.1±2.4% mortality), Manganese chloride (LC₂ = 29.9-136.9 mg/L; & 6.8±0.09-35.3±1.6% mortality) and Zinc nitrate (LC₂ = 36.3-15 mg/L; & 6.2±1.2-32.1±1.9% mortality). Zinc nitrate @ 50 and 100 mg/L, Barium sulfide @ 50 mg/L, Manganese chloride @ 50 and 100 mg/L and Copper sulfate @ 50 mg/L proved safe for 5th instar larvae as these interaction attributed no mortality. All the heavy metal salts at a concentration of 50 mg/L demonstrated less than 10% mortality.

Keywords: heavy-metals, larval-instars, lethal-concentration, mortality, silkworm

Procedia PDF Downloads 207
3594 Competency and Strategy Formulation in Automobile Industry

Authors: Chandan Deep Singh

Abstract:

In present days, companies are facing the rapid competition in terms of customer requirements to be satisfied, new technologies to be integrated into future products, new safety regulations to be followed, new computer-based tools to be introduced into design activities that becomes more scientific. In today’s highly competitive market, survival focuses on various factors such as quality, innovation, adherence to standards, and rapid response as the basis for competitive advantage. For competitive advantage, companies have to produce various competencies: for improving the capability of suppliers and for strengthening the process of integrating technology. For more competitiveness, organizations should operate in a strategy driven way and have a strategic architecture for developing core competencies. Traditional ways to take such experience and develop competencies tend to take a lot of time and they are expensive. A new learning environment, which is built around a gaming engine, supports the development of competences in specific subject areas. Technology competencies have a significant role in firm innovation and competitiveness; they interact with the competitive environment. Technological competencies vary according to the type of competitive environment, thus enhancing firm innovativeness. Technological competency is gained through extensive experimentation and learning in its research, development and employment in manufacturing. This is a review paper based on competency and strategic success of automobile industry. The aim here is to study strategy formulation and competency tools in the industry. This work is a review of literature related to competency and strategy in automobile industry. This study involves review of 34 papers related to competency and strategy.

Keywords: manufacturing competency, strategic success, competitiveness, strategy formulation

Procedia PDF Downloads 298