Search results for: waste water irrigation
9308 Energy Production with Closed Methods
Authors: Bujar Ismaili, Bahti Ismajli, Venhar Ismaili, Skender Ramadani
Abstract:
In Kosovo, the problem with the electricity supply is huge and does not meet the demands of consumers. Older thermal power plants, which are regarded as big environmental polluters, produce most of the energy. Our experiment is based on the production of electricity using the closed method that does not affect environmental pollution by using waste as fuel that is considered to pollute the environment. The experiment was carried out in the village of Godanc, municipality of Shtime - Kosovo. In the experiment, a production line based on the production of electricity and central heating was designed at the same time. The results are the benefits of electricity as well as the release of temperature for heating with minimal expenses and with the release of 0% gases into the atmosphere. During this experiment, coal, plastic, waste from wood processing, and agricultural wastes were used as raw materials. The method utilized in the experiment allows for the release of gas through pipes and filters during the top-to-bottom combustion of the raw material in the boiler, followed by the method of gas filtration from waste wood processing (sawdust). During this process, the final product is obtained - gas, which passes through the carburetor, which enables the gas combustion process and puts into operation the internal combustion machine and the generator and produces electricity that does not release gases into the atmosphere. The obtained results show that the system provides energy stability without environmental pollution from toxic substances and waste, as well as with low production costs. From the final results, it follows that: in the case of using coal fuel, we have benefited from more electricity and higher temperature release, followed by plastic waste, which also gave good results. The results obtained during these experiments prove that the current problems of lack of electricity and heating can be met at a lower cost and have a clean environment and waste management.Keywords: energy, heating, atmosphere, waste, gasification
Procedia PDF Downloads 2359307 Variation in Water Utilization of Typical Desert Shrubs in a Desert-Oasis Ecotone
Authors: Hai Zhou, Wenzhi Zhao
Abstract:
Water is one of the most important factors limiting plant growth and development in desert ecosystems. In order to understand how desert shrubs cope with variation in water sources over time, it is important to understand plant–water relations in desert-oasis ecotone. We selected the typical desert shrubs: Nitraria sibirica, Calligonum mongolicum and Haloxylon ammodendron of 5-, 10-, 20- and 40-year old as the research species, to study the seasonal variation of plant water sources and response to precipitation in the desert-oasis ecotone of Linze, Northwestern China. We examined stable isotopic ratios of oxygen (δ18O) in stem water of desert shrubs as well as in precipitation, groundwater, and soil water in different soil layers and seasons to determine water sources for the shrubs. We found that the N. sibirica and H. ammodendron of 5-, 10-year old showed significant seasonal variation characteristics of δ18O value of stem water and water sources. However, the C. mongolicum and 20- and 40-year H. ammodendron main water sources were from deep soil water and groundwater, and less response to precipitation pulse. After 22.4 mm precipitation, the contribution of shallow soil water (0-50cm) to the use of N. sibirica increased from 6.7% to 36.5%; the C. mongolicum rarely use precipitation that were about 58.29% and 23.51%, absorbed from the deep soil water and groundwater; the contribution of precipitation to use of H. ammodendron had significantly differences among the four ages. The H. ammodendron of 5- and 10-year old about 86.3% and 42.5% water sources absorbed from the shallow soil water after precipitation. However, the contribution to 20- and 40-year old plant was less than 15%. So, the precipitation was one of the main water sources for desert shrubs, but the species showed different water utilization. We conclude that the main water source of the N. sibirica and H. ammodendron of 5-, 10-year was soil water recharged by precipitation, but the deeply rooted H. ammodendron of 20‐ and 40‐year‐old and the C. mongolicum have the ability to exploit a deep and reliable water source.Keywords: water use pattern, water resource, stable isotope, seasonal change, precipitation pulse
Procedia PDF Downloads 4299306 A Study of Soft Soil Improvement by Using Lime Grit
Authors: Ashim Kanti Dey, Briti Sundar Bhowmik
Abstract:
This paper presents an idea to improve the soft soil by using lime grits which are normally produced as waste product in the paper manufacturing industries. This waste material cannot be used as a construction material because of its light weight, uniform size and poor compaction control. With scarcity in land, effective disposal of lime grit is a major concern of all paper manufacturing industries. Considering its non-plasticity and high permeability characteristics the lime grit may suitably be used as a drainage material for speedy consolidation of cohesive soil. It can also be used to improve the bearing capacity of soft clay. An attempt has been made in this paper to show the usefulness of lime grit in improving the bearing capacity of shallow foundation resting on soft clayey soil. A series of undrained unconsolidated cyclic triaxial tests performed at different area ratios and at three different water contents shows that dynamic shear modulus and damping ratio can be substantially improved with lime grit. Improvement is observed to be more in case of higher area ratio and higher water content. Static triaxial tests were also conducted on lime grit reinforced clayey soil after application of 50 load cycles to determine the effect of lime grit columns on cyclically loaded clayey soils. It is observed that the degradation is less for lime grit stabilized soil. A study of model test with different area ratio of lime column installation is also included to see the field behaviour of lime grit reinforced soil.Keywords: lime grit column, area ratio, shear modulus, damping ratio, strength ratio, improvement factor, degradation factor
Procedia PDF Downloads 5039305 Growth and Yield Response of Solanum retroflexum to Different Level of Salinity
Authors: Fhatuwani Herman Nndwambi, P. W. Mashela
Abstract:
Salinity is a major constraint limiting crop productivity. It has been predicted that by the year 2050, more than 50% of the arable land will be affected by salinity. Two similar salinity experiments were conducted in two seasons under greenhouse condition. Six levels of salinity plus control (viz; control, 2, 4, 8, 16, 32 and 64 % NaCl and CaCl2 at 3:1 ratio) were applied in a form of irrigation water in a single factor experiment arranged in a complete block design with 20 replications. Plant growth and yield were negatively affected by salinity treatments especially at the high levels of salinity. For example, our results suggest that the 32 and 64% of NaCl and CaCl2 treatment were too much for the plant to withstand as determined by reduced dry shoot mass, stem diameter and plant height in both seasons. On the other hand, stomatal conductance and chlorophyll content increased with an increased level of salinity.Keywords: growth, salinity, season, yield
Procedia PDF Downloads 1669304 Sources of Water Supply and Water Quality for Local Consumption: The Case Study of Eco-Tourism Village, Suan Luang Sub- District Municipality, Ampawa District, Samut Songkram Province, Thailand
Authors: Paiboon Jeamponk, Tasanee Ponglaa, Patchapon Srisanguan
Abstract:
The aim of this research paper was based on an examination of sources of water supply and water quality for local consumption, conducted at eco-tourism villages of Suan Luang Sub- District Municipality of Amphawa District, Samut Songkram Province. The study incorporated both questionnaire and field work of water testing as the research tool and method. The sample size of 288 households was based on the population of the district, whereas the selected sample water sources were from 60 households: 30 samples were ground water and another 30 were surface water. Degree of heavy metal contamination in the water including copper, iron, manganese, zinc, cadmium and lead was investigated utilizing the Atomic Absorption- Direct Aspiration method. The findings unveiled that 96.0 percent of household water consumption was based on water supply, while the rest on canal, river and rain water. The household behaviour of consumption revealed that 47.2 percent of people routinely consumed water without boiling or filtering prior to consumption. The investigation of water supply quality found that the degree of heavy metal contamination including metal, lead, iron, copper, manganese and cadmium met the standards of the Department of Health.Keywords: sources of water supply, water quality, water supply, Thailand
Procedia PDF Downloads 2959303 Climatic and Human Impact on Karst Aquifer in Semi Arid Zone
Authors: Benhammadi Hocine, Fehdi Chemseddine, Chaffai Hicham
Abstract:
The study site is the plateau Cheria, a city in south eastern Algeria (Tebessa) thanks to its structure perched syncline is the region of Tebessa a real water tower. Special rates provided by some boreholes and wells around the city Cheria have long been led to believe that the reserves were virtually limitless. The investigations carried out in this region have located karstified limestone areas at depth of 100 meters of the carbonate formation. During the last two decades a rainfall deficit has increased the effect of drought has caused an increase in flow from this aquifer. The effect on water resources is a significant and progressive reduction of the static level of the karst aquifer. The qualitative aspect has also been marked by degradation. This climate variability marked by the decade of drought (1990/2000) has had the effect on the local population, a forced change of their activity primarily agricultural. Abandoning agro pastoral mode due to prolonged drought, populations chose agriculture maraichère consumer a lot of water, this increasing the depletion of water resources. This change in activity was accompanied by a rural exodus to urban areas. The result has led to an increase in population in the urban areas, this has resulted in an increase in water demand and an increase in emissions (waste water). Uncontrolled discharges contribute to pollute a little more groundwater. The second consequence is type Geotechnical, it is the appearance of sinkholes, results of the alternating periods of drought and violent floods. Sinkholes are a real concern for the management and urban development. An interdisciplinary contribution (geology, hydrology, climatology and management) is essential to reduce or avoid impacts in different sectors.Keywords: aquifer, carbonate formation, drought, exodus, resources, chéria, Algéria
Procedia PDF Downloads 4519302 The Use of Geographic Information System in Spatial Location of Waste Collection Points and the Attendant Impacts in Bida Urban Centre, Nigeria
Authors: Daramola Japheth, Tabiti S. Tabiti, Daramola Elizabeth Lara, Hussaini Yusuf Atulukwu
Abstract:
Bida urban centre is faced with solid waste management problems which are evident in the processes of waste generation, onsite storage, collection, transfer and transport, processing and disposal of solid waste. As a result of this the urban centre is defaced with litters of garbage and offensive odours due to indiscriminate dumping of refuse within the neighborhood. The partial removal of the fuel subsidy by the Federal Government in January 2012 leads to the formation of Subsidy Reinvestment Programmes (SURE-P), the Federal Government’s share is 41 per cent of the savings while the States and Local Government shared the remaining 59 percent. The SURE-P Committee in carrying out the mandate entrusted upon it by the President by identifying few critical infrastructure and social Safety nets that will ameliorate the sufferings of Nigerians. Waste disposal programme as an aspect of Solid waste management is one of the areas of focus for Niger State SURE-programmes incorporated under Niger State Environmental Protection Agency. The emergence of this programme as related to waste management in Bida has left behind a huge refuse spots along major corridors leading to a serious state of mess. Major roads within the LGA is now turned to dumping site, thereby obstructing traffic movements, while the aesthetic nature of the town became something else with offensive odours all over. This paper however wishes to underscore the use of geographical Information System in identifying solid waste sports towards effective solid waste management in the Bida urban centre. The paper examined the spatial location of dumping points and its impact on the environment. Hand held Global Position System was use to pick the dumping points location; where a total number of 91 dumping points collected were uploaded to ArcGis 10.2 for analysis. Interview method was used to derive information from households living near the dumping site. It was discovered that the people now have to cope with offensive odours, rodents invasion, dog and cats coming around the house as a result of inadequate and in prompt collection of waste around the neighborhood. The researchers hereby recommend that more points needs to be created with prompt collections of waste within the neighborhood by the necessary SURE - P agencies.Keywords: dumping site, neighborhood, refuse, waste
Procedia PDF Downloads 5299301 Water Quality Management Based on Hydrodynamic Approach, Landuse, and Human Intervention in Wulan Delta Central Java Indonesia: Problems Identification and Review
Authors: Lintang Nur Fadlillah, Muh Aris Marfai, M. Widyastuti
Abstract:
Delta is dynamics area which is influenced by marine and river. Increasing human population in coastal area and the need of life exert pressure in delta that provides various resources. Wulan Delta is one of active Delta in Central Java, Indonesia. It has been experienced multiple pressures because of natural factors and human factors. In order to provide scientific solution and to analyze the main driving force in river delta, we collected several evidences based on news, papers, and publications related to Wulan Delta. This paper presents a review and problems identification in Wulan Delta, based on hydrodynamic approach, land use, and human activities which influenced water quality in the delta. A comprehensive overview is needed to address best policies under local communities and government. The analysis based on driving forces which affect delta estuary and river mouth. Natural factor in particular hydrodynamic influenced by tides, waves, runoff, and sediment transport. However, hydrodynamic affecting mixing process in river estuaries. The main problem is human intervention in land which is land use exchange leads to several problems such us decreasing water quality. Almost 90% of delta has been transformed into fish pond by local communities. Yet, they have not apply any water management to treat waste water before flush it to the sea and estuary. To understand the environmental condition, we need to assess water quality of river delta. The assessment based on land use as non-point source pollution. In Wulan Delta there are no industries. The land use in Wulan Delta consist of fish pond, settlement, and agriculture. The samples must represent the land use, to estimate which land use are most influence in river delta pollution. The hydrodynamic condition such as high tides and runoff must be considered, because it will affect the mixing process and water quality as well. To determine the samples site, we need to involve local community, in order to give insight into them. Furthermore, based on this review and problem identification, recommendations and strategies for water management are formulated.Keywords: delta, land use, water quality, management, hydrodynamics
Procedia PDF Downloads 2509300 Low Energy Technology for Leachate Valorisation
Authors: Jesús M. Martín, Francisco Corona, Dolores Hidalgo
Abstract:
Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.Keywords: forward osmosis, landfills, leachate valorization, solar evaporation
Procedia PDF Downloads 2029299 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks
Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova
Abstract:
CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.Keywords: adsorption, CO₂, high pressure, porous materials
Procedia PDF Downloads 1619298 Frequency Analysis of Minimum Ecological Flow and Gage Height in Indus River Using Maximum Likelihood Estimation
Authors: Tasir Khan, Yejuan Wan, Kalim Ullah
Abstract:
Hydrological frequency analysis has been conducted to estimate the minimum flow elevation of the Indus River in Pakistan to protect the ecosystem. The Maximum likelihood estimation (MLE) technique is used to estimate the best-fitted distribution for Minimum Ecological Flows at nine stations of the Indus River in Pakistan. The four selected distributions, Generalized Extreme Value (GEV) distribution, Generalized Logistics (GLO) distribution, Generalized Pareto (GPA) distribution, and Pearson type 3 (PE3) are fitted in all sites, usually used in hydro frequency analysis. Compare the performance of these distributions by using the goodness of fit tests, such as the Kolmogorov Smirnov test, Anderson darling test, and chi-square test. The study concludes that the Maximum Likelihood Estimation (MLE) method recommended that GEV and GPA are the most suitable distributions which can be effectively applied to all the proposed sites. The quantiles are estimated for the return periods from 5 to 1000 years by using MLE, estimations methods. The MLE is the robust method for larger sample sizes. The results of these analyses can be used for water resources research, including water quality management, designing irrigation systems, determining downstream flow requirements for hydropower, and the impact of long-term drought on the country's aquatic system.Keywords: minimum ecological flow, frequency distribution, indus river, maximum likelihood estimation
Procedia PDF Downloads 779297 Environmental Risk Assessment of Mechanization Waste Collection Scheme in Tehran
Authors: Amin Padash, Javad Kazem Zadeh Khoiy, Hossein Vahidi
Abstract:
Purpose: The mechanization system for the urban services was implemented in Tehran City in the year 2004 to promote the collection of domestic wastes; in 2010, in order to achieve the objectives of the project of urban services mechanization and qualitative promotion and improve the urban living environment, sustainable development and optimization of the recyclable solid wastes collection systems as well as other dry and non-organic wastes and conformity of the same to the modern urban management methods regarding integration of the mechanized urban services contractors and recycling contractors and in order to better and more correct fulfillment of the waste separation and considering the success of the mechanization plan of the dry wastes in most of the modern countries. The aim of this research is analyzing of Environmental Risk Assessment of the mechanization waste collection scheme in Tehran. Case Study: Tehran, the capital of Iran, with the population of 8.2 million people, occupies 730 km land expanse, which is 4% of total area of country. Tehran generated 2,788,912 ton (7,641 ton/day) of waste in year 2008. Hospital waste generation rate in Tehran reaches 83 ton/day. Almost 87% of total waste was disposed of by placing in a landfill located in Kahrizak region. This large amount of waste causes a significant challenge for the city. Methodology: To conduct the study, the methodology proposed in the standard Mil-St-88213 is used. This method is an efficient method to examine the position in opposition to the various processes and the action is effective. The method is based on the method of Military Standard and Specialized in the military to investigate and evaluate options to locate and identify the strengths and weaknesses of powers to decide on the best determining strategy has been used. Finding and Conclusion: In this study, the current status of mechanization systems to collect waste and identify its possible effects on the environment through a survey and assessment methodology Mil-St-88213, and then the best plan for action and mitigation of environmental risk has been proposed as Environmental Management Plan (EMP).Keywords: environmental risk assessment, mechanization waste collection scheme, Mil-St-88213
Procedia PDF Downloads 4399296 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste
Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla
Abstract:
Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film
Procedia PDF Downloads 3929295 Kuwait Environmental Remediation Program: Waste Management Data Analytics for Planning and Optimization of Waste Collection
Authors: Aisha Al-Baroud
Abstract:
The United Nations Compensation Commission (UNCC), Kuwait National Focal Point (KNFP) and Kuwait Oil Company (KOC) cooperated in a joint project to undertake comprehensive and collaborative efforts to remediate 26 million m3 of crude oil contaminated soil that had resulted from the Gulf War in 1990/1991. These efforts are referred to as the Kuwait Environmental Remediation Program (KERP). KOC has developed a Total Remediation Solution (TRS) for KERP, which will guide the Remediation projects, comprises of alternative remedial solutions with treatment techniques inclusive of limited landfills for non-treatable soil materials disposal, and relies on treating certain ranges of Total Petroleum Hydrocarbon (TPH) contamination with the most appropriate remediation techniques. The KERP Remediation projects will be implemented within the KOC’s oilfields in North and South East Kuwait. The objectives of this remediation project is to clear land for field development and treat all the oil contaminated features (dry oil lakes, wet oil lakes, and oil contaminated piles) through TRS plan to optimize the treatment processes and minimize the volume of contaminated materials to be placed into landfills. The treatment strategy will comprise of Excavation and Transportation (E&T) of oil contaminated soils from contaminated land to remote treatment areas and to use appropriate remediation technologies or a combination of treatment technologies to achieve remediation target criteria (RTC). KOC has awarded five mega projects to achieve the same and is currently in the execution phase. As a part of the company’s commitment to environment and for the fulfillment of the mandatory HSSEMS procedures, all the Remediation contractors needs to report waste generation data from the various project activities on a monthly basis. Data on waste generation is collected in order to implement cost-efficient and sustainable waste management operations. Data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information for planning and optimization of waste collection and recycling.Keywords: waste, tencnolgies, KERP, data, soil
Procedia PDF Downloads 1139294 Gas Sweetening Process Simulation: Investigation on Recovering Waste Hydraulic Energy
Authors: Meisam Moghadasi, Hassan Ali Ozgoli, Foad Farhani
Abstract:
In this research, firstly, a commercial gas sweetening unit with methyl-di-ethanol-amine (MDEA) solution is simulated and comprised in an integrated model in accordance with Aspen HYSYS software. For evaluation purposes, in the second step, the results of the simulation are compared with operating data gathered from South Pars Gas Complex (SPGC). According to the simulation results, the considerable energy potential contributed to the pressure difference between absorber and regenerator columns causes this energy driving force to be applied in power recovery turbine (PRT). In the last step, the amount of waste hydraulic energy is calculated, and its recovery methods are investigated.Keywords: gas sweetening unit, simulation, MDEA, power recovery turbine, waste-to-energy
Procedia PDF Downloads 1789293 Sustainable Drinking Water Treatment Method Using Solar Light
Authors: Ayushi Arora
Abstract:
Solar photocatalysis has the potential to treat drinking water in a sustainable and cost effective manner. According to WHO, there should not be any colony forming units (CFU) per 100 mL present in drinking water, and as per the Central Pollution Control Board (CPCB) of India, the bathing water should have less than 500 CFU/100 mL and the maximum permissible limit is 2500 CFU/100 mL. In this study, 8 water sources near our collaborators, Indian Institute of Technology, Kharagpur, India, were analysed, and it was found that 6 out of 8 sources of water had significant coliform count in them. Two of them were chosen to be treated by solar photocatalysis a) well water which had a count of 4800 CFU/100 mL for total coliforms and was used by people for drinking purposes, and b) pond water which had a count of 92000 CFU/100 mL for total coliforms and 3000 CFU/mL for E.Coli and was used by people for washing and bathing purposes. In this study, a semiconductor-semiconductor, composite BTO-TiO2-RMSG & TiO2-SiO2 were tested for their ability to be activated under solar light and to reduce Total Coliforms and E.Coli bacteria in real world contaminated water, and it was found that both catalysts were both able to reduce the total coliform count in water by 99.7% and 98.2 % in 2 hrs respectively. They have also shown promising results in reusability tests. This study demonstrates the ability of solar photocatalysis to be used in real world drinking water treatment and will promote future advancements in this field.Keywords: sustainable water treatment, waterpurification technologies, water policies, water pollution and environmental engineering
Procedia PDF Downloads 819292 Impact of Water, Sanitation and Hygiene Interventions on Water Quality in Primary Schools of Pakistan
Authors: Jamil Ahmed, Li P. Wong, Yan P. Chua
Abstract:
The United Nation's sustainable development goals include the target to ensure access to water and sanitation for all; however, very few studies have assessed school-based drinking water in Pakistan. The purpose of this study was to characterize water quality in primary schools of Pakistan and to characterize how recent WASH interventions were associated with school water quality. We conducted a representative cross-sectional study of primary schools in the Sindh province of Pakistan. We used structured observations and structured interviews to ascertain the school’s WASH conditions. Our primary exposures of interest were the implementation of previous WASH interventions in the school and the water source type. Outcomes of interest included water quality (measured by various chemical and microbiological indicators) and water availability at the school’s primary drinking water source. We used log-binomial regression to characterize how WASH exposures were associated with water quality outcomes. We collected data from 256 schools. Groundwater was the primary drinking water source at most schools (87%). Water testing showed that 14% of the school’s water had arsenic above the WHO recommendations, and over 50% of the water samples exceeded recommendations for both lead and cadmium. A majority of the water sources (52%) had fecal coliform contamination. None of the schools had nitrate contamination (0%), and few had fluoride contamination (5%). Regression results indicated that having a recent WASH intervention at the school was not associated with either arsenic contamination (prevalence ratio=0.97; 95% CI: 0.46-2.1) or with fecal coliform contamination (PR=0.88; 95% CI: 0.67-1.17). Our assessment unveiled several water quality gaps that exist, including high heavy metal and fecal contamination. Our findings will help various stakeholders to take suitable action to improve water quality in Pakistani schools.Keywords: WASH interventions, water quality, primary school children, heavy metals
Procedia PDF Downloads 1419291 Evaluation of Phthalates Contents and Their Health Effects in Consumed Sachet Water Brands in Delta State, Nigeria
Authors: Edjere Oghenekohwiroro, Asibor Irabor Godwin, Uwem Bassey
Abstract:
This paper determines the presence and levels of phthalates in sachet and borehole water source in some parts of Delta State, Nigeria. Sachet and borehole water samples were collected from seven different water packaging facilities and level of phthalates determined using GC-MS instrumentation. Phthalates concentration in borehole samples varied from 0.00-0.01 (DMP), 0.06-0.20 (DEP), 0.10-0.98 (DBP), 0.21-0.36 (BEHP), 0.01-0.03 (DnOP) µg/L and (BBP) was not detectable; while sachet water varied from 0.03-0.95 (DMP), 0.16-12.45 (DEP), 0.57-3.38 (DBP), 0.00-0.03 (BBP), 0.08-0.31 (BEHP) and 0-0.03 (DnOP) µg/L. Phthalates concentration in the sachet water was higher than that of the corresponding boreholes sources and also showed significant difference (p < 0.05) between the two. Sources of these phthalate esters were the interaction between water molecules and plastic storage facilities. Although concentration of all phthalate esters analyzed were lower than the threshold limit value(TLV), over time storage of water samples in this medium can lead to substantial increase with negative effects on individuals consuming them.Keywords: phthalate esters, borehole, sachet water, sample extraction, gas chromatography, GC-MS
Procedia PDF Downloads 2449290 Development of Portable Water Jet Cutter Mobile Hand Tool: Analysis of Nozzle Geometries and Materials
Authors: Razali Bin Abidin
Abstract:
This paper presents the development of a portable water jet cutter for soft materials such as meat. Twelve geometries of nozzles were simulated using finite element method. Water pressure was set to 1500 lb/in². Through the simulation, highest average water output speed was 133.04 m/s. The nozzle was fabricated from Al - alloy 5052 with the Factor of Safety~ 3. This indicates that the nozzle made of Al-alloy 5052 is capable of performing the cutting process without any fracture. Preliminary design of mobile water jet hand tool is presented at the end of this paper.Keywords: water jet, finite element, Al-alloy 5052, nozzle geometry
Procedia PDF Downloads 3759289 Recycling Strategies of Construction Waste in Egypt
Authors: Hanan Anwar
Abstract:
All systems recycle. The construction industry has not only become a major consumer of natural materials along with a source of pollution. Environmental integrated production, reusing and recycling is of great importance in Egypt nowadays. Governments should ensure that the technical, environmental and economic feasibility of alternative systems is considered and is taken into account before construction starts. Hereby this paper focuses on the recycle of building materials as a way for environment protection and sustainable development. Environmental management integrates the requirements of sustainable development. There are many methods used to reduce waste and increase profits through salvage, reuse, and the recycling of construction waste. Sustainable development as a tool to continual improvement cycle processes innovations to save money.Keywords: environment, management, reuse, recycling, sustainable development
Procedia PDF Downloads 3149288 Smart Water Cities for a Sustainable Future: Defining, Necessity, and Policy Pathways for Canada's Urban Water Resilience
Authors: Sima Saadi, Carolyn Johns
Abstract:
The concept of a "Smart Water City" is emerging as a framework to address critical urban water challenges, integrating technology, data, and sustainable management practices to enhance water quality, conservation, and accessibility. This paper explores the definition of a Smart Water City, examines the pressing need for such cities in Canada, and proposes policy pathways for their development. Smart Water Cities utilize advanced monitoring systems, data analytics, and integrated water resources management to optimize water usage, anticipate and mitigate environmental impacts, and engage citizens in sustainable practices. Global examples from regions such as Europe, Asia, and Australia illustrate how Smart Water City models can transform urban water systems by enhancing resilience, improving resource efficiency, and driving economic development through job creation in environmental technology sectors. For Canada, adopting Smart Water City principles could address pressing challenges, including climate-induced water stress, aging infrastructure, and the need for equitable water access across diverse urban and rural communities. Building on Canada's existing water policies and technological expertise, it propose strategic investments in digital water infrastructure, data-driven governance, and community partnerships. Through case studies, this paper offers insights into how Canadian cities could benefit from cross-sector collaboration, policy development, and funding for smart water technology. By aligning national policy with smart urban water solutions, Canada has the potential to lead globally in sustainable water management, ensuring long-term water security and environmental stewardship for its cities and communities.Keywords: smart water city, urban water resilience, water management technology, sustainable water infrastructure, canada water policy, smart city initiatives
Procedia PDF Downloads 99287 Assessment of the Physical Quality of Eucalyptus Pellita Seedlings
Authors: Sharifah Insyirah, Noraliza A.
Abstract:
Eucalyptus pellita is a popular species of plantation tree in many nations and regions because of its fast growth and excellent timber qualities. Moreover, Eucalyptus leaves are known as forest harvesting waste with the potential to generate essential oils. Eucalyptus is one of the plants utilized in the pulp and paper industry. This study aims to investigate the impact of two parameters, which are types of fertilizer and polybags (black polybags and transparent polybags), on Eucalyptus growth performance in the nursery. The present investigation was carried out at Main Nursery, Forestry Research Institute Malaysia under agro-climatic and irrigation conditions of the nursery. Twenty seedlings were prepared for this study consisting of two treatments of eco-friendly soil conditioner and NPK (ratio of NPK 8:8:8). Survival and height measurements were collected accordingly. Seedlings without any treatment showed better growth than treatment with soil conditioner or NPK. Seedlings as in C1, shows consistently fastest growth compared to T1 (B) and T2 (SC), and the mortality rates were 0%, 15% and 5%, respectively. The results demonstrated that fertilizer and soil conditioner applied at a younger age of seedlings had less effect on growth performance.Keywords: eucalyptus pellita, potting media, high quality planting materials, nursery
Procedia PDF Downloads 289286 Pervaporation of Dimethyl Carbonate / Methanol / Water Mixtures Using Zeolite Membranes
Authors: Jong-Ho Moon, Dong-Ho Lee, Hyunuk Kim, Young Cheol Park, Jong-Seop Lee, Jae-deok Jeon, Hyung-Keun Lee
Abstract:
A novel membrane reactor process for DMC synthesis from carbon dioxide has been developing in Korea Institute of Energy Research. The scheme of direct synthesis of DMC from CO₂ and Methanol is 'CO₂ + 2MeOH ↔ DMC + H₂O'. Among them, reactants are CO₂ and MeOH, product is DMC, and byproduct is H₂O (water). According to Le Chatelier’s principle, removing byproduct (water) can shift the reaction equilibrium to the right (DMC production). The main purpose of this process is removing water during the reaction. For efficient in situ water removal (dehydration) and DMC separation, zeolite 4A membranes with very small pore diameter and hydrophilicity were introduced. In this study, pervaporation performances of binary and ternary DMC / methanol / water mixtures were evaluated.Keywords: dimehtyl carbonate, methanol, water, zeolite membrane, pervaporation
Procedia PDF Downloads 3629285 Solar-Powered Water Purification Using Ozone and Sand Filtration
Authors: Kayla Youhanaie, Kenneth Dott, Greg Gillis-Smith
Abstract:
Access to clean water is a global challenge that affects nearly one-third of the world’s population. A lack of safe drinking water negatively affects a person’s health, safety, and economic status. However, many regions of the world that face this clean water challenge also have high solar energy potential. To address this worldwide issue and utilize available resources, a solar-powered water purification device was developed that could be implemented in communities around the world that lack access to potable water. The device uses ozone to destroy water-borne pathogens and sand filtration to filter out particulates from the water. To select the best method for this application, a quantitative energy efficiency comparison of three water purification methods was conducted: heat, UV light, and ozone. After constructing an initial prototype, the efficacy of the device was tested using agar petri dishes to test for bacteria growth in treated water samples at various time intervals after applying the device to contaminated water. The results demonstrated that the water purification device successfully removed all bacteria and particulates from the water within three minutes, making it safe for human consumption. These results, as well as the proposed design that utilizes widely available resources in target communities, suggest that the device is a sustainable solution to address the global water crisis and could improve the quality of life for millions of people worldwide.Keywords: clean water, solar powered water purification, ozonation, sand filtration, global water crisis
Procedia PDF Downloads 779284 Investigating the Behavior of Water Shortage Indices for Performance Evaluation of a Water Resources System
Authors: Frederick N. F. Chou, Nguyen Thi Thuy Linh
Abstract:
The impact of water shortages has been increasingly severe as a consequence of population growth, urbanization, economic development, and climate change. The need for improvements in reliable water supply systems is urgent with the increasing living standards of regions. In this study, a suitable shortage index capable of multi-aspect description - frequency, magnitude, and duration - is adopted to more accurately describe the characteristics of a shortage situation. The values of the index were determined to cope with the increasing need for reliability. There are four reservoirs in series located on the Be River of the Dong Nai River Basin in Southern Vietnam. The primary purpose of the three upstream reservoirs is hydropower generation while the primary purpose of the fourth is water supply. A compromise between hydropower generation and water supply can be negotiated for these four reservoirs to reduce the severity of water shortages. A generalized water allocation model was applied to simulate the water supply, and hydropower generation of various management alternatives and the system’s reliability was evaluated using the adopted multiple shortage indices. Modifying management policies of water resources using data-based indexes can improve the reliability of water supply.Keywords: cascade reservoirs, hydropower, shortage index, water supply
Procedia PDF Downloads 2699283 The Impact of the Adittapariyaya Sutta in the Meaning-making of T.S. Eliot’s The Waste Land: A critical Analysis
Authors: Ven Pothupitiye Thilakasiri
Abstract:
The Ādittapariyāya Sutta, also known as the Fire Sermon is an important Buddhist text that addresses the nature of sensual pleasures and attachment through the metaphor of fire. Eliot makes use of this in his epic poem The Waste Land. Though scholars have studied Eliot‘s long poem for traces of eastern philosophy, no scholars have touched upon the idea of how the Adittapariyaya Sutta has enabled the meaning making endeavor of the poem. The present study attempts to address this research gap by undertaking a critical analysis of the Fire Sermon of The Waste Land by undertaking an interdisciplinary study of the poem using two methods—a literary and Buddhist reading methods, namely objective corelative and the three-pillared Buddhist ideas of Anicca (impermanence), Dukkha (suffering) and Anatha (No-self). Thus, the study explores the Ādittapariyāya Sutta’s thematic concerns of impermanence, suffering and no-self within the context of The Waste Land. The setting of the poem symbolizes spiritual desolation and existential crisis. By comparing Sutta‘s teachings with modern existential concerns, which is depicted in T.S. Eliot‘s The Waste Land, the analysis emphasizes the relevance of Buddhist insights to contemporary issues of meaning and disillusioKeywords: Adittapariyaya Sutta, Objective correlative, Eastern Philosophy, Sensual pleasures
Procedia PDF Downloads 279282 Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students
Authors: Etsuo Morishita
Abstract:
In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.Keywords: aerodynamics compressible flow, gas dynamics, hydraulics, shock wave
Procedia PDF Downloads 3029281 Production and Leftovers Usage Policies to Minimize Food Waste under Uncertain and Correlated Demand
Authors: Esma Birisci, Ronald McGarvey
Abstract:
One of the common problems in food service industry is demand uncertainty. This research presents a multi-criteria optimization approach to identify the efficient frontier of points lying between the minimum-waste and minimum-shortfall solutions within uncertain demand environment. It also addresses correlation across demands for items (e.g., hamburgers are often demanded with french fries). Reducing overproduction food waste (and its corresponding environmental impacts) and an aversion to shortfalls (leave some customer hungry) need to consider as two contradictory objectives in an all-you-care-to-eat environment food service operation. We identify optimal production adjustments relative to demand forecasts, demand thresholds for utilization of leftovers, and percentages of demand to be satisfied by leftovers, considering two alternative metrics for overproduction waste: mass; and greenhouse gas emissions. Demand uncertainty and demand correlations are addressed using a kernel density estimation approach. A statistical analysis of the changes in decision variable values across each of the efficient frontiers can then be performed to identify the key variables that could be modified to reduce the amount of wasted food at minimal increase in shortfalls. We illustrate our approach with an application to empirical data from Campus Dining Services operations at the University of Missouri.Keywords: environmental studies, food waste, production planning, uncertain and correlated demand
Procedia PDF Downloads 3729280 Wireless Sensor Networks for Water Quality Monitoring: Prototype Design
Authors: Cesar Eduardo Hernández Curiel, Victor Hugo Benítez Baltazar, Jesús Horacio Pacheco Ramírez
Abstract:
This paper is devoted to present the advances in the design of a prototype that is able to supervise the complex behavior of water quality parameters such as pH and temperature, via a real-time monitoring system. The current water quality tests that are performed in government water quality institutions in Mexico are carried out in problematic locations and they require taking manual samples. The water samples are then taken to the institution laboratory for examination. In order to automate this process, a water quality monitoring system based on wireless sensor networks is proposed. The system consists of a sensor node which contains one pH sensor, one temperature sensor, a microcontroller, and a ZigBee radio, and a base station composed by a ZigBee radio and a PC. The progress in this investigation shows the development of a water quality monitoring system. Due to recent events that affected water quality in Mexico, the main motivation of this study is to address water quality monitoring systems, so in the near future, a more robust, affordable, and reliable system can be deployed.Keywords: pH measurement, water quality monitoring, wireless sensor networks, ZigBee
Procedia PDF Downloads 4049279 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Authors: Faisal Aburub, Wael Hadi
Abstract:
Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.Keywords: classification, data mining, evaluation measures, groundwater
Procedia PDF Downloads 280