Search results for: agent based model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 38972

Search results for: agent based model

26072 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 201
26071 Research on Level Adjusting Mechanism System of Large Space Environment Simulator

Authors: Han Xiao, Zhang Lei, Huang Hai, Lv Shizeng

Abstract:

Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world.

Keywords: space environment simulator, thermal vacuum test, level adjusting, spacecraft, parallel mechanism

Procedia PDF Downloads 252
26070 Complicating Representations of Domestic Violence Perpetration through a Qualitative Content Analysis and Socio-Ecological Approach

Authors: Charlotte Lucke

Abstract:

This study contributes to the body of literature that analyzes and complicates oversimplified and sensationalized representations of trauma and violence through a close examination and complication of representations of perpetrators of domestic violence in the mass media. This study determines the ways the media frames perpetrators of domestic violence through a qualitative content analysis and socio-ecological approach to the perpetration of violence. While the qualitative analysis has not been carried out, through preliminary research, this study hypothesizes that the media represents perpetrators through tropes such as the 'predator' or 'offender,' or as a demonized 'other.' It is necessary to expose and work through such stereotypes because cultivation theory demonstrates that the mass media determines societal beliefs about and perceptions of the world. Thus, representations of domestic violence in the mass media can lead people to believe that perpetrators of violence are mere animals or criminals and overlook the trauma that many perpetrators experience. When the media represents perpetrators as pure evil, monsters, or absolute 'others,' it leaves out the complexities of what moves people to commit domestic violence. By analyzing and placing media representations of perpetrators into conversation with the socio-ecological approach to violence perpetration, this study complicates domestic violence stereotypes. The socio-ecological model allows researchers to consider the way the interplay between individuals and their families, friends, communities, and cultures can move people to act violently. Using this model, along with psychological and psychoanalytic approaches to the etiology of domestic violence, this paper argues that media stereotypes conceal the way people’s experiences of trauma, along with community and cultural norms, perpetuates the cycle of systemic trauma and violence in the home.

Keywords: domestic violence, media images, representing trauma, theorising trauma

Procedia PDF Downloads 243
26069 Unique Interprofessional Mental Health Education Model: A Pre/Post Survey

Authors: Michele L. Tilstra, Tiffany J. Peets

Abstract:

Interprofessional collaboration in behavioral healthcare education is increasingly recognized for its value in training students to address diverse client needs. While interprofessional education (IPE) is well-documented in occupational therapy education to address physical health, limited research exists on collaboration with counselors to address mental health concerns and the psychosocial needs of individuals receiving care. Counseling education literature primarily examines the collaboration of counseling students with psychiatrists, psychologists, social workers, and marriage and family therapists. This pretest/posttest survey research study explored changes in attitudes toward interprofessional teams among 56 Master of Occupational Therapy (MOT) (n = 42) and Counseling and Human Development (CHD) (n = 14) students participating in the Counselors and Occupational Therapists Professionally Engaged in the Community (COPE) program. The COPE program was designed to strengthen the behavioral health workforce in high-need and high-demand areas. Students accepted into the COPE program were divided into small MOT/CHD groups to complete multiple interprofessional multicultural learning modules using videos, case studies, and online discussion board posts. The online modules encouraged reflection on various behavioral healthcare roles, benefits of team-based care, cultural humility, current mental health challenges, personal biases, power imbalances, and advocacy for underserved populations. Using the Student Perceptions of Interprofessional Clinical Education- Revision 2 (SPICE-R2) scale, students completed pretest and posttest surveys using a 5-point Likert scale (Strongly Agree = 5 to Strongly Disagree = 1) to evaluate their attitudes toward interprofessional teamwork and collaboration. The SPICE-R2 measured three different factors: interprofessional teamwork and team-based practice (Team), roles/responsibilities for collaborative practice (Roles), and patient outcomes from collaborative practice (Outcomes). The mean total scores for all students improved from 4.25 (pretest) to 4.43 (posttest), Team from 4.66 to 4.58, Roles from 3.88 to 4.30, and Outcomes from 4.08 to 4.36. A paired t-test analysis for the total mean scores resulted in a t-statistic of 2.54, which exceeded both one-tail and two-tail critical values, indicating statistical significance (p = .001). When the factors of the SPICE-R2 were analyzed separately, only the Roles (t Stat=4.08, p =.0001) and Outcomes (t Stat=3.13, p = .002) were statistically significant. The item ‘I understand the roles of other health professionals’ showed the most improvement from a mean score for all students of 3.76 (pretest) to 4.46 (posttest). The significant improvement in students' attitudes toward interprofessional teams suggests that the unique integration of OT and CHD students in the COPE program effectively develops a better understanding of the collaborative roles necessary for holistic client care. These results support the importance of IPE through structured, engaging interprofessional experiences. These experiences are essential for enhancing students' readiness for collaborative practice and align with accreditation standards requiring interprofessional education in OT and CHD programs to prepare practitioners for team-based care. The findings contribute to the growing body of evidence supporting the integration of IPE in behavioral healthcare curricula to improve holistic client care and encourage students to engage in collaborative practice across healthcare settings.

Keywords: behavioral healthcare, counseling education, interprofessional education, mental health education, occupational therapy education

Procedia PDF Downloads 45
26068 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers

Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago

Abstract:

An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.

Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design

Procedia PDF Downloads 196
26067 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 137
26066 SFO-ECRSEP: Sensor Field Optimızation Based Ecrsep For Heterogeneous WSNS

Authors: Gagandeep Singh

Abstract:

The sensor field optimization is a serious issue in WSNs and has been ignored by many researchers. As in numerous real-time sensing fields the sensor nodes on the corners i.e. on the segment boundaries will become lifeless early because no extraordinary safety is presented for them. Accordingly, in this research work the central objective is on the segment based optimization by separating the sensor field between advance and normal segments. The inspiration at the back this sensor field optimization is to extend the time spam when the first sensor node dies. For the reason that in normal sensor nodes which were exist on the borders may become lifeless early because the space among them and the base station is more so they consume more power so at last will become lifeless soon.

Keywords: WSNs, ECRSEP, SEP, field optimization, energy

Procedia PDF Downloads 303
26065 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 292
26064 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid

Authors: P. G. Siddheshwar, T. N. Sakshath

Abstract:

In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.

Keywords: nanoliquid, rigid-rigid, rotation, single phase

Procedia PDF Downloads 242
26063 Assessment of Landfill Pollution Load on Hydroecosystem by Use of Heavy Metal Bioaccumulation Data in Fish

Authors: Gintarė Sauliutė, Gintaras Svecevičius

Abstract:

Landfill leachates contain a number of persistent pollutants, including heavy metals. They have the ability to spread in ecosystems and accumulate in fish which most of them are classified as top-consumers of trophic chains. Fish are freely swimming organisms; but perhaps, due to their species-specific ecological and behavioral properties, they often prefer the most suitable biotopes and therefore, did not avoid harmful substances or environments. That is why it is necessary to evaluate the persistent pollutant dispersion in hydroecosystem using fish tissue metal concentration. In hydroecosystems of hybrid type (e.g. river-pond-river) the distance from the pollution source could be a perfect indicator of such a kind of metal distribution. The studies were carried out in the Kairiai landfill neighboring hybrid-type ecosystem which is located 5 km east of the Šiauliai City. Fish tissue (gills, liver, and muscle) metal concentration measurements were performed on two types of ecologically-different fishes according to their feeding characteristics: benthophagous (Gibel carp, roach) and predatory (Northern pike, perch). A number of mathematical models (linear, non-linear, using log and other transformations) have been applied in order to identify the most satisfactorily description of the interdependence between fish tissue metal concentration and the distance from the pollution source. However, the only one log-multiple regression model revealed the pattern that the distance from the pollution source is closely and positively correlated with metal concentration in all predatory fish tissues studied (gills, liver, and muscle).

Keywords: bioaccumulation in fish, heavy metals, hydroecosystem, landfill leachate, mathematical model

Procedia PDF Downloads 289
26062 Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region

Authors: Mohit Modi, Rajiv Kumar, Manojraj Saxena, G. Ravi Shankar

Abstract:

Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.

Keywords: land use land cover, multiresolution segmentation, NDVI, object based classification

Procedia PDF Downloads 189
26061 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline

Authors: Kenan Morani, Esra Kaya Ayana

Abstract:

This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.

Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation

Procedia PDF Downloads 137
26060 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 82
26059 An Experience of Translating an Excerpt from Sophie Adonon’s Echos de Femmes from French to English, Using Reverso.

Authors: Michael Ngongeh Mombe

Abstract:

This Paper seeks to investigate an assertion made by some colleagues that there is no need paying a human translator to translate their literary texts, that there are softwares such as Reverso that can be used to do the translation. The main objective of this study is to examine the veracity of this assertion using Reverso to translate a literary text without any post-editing by a human translator. The work is based on two theories: Skopos and Communicative theories of translation. The work is a documentary research where data were collected from published documents in libraries, on the internet and from the translation produced by Reverso. We made a comparative text analyses of both source and target texts in a bid to highlight the weaknesses and strengths of the software. Findings of this work revealed that those who advocate the use of only Machine translation do so in ignorance of the translation mistakes usually made by the software. From the review of all the 268 segments of translation, we found out that the translation produced by Reverso is fraught with errors. We therefore recommend the use of human translators to either do the translation of their literary texts or revise the translation produced by machine to conform to the skopos of the work. This paper is based on Reverso translation. Similar works in the near future will be based on the other translation softwares to determine their weaknesses and strengths.

Keywords: machine translation, human translator, Reverso, literary text

Procedia PDF Downloads 100
26058 SWOT Analysis of the Industrial Sector in Kuwait

Authors: Abdullah Al-Alaian, Ahmad Al-Enzi, Hasan Al-Herz, Ahmad Bakri, Shant Tatorian, Amr Nounou

Abstract:

Kuwait is a country that has an imbalanced economy since most of its national outcome comes from the oil trade. It is so risky for a country to be dependent on a single source for income, and this increases the need to diversify its economy. In addition, according to the Public Authority for Industry, the contribution of the industrial sector to the current Gross Domestic Product (GDP) of Kuwait is low which is about 4.33%. Therefore, the development of the industrial sector can be one of the means to diversify the economy and increase the industry's contribution to the national outcome. This is in accordance with Kuwait’s vision of 2035 which aims at increasing the contribution of the industrial sector to the GDP to 12%. In order to do so, this study aims at proposing a strategic plan that will accomplish certain objectives when implemented. It is based on analyzing the industrial sectors in Kuwait taking into consideration studying the strengths, weaknesses, opportunities, and threats facing them. At the same time, it tends to gain from the experience of leading models and neighboring countries regarding the development of the industrial sector. In this study, the SWOT analysis technique will be conducted on all industrial sectors based on evaluation criteria in which it is determined whether any of them has a potential for improvement or not. In other words, it is determined whether the sectors are able to compete locally, regionally, or globally. Based on the results of the SWOT analysis, certain sectors will be chosen, assessed based on an assessment scheme, and their potentials for improvement will be aligned with the overall objectives. To ensure the achievement of the study’s objectives, an action plan will be proposed regarding recommendations for the related authorities, and for entrepreneurs. In addition, monitoring tools are going to be provided for the purpose of periodically checking the progress made in the implementation of the plan.

Keywords: industrial sector, SWOT analysis, productivity, competitiveness, GDP, Kuwait, economy

Procedia PDF Downloads 486
26057 An Acerbate Psychotics Symptoms, Social Support, Stressful Life Events, Medication Use Self-Efficacy Impact on Social Dysfunction: A Cross Sectional Self-Rated Study of Persons with Schizophrenia Patient and Misusing Methamphetamines

Authors: Ek-Uma Imkome, Jintana Yunibhand, Waraporn Chaiyawat

Abstract:

Background: Persons with schizophrenia patient and misusing methamphetamines suffering from social dysfunction that impact on their quality of life. Knowledge of factors related to social dysfunction will guide the effective intervention. Objectives: To determine the direct effect, indirect effect and total effect of an acerbate Psychotics’ Symptoms, Social Support, Stressful life events, Medication use self-efficacy impact on social dysfunction in Thai schizophrenic patient and methamphetamine misuse. Methods: Data were collected from schizophrenic and methamphetamine misuse patient by self report. A linear structural relationship was used to test the hypothesized path model. Results: The hypothesized model was found to fit the empirical data and explained 54% of the variance of the psychotic symptoms (X2 = 114.35, df = 92, p-value = 0.05, X2 /df = 1.24, GFI = 0.96, AGFI = 0.92, CFI = 1.00, NFI = 0.99, NNFI = 0.99, RMSEA = 0.02). The highest total effect on social dysfunction was psychotic symptoms (0.67, p<0.05). Medication use self-efficacy had a direct effect on psychotic symptoms (-0.25, p<0.01), and social support had direct effect on medication use self efficacy (0.36, p <0.01). Conclusions: Psychotic symptoms and stressful life events were the significance factors that influenced direct on social dysfunctioning. Therefore, interventions that are designed to manage these factors are crucial in order to enhance social functioning in this population.

Keywords: psychotic symptoms, methamphetamine, schizophrenia, stressful life events, social dysfunction, social support, medication use self efficacy

Procedia PDF Downloads 211
26056 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 92
26055 Nurse Practitioner Led Pediatric Primary Care Clinic in a Tertiary Care Setting: Improving Access and Health Outcomes

Authors: Minna K. Miller, Chantel. E. Canessa, Suzanna V. McRae, Susan Shumay, Alissa Collingridge

Abstract:

Primary care provides the first point of contact and access to health care services. For the pediatric population, the goal is to help healthy children stay healthy and to help those that are sick get better. Primary care facilitates regular well baby/child visits; health promotion and disease prevention; investigation, diagnosis and management of acute and chronic illnesses; health education; both consultation and collaboration with, and referral to other health care professionals. There is a protective association between regular well-child visit care and preventable hospitalization. Further, low adherence to well-child care and poor continuity of care are independently associated with increased risk of hospitalization. With a declining number of family physicians caring for children, and only a portion of pediatricians providing primary care services, it is becoming increasingly difficult for children and their families to access primary care. Nurse practitioners are in a unique position to improve access to primary care and improve health outcomes for children. Limited literature is available on the nurse practitioner role in primary care pediatrics. The purpose of this paper is to describe the development, implementation and evaluation of a Nurse Practitioner-led pediatric primary care clinic in a tertiary care setting. Utilizing the participatory, evidence-based, patient-focused process for advanced practice nursing (PEPPA framework), this paper highlights the results of the initial needs assessment/gap analysis, the new service delivery model, populations served, and outcome measures.

Keywords: access, health outcomes, nurse practitioner, pediatric primary care, PEPPA framework

Procedia PDF Downloads 500
26054 Brazilian Transmission System Efficient Contracting: Regulatory Impact Analysis of Economic Incentives

Authors: Thelma Maria Melo Pinheiro, Guilherme Raposo Diniz Vieira, Sidney Matos da Silva, Leonardo Mendonça de Oliveira Queiroz, Mateus Sousa Pinheiro, Danyllo Wenceslau de Oliveira Lopes

Abstract:

The present article has the objective to describe the regulatory impact analysis (RIA) of the contracting efficiency of the Brazilian transmission system usage. This contracting is made by users connected to the main transmission network and is used to guide necessary investments to supply the electrical energy demand. Therefore, an inefficient contracting of this energy amount distorts the real need for grid capacity, affecting the sector planning accuracy and resources optimization. In order to provide this efficiency, the Brazilian Electricity Regulatory Agency (ANEEL) homologated the Normative Resolution (NR) No. 666, from July 23th of 2015, which consolidated the procedures for the contracting of transmission system usage and the contracting efficiency verification. Aiming for a more efficient and rational transmission system contracting, the resolution established economic incentives denominated as Inefficiency installment for excess (IIE) and inefficiency installment for over-contracting (IIOC). The first one, IIE, is verified when the contracted demand exceeds the established regulatory limit; it is applied to consumer units, generators, and distribution companies. The second one, IIOC, is verified when the distributors over-contract their demand. Thus, the establishment of the inefficiency installments IIE and IIOC intends to avoid the agent contract less energy than necessary or more than it is needed. Knowing that RIA evaluates a regulatory intervention to verify if its goals were achieved, the results from the application of the above-mentioned normative resolution to the Brazilian transmission sector were analyzed through indicators that were created for this RIA to evaluate the contracting efficiency transmission system usage, using real data from before and after the homologation of the normative resolution in 2015. For this, indicators were used as the efficiency contracting indicator (ECI), excess of demand indicator (EDI), and over-contracting of demand indicator (ODI). The results demonstrated, through the ECI analysis, a decrease of the contracting efficiency, a behaviour that was happening even before the normative resolution of 2015. On the other side, the EDI showed a considerable decrease in the amount of excess for the distributors and a small reduction for the generators; moreover, the ODI notable decreased, which optimizes the usage of the transmission installations. Hence, with the complete evaluation from the data and indicators, it was possible to conclude that IIE is a relevant incentive for a more efficient contracting, indicating to the agents that their contracting values are not adequate to keep their service provisions for their users. The IIOC also has its relevance, to the point that it shows to the distributors that their contracting values are overestimated.

Keywords: contracting, electricity regulation, evaluation, regulatory impact analysis, transmission power system

Procedia PDF Downloads 124
26053 Effect of Gas Boundary Layer on the Stability of a Radially Expanding Liquid Sheet

Authors: Soumya Kedia, Puja Agarwala, Mahesh Tirumkudulu

Abstract:

Linear stability analysis is performed for a radially expanding liquid sheet in the presence of a gas medium. A liquid sheet can break up because of the aerodynamic effect as well as its thinning. However, the study of the aforementioned effects is usually done separately as the formulation becomes complicated and is difficult to solve. Present work combines both, aerodynamic effect and thinning effect, ignoring the non-linearity in the system. This is done by taking into account the formation of the gas boundary layer whilst neglecting viscosity in the liquid phase. Axisymmetric flow is assumed for simplicity. Base state analysis results in a Blasius-type system which can be solved numerically. Perturbation theory is then applied to study the stability of the liquid sheet, where the gas-liquid interface is subjected to small deformations. The linear model derived here can be applied to investigate the instability for sinuous as well as varicose modes, where the former represents displacement in the centerline of the sheet and the latter represents modulation in sheet thickness. Temporal instability analysis is performed for sinuous modes, which are significantly more unstable than varicose modes, for a fixed radial distance implying local stability analysis. The growth rates, measured for fixed wavenumbers, predicated by the present model are significantly lower than those obtained by the inviscid Kelvin-Helmholtz instability and compare better with experimental results. Thus, the present theory gives better insight into understanding the stability of a thin liquid sheet.

Keywords: boundary layer, gas-liquid interface, linear stability, thin liquid sheet

Procedia PDF Downloads 235
26052 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 232
26051 Load Balancing Technique for Energy - Efficiency in Cloud Computing

Authors: Rani Danavath, V. B. Narsimha

Abstract:

Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.

Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission

Procedia PDF Downloads 454
26050 The Influence of Wasta on Employees and Organizations in Kuwait

Authors: Abrar Al-Enzi

Abstract:

This study investigates the role of the popular utilization of Wasta within Arab societies. Wasta, by definition, is a set of personal networks based on family or kinship ties in which power and influence are utilized to get things done. As Wasta evolved, it became intensely rooted in Arab cultures, which is considered as an intrinsic tool of the culture, a method of doing business transactions and as a family obligation. However, the consequences related to Wasta in business are substantial as it impacts organizational performance, employee’s perception of the organization and the atmosphere between employees. To date, there has been little in-depth organizational research on the impact of Wasta. Hence, the question that will be addressed is: Does Wasta influence human resource management, knowledge sharing and innovation in Kuwait, which in turn affects employees’ commitment within organizations? As a result, a mixed method sequential exploratory research design will be used to examine the mentioned subject, which consists of three phases: (1) Doing some initial exploratory interviews; (2) Developing a paper-based and online survey (Quantitative method) based on the findings; (3) Lastly, following up with semi-structured interviews (Qualitative method). The rationale behind this approach is that both qualitative and quantitative methods complement each other by providing a more complete picture of the subject matter.

Keywords: commitment, HRM practices, social capital, Wasta

Procedia PDF Downloads 265
26049 Meditation-Based Interventions in the Workplace

Authors: Louise Fitzgerald, John Allman

Abstract:

Introduction: Having previously engaged in a meditation-based programme (MBP) for staff in general practice, we explore the evidence and extent to which MBPs are employed in the workplace. Aim of the study: We aim to understand the current workplace MBP intervention literature, which will help inform the suitability of these interventions within the workplace domain. Objectives: Uptake of MBPs in the workplace has grown as organizations look to support employee health, wellbeing, and performance. We will discuss the current MBP literature, including the large variability across MBPs and the associated difficulties in evaluating their efficacy. Learning points: 1) MBPs have a positive impact on cognitive function including concentration and memory and as such job performance. MBPs appear to have a positive impact on objective and subjective job satisfaction, productivity, motivation and work engagement. Meditation in the workplace may have positive impacts on mental health issues - including stress reduction and depression. 2) From our review MBPs appear to be implementable in a wide range of professions and work contexts - regardless of individual factors. Given many companies are focusing on health and wellbeing of employees, this could be included in employee wellbeing programmes. 3) Despite the benefits of mindfulness and meditation interventions in psychosocial workplace health and work performance the long-term efficacy has yet to be fully determined.

Keywords: meditation-based programmes, mindfulness, meditation, well-being

Procedia PDF Downloads 145
26048 Flood Inundation Mapping at Wuseta River, East Gojjam Zone, Amhara Regional State, Ethiopia

Authors: Arega Mulu

Abstract:

Flood is a usual phenomenon that will continue to be a leading risk as extensive as societies living and effort in flood-disposed areas. It happens when the size of rainwater in a stream surpasses the volume of the canal. In Ethiopia, municipal overflow events are suitable for severe difficulty in current years. This overflow is mainly related to poorly planned city drainage schemes and land use design. Collective with it, the absence of detailed flood levels, the absence of an early caution scheme and systematized flood catastrophe alleviation actions at countrywide and local levels further raise the gravity of the problem. Hence, this study produces flood inundation maps in the Wuseta River using HEC-GeoRAS and HEC-RAS models. The flooded areas along the Wuseta River have been plotted based on different return periods. The highest flows for various return periods were assessed using the HEC-RAS model, GIS for spatial data processing, and HEC-GeoRAS for interfacing among HEC-RAS and GIS. The areas along the Wuseta River simulated to be flooded for 5, 10, 25, 50, and 100-year return periods. For a 100-year return period flood frequency, the maximum flood depth was 2.26m, and the maximum width was 0.3km on each riverside. This maximum Depth of flood was extended from near to the journey from the university to Debre Markos Town. Most of the area was affected near the Wuseta market to Abaykunu new bridge, and a small portion was affected from Abaykunu to the road crossing from Addis Ababa to Debre Markos Town. The outcome of this study will help the concerned bodies frame and advance policies according to the existing flood risk in the area.

Keywords: flood innundation, wuseta river, HEC-HMS, HEC-RAS

Procedia PDF Downloads 13
26047 An Excel-Based Educational Platform for Design Analyses of Pump-Pipe Systems

Authors: Mohamed M. El-Awad

Abstract:

This paper describes an educational platform for design analyses of pump-pipe systems by using Microsoft Excel, its Solver add-in, and the associated VBA programming language. The paper demonstrates the capabilities of the Excel-based platform that suits the iterative nature of the design process better than the use of design charts and data tables. While VBA is used for the development of a user-defined function for determining the standard pipe diameter, Solver is used for optimising the pipe diameter of the pipeline and for determining the operating point of the selected pump.

Keywords: design analyses, pump-pipe systems, Excel, solver, VBA

Procedia PDF Downloads 175
26046 Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients

Authors: B. Kabane, G. G. Redhi

Abstract:

An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.

Keywords: separation, activity coefficients, methyltrioctylammonium chloride, ionic liquid, capacity

Procedia PDF Downloads 146
26045 Predicting Student Performance Based on Coding Behavior in STEAMplug

Authors: Giovanni Gonzalez Araujo, Michael Kyrilov, Angelo Kyrilov

Abstract:

STEAMplug is a web-based innovative educational platform which makes teaching easier and learning more effective. It requires no setup, eliminating the barriers to entry, allowing students to focus on their learning throughreal-world development environments. The student-centric tools enable easy collaboration between peers and teachers. Analyzing user interactions with the system enables us to predict student performance and identify at-risk students, allowing early instructor intervention.

Keywords: plagiarism detection, identifying at-Risk Students, education technology, e-learning system, collaborative development, learning and teaching with technology

Procedia PDF Downloads 155
26044 Leveraging Mobile Apps for Citizen-Centric Urban Planning: Insights from Tajawob Implementation

Authors: Alae El Fahsi

Abstract:

This study explores the ‘Tajawob’ app's role in urban development, demonstrating how mobile applications can empower citizens and facilitate urban planning. Tajawob serves as a digital platform for community feedback, engagement, and participatory governance, addressing urban challenges through innovative tech solutions. This research synthesizes data from a variety of sources, including user feedback, engagement metrics, and interviews with city officials, to assess the app’s impact on citizen participation in urban development in Morocco. By integrating advanced data analytics and user experience design, Tajawob has bridged the communication gap between citizens and government officials, fostering a more collaborative and transparent urban planning process. The findings reveal a significant increase in civic engagement, with users actively contributing to urban management decisions, thereby enhancing the responsiveness and inclusivity of urban governance. Challenges such as digital literacy, infrastructure limitations, and privacy concerns are also discussed, providing a comprehensive overview of the obstacles and opportunities presented by mobile app-based citizen engagement platforms. The study concludes with strategic recommendations for scaling the Tajawob model to other contexts, emphasizing the importance of adaptive technology solutions in meeting the evolving needs of urban populations. This research contributes to the burgeoning field of smart city innovations, offering key insights into the role of digital tools in facilitating more democratic and participatory urban environments.

Keywords: smart cities, digital governance, urban planning, strategic design

Procedia PDF Downloads 67
26043 Comparative Study of Ozone Based AOP's for Mineralization of Reactive Black 5

Authors: Sandip Sharma, Jayesh Ruparelia

Abstract:

The present work focuses on the comparative study of ozone based advanced oxidation processes (AOPs): O3, O3/UV and O3/UV/Persulfate for mineralization of synthetic wastewater containing Reactive Black5 (RB5) dye. The effect of various parameters: pH, ozone flow rate, initial concentration of dye and intensity of UV light was analyzed to access performance efficiency of AOPs. The performance of all the three AOPs was evaluated on the basis of decolorization, % TOC removal and ozone consumption. The highest mineralization rate of 86.83% was achieved for O3/UV/Persulfate followed by 71.53% and 66.82 % for O3/UV and O3 respectively. This is attributed to the fact that Persulfate ions (S2O82-) upon activation produce sulfate radical (SO4-●) which is very strong oxidant capable of degrading a wide variety of recalcitrant organic compounds, moreover to enhance the performance of Persulfate it is activated using UV irradiation. On increasing the intensity of UV irradiation from 11W to 66W, TOC removal efficiency is increased by 59.04%. Ozone based AOPs gives better mineralization on basic conditions, at pH 12 it gives 68.81%, 60.01% and 40.32% TOC removal for O3/UV/Persulfate, O3/UV and O3 process respectively. The result also reveals that decolorization of 98.95%, 95.17% and 94.71% was achieved by O3/UV/Persulfate, O3/UV and O3 process respectively. In addition to above, ozone consumption was also considerably decreased by 17% in case of O3/UV/Persulfate, as efficiency of process is enhanced by means of activation of persulfate through UV irradiation. Thus study reveals that mineralization follows: O3/UV/Persulfate> O3/UV> O3.

Keywords: AOP, mineralization, TOC, recalcitrant organic compounds

Procedia PDF Downloads 230