Search results for: subtle change detection and quantification
9429 Psychological Resilience Factors Associated with Climate Change Adaptations by Subsistence Farmers in a Rural Community, South Africa
Authors: Kgopa Bontle, Tholen Sodi
Abstract:
Climate change poses a major threat to the well-being of both people and the environment, with subsistence farmers most affected as they rely on local supply systems that are sensitive to climate variation. This study documented psychological resilience factors associated with climate change adaptations by subsistence farmers in Maruleng Municipality, Limpopo Province. A qualitative study was conducted to examine the notions of climate change by subsistence farmers, the psychological resilience factors, the strategies to cope with climate change, adaptation methods, and the development of subsistence farmers’ psychological resilience factors model. Data were collected through direct interactions with participants using a grounded theory research design. An open-ended interview was used to collect data with a sample of 15 participants selected through theoretical sampling in Maruleng Municipality. The participants were both Sepedi and Xitsonga speaking from 2 villages, mostly unemployed, pensioners and dependent on social grants. The study included both males and females who were predominately the elderly. The research findings indicate that farmers have limited knowledge of what climate change is and what causes it. Furthermore, the research reflects that although their responses were non-scientific but sensible enough to know what they were dealing with. They mentioned extreme weather, which includes hot days and less rainfall and changes in seasons, as some of the impacts brought by climate change. The results also indicated that participants have learned to adapt through several adaptation strategies, including mulching, changes in irrigation time slots and being innovative. The resilience factors that emerged from the study were a passion for farming, hope, enthusiasm, courage, acceptance/tolerance, livelihood and belief systems. Looking at the socio-economic factors of the current study setting argumentation leads to the conclusion that it is important that government should assist the subsistence farmers as it was observed from the participants that they felt neglected by the government and policymakers as they are small scale farmers and are not included like commercial farmers.Keywords: climate change, psychological resilience factors, human adaptation, subsistence farmers
Procedia PDF Downloads 1269428 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images
Authors: Reem El Chakik
Abstract:
The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination
Procedia PDF Downloads 1189427 Contextual Analysis of Spekboom (Portulacaria afra) on Air Quality: A Case of Durban, South Africa
Authors: C. Greenstone, R. Hansmann, K. Lawrence
Abstract:
Portulacaria afra, commonly known as Spekboom is an indigenous South African plant. Spekboom is recognized for its medicinal, nutrient rich, easy to grow, drought tolerant and have climate change combating benefits. Durban’s air quality currently falls below the acceptable level. Urban greening absorbs air pollutants which can improve human health; however, urban planning often neglects the aspect of air quality on human health. It is therefore imperative that there is an investigation generating some quantification of the Spekboom plant on air quality. Though there are numerous advantages that Spekboom brings to ecosystems, the effect of Spekboom on air quality in context specific locales remains under researched. This study seeks to address this gap and bring forward the effect of Spekboom on air quality and improving human health overall using locations with specific characteristics ranging from industrial, commercial and residential. The study adopted a field sampling and spatial analysis approach through the collection of cuttings of Spekboom from various locations to measure the amount of toxins absorbed by the plant and thereafter using Geographic Information Systems (GIS) to spatially map the location of each sample. Through the results found, the implementation of Spekboom as an air purifier in areas that have poor air quality can be carried out. Spekboom could even be cultivated around cities forming a green belt to improve air quality on a much larger scale. Due to Spekboom's low maintenance characteristics, it makes the entire implementation process quite simple. Proposed Future research will be to collect yearly cuttings from the same plant in order to get a longitudinal, long-term assessment of air quality improvements in areas where Spekboom is implemented.Keywords: air quality, human health, portulacaria afra, spekboom
Procedia PDF Downloads 239426 Dental Students' Acquired Knowledge of the Pre-Contemplation Stage of Change
Abstract:
Introduction: As patients can often be ambivalent about or resistant to any change in their smoking behavior the traditional ‘5 A’ model may be limited as it assumes that patients are ready and motivated to change. However, there is a stage model that is helpful to give guidance for dental students: the Transtheoretical Model (TTM). This model allows students to understand the tasks and goals for the pre-contemplation stage. The TTM was introduced in early stages as a core component of a smoking cessation programme that was integrated into a Behavioral Science programme as applied to dentistry. The aim of the present study is to evaluate and illustrate the students’ current level of knowledge from the questions the students generated in order to engage patients in the tasks and goals of the pre-contemplation stage. Method: N=47 responses of fifth-year undergraduate dental students. These responses were the data set for this study and related to their knowledge base of appropriate questions for a dentist to ask at the pre-contemplation stage of change. A deductive -descriptive analysis was conducted on the data. The goals and tasks of the pre-contemplation stage of the TTM provided a template for this deductive analysis. Results: 51% of students generated relevant, open, exploratory questions for the pre-contemplation stage, whilst 100% of students generated closed questions. With regard to those questions appropriate for the pre-contemplation stage, 19% were open and exploratory, while 66% were closed questions. A deductive analysis of the open exploratory questions revealed that 53% of the questions addressed increased concern about the current pattern of behavior, 38% of the questions concerned increased awareness of a need for change and only 8% of the questions dealt with the envisioning of the possibility of change. Conclusion: All students formulated relevant questions for the pre-contemplation stage, and half of the students generated the open, exploratory questions that increased patients’ awareness of the need to change. More training is required to facilitate a shift in the formulation from closed to open questioning, especially given that, traditionally, smoking cessation was modeled on the ‘5 As’, and that the general training for dentists supports an advisory and directive approach.Keywords: behaviour change, pre-contemplation stage, trans-theoretical model, undergraduate dentistry students
Procedia PDF Downloads 4159425 Early Detection of Neuropathy in Leprosy-Comparing Clinical Tests with Nerve Conduction Study
Authors: Suchana Marahatta, Sabina Bhattarai, Bishnu Hari Paudel, Dilip Thakur
Abstract:
Background: Every year thousands of patients develop nerve damage and disabilities as a result of leprosy which can be prevented by early detection and treatment. So, early detection and treatment of nerve function impairment is of paramount importance in leprosy. Objectives: To assess the electrophysiological pattern of the peripheral nerves in leprosy patients and to compare it with clinical assessment tools. Materials and Methods: In this comparative cross-sectional study, 74 newly diagnosed leprosy patients without reaction were enrolled. They underwent thorough evaluation for peripheral nerve function impairment using clinical tests [i.e. nerve palpation (NP), monofilament (MF) testing, voluntary muscle testing (VMT)] and nerve conduction study (NCS). Clinical findings were compared with that of NCS using SPSS version 11.5. Results: NCS was impaired in 43.24% of leprosy patient at the baseline. Among them, sensory NCS was impaired in more patients (32.4%) in comparison to motor NCS (20.3%). NP, MF, and VMT were impaired in 58.1%, 25.7%, and 9.4% of the patients, respectively. Maximum concordance of monofilament testing and sensory NCS was found for sural nerve (14.7%). Likewise, the concordance of motor NP and motor NCS was the maximum for ulnar nerve (14.9%). When individual parameters of the NCS were considered, amplitude was found to be the most frequently affected parameter for both sensory and motor NCS. It was impaired in 100% of cases with abnormal NCS findings. Conclusion: Since there was no acceptable concordance between NCS findings and clinical findings, we should consider NCS whenever feasible for early detection of neuropathy in leprosy. The amplitude of both sensory nerve action potential (SNAP) and compound nerve action potential (CAMP) could be important determinants of the abnormal NCS if supported by further studies.Keywords: leprosy, nerve function impairment, neuropathy, nerve conduction study
Procedia PDF Downloads 3239424 Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances
Authors: Jing Zhang, Daniel Nikovski
Abstract:
We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application.Keywords: pan matrix profile, unnormalized euclidean distance, double-ended queue, discord discovery, anomaly detection
Procedia PDF Downloads 2549423 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach
Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana
Abstract:
This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation
Procedia PDF Downloads 1919422 A Comparative Study of Deep Learning Methods for COVID-19 Detection
Authors: Aishrith Rao
Abstract:
COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks
Procedia PDF Downloads 1649421 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 979420 The Influence of a Radio Intervention on Farmers’ Practices in Climate Change Mitigation and Adaptation in Kilifi, Kenya
Authors: Fiona Mwaniki
Abstract:
Climate change is considered a serious threat to sustainable development globally and as one of the greatest ecological, economic and social challenges of our time. The global demand for food is projected to increase by 60% by 2050. Small holder farmers who are vulnerable to the adverse effects of climate change are expected to contribute to this projected demand. Effective climate change education and communication is therefore required for smallholder and subsistence farmers’ in order to build communities that are more climate change aware, prepared and resilient. In Kenya radio is the most important and dominant mass communication tool for agricultural extension. This study investigated the potential role of radio in influencing farmers’ understanding and use of climate change information. The broad aims of this study were three-fold. Firstly, to identify Kenyan farmers’ perceptions and responses to the impacts of climate change. Secondly, to develop radio programs that communicate climate change information to Kenyan farmers and thirdly, to evaluate the impact of information disseminated through radio on farmers’ understanding and responses to climate change mitigation and adaptation. This study was conducted within the farming community of Kilifi County, located along the Kenyan coast. Education and communication about climate change was undertaken using radio to make available information understandable to different social and cultural groups. A mixed methods pre-and post-intervention design that provided the opportunity for triangulating results from both quantitative and qualitative data was used. Quantitative and qualitative data was collected simultaneously, where quantitative data was collected through semi structured surveys with 421 farmers’ and qualitative data was derived from 11 focus group interviews, six interviews with key informants and nine climate change experts. The climate change knowledge gaps identified in the initial quantitative and qualitative data were used in developing radio programs. Final quantitative and qualitative data collection and analysis enabled an assessment of the impact of climate change messages aired through radio on the farming community in Kilifi County. Results of this study indicate that 32% of the farmers’ listened to the radio programs and 26% implemented technologies aired on the programs that would help them adapt to climate change. The most adopted technologies were planting drought tolerant crops including indigenous crop varieties, planting trees, water harvesting and use of manure. The proportion of farmers who indicated they knew “a fair amount” about climate change increased significantly (Z= -5.1977, p < 0.001) from 33% (at the pre intervention phase of this study) to 64% (post intervention). However, 68% of the farmers felt they needed “a lot more” information on agriculture interventions (43%), access to financial resources (21%) and the effects of climate change (15%). The challenges farmers’ faced when adopting the interventions included lack of access to financial resources (18%), high cost of adaptation measures (17%), and poor access to water (10%). This study concludes that radio effectively complements other agricultural extension methods and has the potential to engage farmers’ on climate change issues and motivate them to take action.Keywords: climate change, climate change intervention, farmers, radio
Procedia PDF Downloads 3429419 Fake News Detection Based on Fusion of Domain Knowledge and Expert Knowledge
Authors: Yulan Wu
Abstract:
The spread of fake news on social media has posed significant societal harm to the public and the nation, with its threats spanning various domains, including politics, economics, health, and more. News on social media often covers multiple domains, and existing models studied by researchers and relevant organizations often perform well on datasets from a single domain. However, when these methods are applied to social platforms with news spanning multiple domains, their performance significantly deteriorates. Existing research has attempted to enhance the detection performance of multi-domain datasets by adding single-domain labels to the data. However, these methods overlook the fact that a news article typically belongs to multiple domains, leading to the loss of domain knowledge information contained within the news text. To address this issue, research has found that news records in different domains often use different vocabularies to describe their content. In this paper, we propose a fake news detection framework that combines domain knowledge and expert knowledge. Firstly, it utilizes an unsupervised domain discovery module to generate a low-dimensional vector for each news article, representing domain embeddings, which can retain multi-domain knowledge of the news content. Then, a feature extraction module uses the domain embeddings discovered through unsupervised domain knowledge to guide multiple experts in extracting news knowledge for the total feature representation. Finally, a classifier is used to determine whether the news is fake or not. Experiments show that this approach can improve multi-domain fake news detection performance while reducing the cost of manually labeling domain labels.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 779418 Analytical-Behavioral Intervention for Women with Fibromyalgia: Evaluation of Effectiveness Clinical Significance and Reliable Change
Authors: Luziane De Fatima Kirchner, Maria De Jesus Dutra Dos Reis, Francine Nathalie Ferraresi Rodrigues Queluz
Abstract:
This study evaluated the effect of two components of analytic-behavioral intervention (1-management of conditions of the physical environment, 2-management of the interpersonal relationship) of women with fibromyalgia (FM), besides Clinical Significance and Reliable Change at the end of the intervention. Self-report instruments were used to evaluate stress, anxiety, depression, social skills and disability due to pain and Cortisol Awakening Response (CAR). Four women with a medical diagnosis of FM (mean age 52.7; sd = 6.65), participated of the following procedures: initial evaluation, 10 sessions of component 1, intermediate evaluation, 10 sessions of component 2, and final evaluation. The 20 sessions were effective, with positive changes in the scores of all the self-report instruments, highlighting the results of the stress symptoms that had improvement in the intermediate evaluation. There was, however, no change in the cortisol response on awakening. The Clinical Significance or Reliable Change observed, according to the scores of the stress, anxiety, depression and social skills instruments, corroborated the reports of the participants in the session and the objectives of the treatment. Implications for future studies are discussed, above all, the importance in conducting evaluations with the use of direct measures together with self-report measures.Keywords: behavioral intervention, clinical significance, fibromyalgia, reliable change
Procedia PDF Downloads 1409417 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning
Authors: Nicholas V. Scott, Jack McCarthy
Abstract:
Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization
Procedia PDF Downloads 1459416 Climate Change and Its Effects on Terrestrial Insect Diversity in Mukuruthi National Park, Nilgiri Biosphere Reserve, Tamilnadu, India
Authors: M. Elanchezhian, C. Gunasekaran, A. Agnes Deepa, M. Salahudeen
Abstract:
In recent years climate change is one of the most emerging threats facing by biodiversity both the animals and plants species. Elevated carbon dioxide and ozone concentrations, extreme temperature, changes in rainfall patterns, insects-plant interaction are the main criteria that affect biodiversity. In the present study, which emphasis the climate change and its effects on terrestrial insect diversity in Mukuruthi National Park a protected areas of Western Ghats in India. Sampling was done seasonally at the three areas using pitfall traps, over the period of January to December 2013. The statistical findings were done by Shannon wiener diversity index (H). A significant seasonal variation pattern was detected for total insect’s diversity at the different study areas. Totally nine orders of insects were recorded. Diversity and abundance of terrestrial insects shows much difference between the Natural, Shoal forest and the Grasslands.Keywords: biodiversity, climate change, mukuruthi national park, terrestrial invertebrates
Procedia PDF Downloads 5209415 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain
Authors: K. Khelil, H. Ammar, K. Saouchi
Abstract:
Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement
Procedia PDF Downloads 4979414 Evaluation of Two DNA Extraction Methods for Minimal Porcine (Pork) Detection in Halal Food Sample Mixture Using Taqman Real-time PCR Technique
Authors: Duaa Mughal, Syeda Areeba Nadeem, Shakil Ahmed, Ishtiaq Ahmed Khan
Abstract:
The identification of porcine DNA in Halal food items is critical to ensuring compliance with dietary restrictions and religious beliefs. In Islam, Porcine is prohibited as clearly mentioned in Quran (Surah Al-Baqrah, Ayat 173). The purpose of this study was to compare two DNA extraction procedures for detecting 0.001% of porcine DNA in processed Halal food sample mixtures containing chicken, camel, veal, turkey and goat meat using the TaqMan Real-Time PCR technology. In this research, two different commercial kit protocols were compared. The processed sample mixtures were prepared by spiking known concentration of porcine DNA to non-porcine food matrices. Afterwards, TaqMan Real-Time PCR technique was used to target a particular porcine gene from the extracted DNA samples, which was quantified after extraction. The results of the amplification were evaluated for sensitivity, specificity, and reproducibility. The results of the study demonstrated that two DNA extraction techniques can detect 0.01% of porcine DNA in mixture of Halal food samples. However, as compared to the alternative approach, Eurofins| GeneScan GeneSpin DNA Isolation kit showed more effective sensitivity and specificity. Furthermore, the commercial kit-based approach showed great repeatability with minimal variance across repeats. Quantification of DNA was done by using fluorometric assay. In conclusion, the comparison of DNA extraction methods for detecting porcine DNA in Halal food sample mixes using the TaqMan Real-Time PCR technology reveals that the commercial kit-based approach outperforms the other methods in terms of sensitivity, specificity, and repeatability. This research helps to promote the development of reliable and standardized techniques for detecting porcine DNA in Halal food items, religious conformity and assuring nutritional.Keywords: real time PCR (qPCR), DNA extraction, porcine DNA, halal food authentication, religious conformity
Procedia PDF Downloads 829413 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks
Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee
Abstract:
Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)
Procedia PDF Downloads 1169412 Institional Logics and Individual Actors: What Can an Organizational Change Agent Do?
Authors: Miraç Savaş Turhan, Ali Danışman
Abstract:
New institutional theorists in organization theory have used institutional logics perspective to explain the contradictory practices in modern western societies. Accordingly, distinct institutional logics are embedded in central institutions such as the market, state, democracy, family, and religion. Individual and organizational actors and their practices are restricted and guided by institutional logics in a particular field. Through this perspective, actors are assumed to have a situated, embedded, boundedly intentional, and adaptive role against the structure in social, cultural and political context. Since the early 1990's, increasing number of studies has attempted to explain the role of actors in creating, maintaining, and changing institutions. Yet, most of these studies have focused on organizational field-level actors, ignoring the role that can be played by individual actors within organizations. As a result, we have much information about what organizational field level actors can do, but relatively little knowledge about the ability of organizational change agents within organization in relation to institutional orders. This study is an attempt to find out how the ability of individual actors who attempt to change their organization is constrained and shaped by institutional logics dominating the field. We examine this issue in a private school in the Turkish Education field. We first describe dominating institutional logics in the Turkish Education field. Then we conducted in-depth interviews and content analysis in the school. The early results indicate that attempts and actions of organizational change agents are remarkably directed and shaped by the dominating institutional logics in the Turkish Education field.Keywords: Institutional logics, individual actors, organizational change, organizational change agent
Procedia PDF Downloads 4029411 Coastline Change at Koh Tao Island, Thailand
Authors: Cherdvong Saengsupavanich
Abstract:
Human utilizes coastal resources as well as deteriorates them. Coastal tourism may degrade the environment if poorly managed. This research investigated the shoreline change at Koa Toa Island, one of the most famous tourist destinations. Aerial photographs and satellite images from three different periods were collected and analyzed. The results showed that the noticeable shoreline change before and after the tourism on the island had expanded. Between 1995 and 2002 when the tourism on Koh Toa Island was not intensive, sediment deposition occurred along most of the coastline. However, after the tourism had grown during 2002 to 2015, the coast evidently experienced less deposition and more erosion. The erosion resulted from less land-based sediment being provided to the littoral system. If the coastline of Koh Toa Island is not carefully sustained, the tourism will disappear along with the beautiful beach.Keywords: coastal engineering and management, coastal erosion, coastal tourism, Koh Toa Island, Thailand
Procedia PDF Downloads 3089410 Particle Size Dependent Magnetic Properties of CuFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method
Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer
Abstract:
In this work, copper ferrite CuFe2O4 spinel ferrite nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of CuFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 530 cm-1 (ν1) and around 360 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in copper ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of CuFe2O4 nanoparticles was also observed. The change in magnetic properties with change of particle size is due to cation redistribution, which was confirmed by X-Ray photoelectron study.Keywords: copper ferrite, nanoparticles, magnetic property, CuFe2O4
Procedia PDF Downloads 4679409 Climate Change Adaptation Strategy Recommended for the Conservation of Biodiversity in Western Ghats, India
Authors: Mukesh Lal Das, Muthukumar Muthuchamy
Abstract:
Climate change Adaptation strategy (AS) is a scientific approach to dealing with the impacts of climate change (CC). Efforts are being made to contain the global emission of greenhouse gas within threshold limits, thereby limiting the rise of global temperature to an optimal level. Global Climate change is a spontaneous process; therefore, reversing the damage would take decades. The climate change adaptation strategy recommended by various stakeholders could be a key to resilience for biodiversity. The Indian Government has constituted the panel to synthesize the climate change action report at the federal and state levels. This review scavenged the published literature on the Western Ghats hotspots. And highlight the adaptation strategy recommended by diverse scientific actors to conserve biodiversity. It also reviews the grey literature adopted by state and federal governments and its effectiveness in mitigating the impacts on biodiversity. We have narrowed the scope of interest to the state action report by 6 Indian states such as Gujarat, Maharashtra, Goa, Karnataka, Kerala and Tamil Nadu, which host Western Ghats global biodiversity hotspot. Western Ghats(WGs) act as the water tower to the peninsular part of India, and its extensive watershed caters to the water demand of the Industry sector, Agriculture and urban community. Conservation of WGs is the key to the prosperity of Peninsular India. The global scientific community suggested more than 600+ Climate change adaptation strategies for the policymakers, stakeholders, and other state actors to take proactive actions. The preliminary analysis of the federal and the state action plan on climate change in the wake of CC indicate inadequacy in motion as per recommended scientific adaptation strategies. Tamil Nadu and Kerala state constitute nine effective adaptation strategies out of the 40+ recommended for Western Ghats conservation. And other four states' adaptation strategies are deficient, confusing and vague. Western Ghats' resilience capacity will soon or might have reached its threshold, and the frequency of severe drought and flash floods might upsurge manifold in the decades to come. The lack of a clear roadmap to climate change adaptation strategies in the federal and state action stirred us to identify the gap and address it by offering a holistic approach to WGs biodiversity conservation.Keywords: adaptation strategy, biodiversity conservation, climate change, resilience, Western Ghats
Procedia PDF Downloads 1109408 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation
Authors: Fathi Soliman
Abstract:
With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction
Procedia PDF Downloads 1999407 Attitudes of Resort Hotel Managers toward Climate Change Adaptation and Mitigation Practices, Bishoftu, Ethiopia
Authors: Mohammed Aman Kassim
Abstract:
This study explored the attitudes of hotel managers toward climate change adaption and mitigation practices in resort hotels located in Bishoftu town, Ethiopia. Weak resource management in the area causes serious environmental problems. So sustainable way forward is needed for the destination in order to reduce environmental damage. Six resorts were selected out of twelve resort hotels in Bishoftu City by using the systematic sampling method, and a total of fifty-six managers were taken for the study. The data analyzed came from self-administered questionnaires, site observation, and a short face-to-face interview with general managers. The results showed that 99% of hotel managers possess positive attitudes toward climate change adaptation and mitigation practices. But they did not show a high commitment to adopting all adaptation and mitigation practices in their hotel’s actions and day-to-day operation. Key adoption influencing factors identified were: owners' commitment toward sustainability, the applicability of government rules and regulations, and incentives for good achievement. The findings also revealed that the attitudes of resort hotel managers toward climate change adaption and mitigation practices are more significantly influenced by their social factors, such as level of education and age, in this study. The study demonstrated that in order to increase managers' commitment and hotels become green: government led-education and training programs, green certification actions, and application of government environmental regulation are important.Keywords: climate change, climate change adaptation and mitigation practices, environmental attitude, resort hotels
Procedia PDF Downloads 1099406 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.Keywords: data science, fraud detection, machine learning, supervised learning
Procedia PDF Downloads 2019405 Urban Life on the Go: Urban Transformation of Public Space
Authors: E. Zippelius
Abstract:
Urban design aims to provide a stage for public life that, when once brought to life, is right away subject to subtle but continuous transformation. This paper explores such transformations and searches for ways how public life can be reinforced in the case of a housing settlement for the displaced in Nicosia, Cyprus. First, a sound basis of theoretical knowledge is established through literature review, notably the theory of the Production of Space by Henri Lefebvre, exploring its potential and defining key criteria for the following empirical analysis. The analysis is pinpointing the differences between spatial practice, representation of space and spaces of representation as well as their interaction, alliance, or even conflict. In doing so uncertainties, chances and challenges are unraveled that will be consequently linked to practice and action and lead to the formulation of a design strategy. A strategy, though, that does not long for achieving an absolute, finite certainty but understands the three dimensions of space formulated by Lefebvre as equal and space as continuously produced, hence, unfinished.Keywords: production of space, public space, urban life, urban transformation
Procedia PDF Downloads 1469404 New Result for Optical OFDM in Code Division Multiple Access Systems Using Direct Detection
Authors: Cherifi Abdelhamid
Abstract:
In optical communication systems, OFDM has received increased attention as a means to overcome various limitations of optical transmission systems such as modal dispersion, relative intensity noise, chromatic dispersion, polarization mode dispersion and self-phase modulation. The multipath dispersion limits the maximum transmission data rates. In this paper we investigate OFDM system where multipath induced intersymbol interference (ISI) is reduced and we increase the number of users by combining OFDM system with OCDMA system using direct detection Incorporate OOC (orthogonal optical code) for minimize a bit error rate.Keywords: OFDM, OCDMA, OOC (orthogonal optical code), (ISI), prim codes (Pc)
Procedia PDF Downloads 6559403 An Immune-Inspired Web Defense Architecture
Authors: Islam Khalil, Amr El-Kadi
Abstract:
With the increased use of web technologies, microservices, and Application Programming Interface (API) for integration between systems, and with the development of containerization of services on the operating system level as a method of isolating system execution and for easing the deployment and scaling of systems, there is a growing need as well as opportunities for providing platforms that improve the security of such services. In our work, we propose an architecture for a containerization platform that utilizes various concepts derived from the human immune system. The goal of the proposed containerization platform is to introduce the concept of slowing down or throttling suspected malicious digital pathogens (intrusions) to reduce their damage footprint while providing more opportunities for forensic inspection of suspected pathogens in addition to the ability to snapshot, rollback, and recover from possible damage. The proposed platform also leverages existing intrusion detection algorithms by integrating and orchestrating their cooperative operation for more effective intrusion detection. We show how this model reduces the damage footprint of intrusions and gives a greater time window for forensic investigation. Moreover, during our experiments, our proposed platform was able to uncover unintentional system design flaws that resulted in internal DDoS-like attacks by submodules of the system itself rather than external intrusions.Keywords: containers, human immunity, intrusion detection, security, web services
Procedia PDF Downloads 999402 Impact of Climate Change on Water Resources in Morocco
Authors: Abdelghani Qadem, Zouhair Qadem
Abstract:
Like the countries of the Mediterranean region, Morocco is likely to be at high risk of water scarcity due to climate change. Morocco, which is the subject of this study, is located between two climatic zones, temperate in the North tropical in the South, Morocco is distinguished by four types of climate: humid, sub-humid, semi-arid, and arid. The last decades attest to the progression of the semi-arid climate towards the North of the country. The IPCC projections, which have been made in this direction, show that there is an overall downward trend in rainfall contributions varying on average between 10% and 30% depending on the scenario selected and the region considered, they also show an upward trend in average annual temperatures. These trends will have a real impact on water resources, which will result in a drop in the volume of water resources varying between 7.6% and 40.6%. The present study aims to describe the meteorological conditions of Morocco in order to answer the problem dealing with the effect of climatic fluctuations on water resources and to assess water vulnerability in the face of climate change.Keywords: morocco, climate change, water resources, impact, water scarcity
Procedia PDF Downloads 909401 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems
Authors: Nadjah Chergui, Narhimene Boustia
Abstract:
Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.Keywords: context, default, exception, vulnerability
Procedia PDF Downloads 2619400 Automatic Extraction of Water Bodies Using Whole-R Method
Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao
Abstract:
Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method
Procedia PDF Downloads 392