Search results for: substrate doping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1360

Search results for: substrate doping

100 Oxidative Stability of Corn Oil Supplemented with Natural Antioxidants from Cypriot Salvia fruticosa Extracts

Authors: Zoi Konsoula

Abstract:

Vegetable oils, which are rich in polyunsaturated fatty acids, are susceptible to oxidative deterioration. The lipid oxidation of oils results in the production of rancid odors and unpleasant flavors as well as the reduction of their nutritional quality and safety. Traditionally, synthetic antioxidants are employed for their retardation or prevention of oxidative deterioration of oils. However, these compounds are suspected to pose health hazards. Consequently, recently there has been a growing interest in the use of natural antioxidants of plant origin for improving the oxidative stability of vegetable oils. The genus Salvia (sage) is well known for its antioxidant activity. In the Cypriot flora Salvia fruticosa is the most distributed indigenous Salvia species. In the present study, extracts were prepared from S. fruticosa aerial parts using various solvents and their antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) method. Moreover, the antioxidant efficacy of all extracts was assessed using corn oil as the oxidation substrate, which was subjected to accelerated aging (60 °C, 30 days). The progress of lipid oxidation was monitored by the determination of the peroxide, p-aniside, conjugated dienes and trienes value according to the official AOCS methods. Synthetic antioxidants (butylated hydroxytoluene-BHT and butylated hydroxyanisole-BHA) were employed at their legal limit (200 ppm) as reference. Finally, the total phenolic (TPC) and flavonoid content (TFC) of the prepared extracts was measured by the Folin-Ciocalteu and aluminum-flavonoid complex method, respectively. The results of the present study revealed that although all sage extracts prepared from S. fruticosa exhibited antioxidant activity, the highest antioxidant capacity was recorded in the methanolic extract, followed by the non-toxic, food grade ethanol. Furthermore, a positive correlation between the antioxidant potency and the TPC of extracts was observed in all cases. Interestingly, sage extracts prevented lipid oxidation in corn oil at all concentrations tested, however, the magnitude of stabilization was dose dependent. More specifically, results from the different oxidation parameters were in agreement with each other and indicated that the protection offered by the various extracts depended on their TPC. Among the extracts, the methanolic extract was more potent in inhibiting oxidative deterioration. Finally, both methanolic and ethanolic sage extracts at a concentration of 1000 ppm exerted a stabilizing effect comparable to that of the reference synthetic antioxidants. Based on the results of the present study, sage extracts could be used for minimizing or preventing lipid oxidation in oils and, thus, prolonging their shelf-life. In particular, given that the use of dietary alcohol, such as ethanol, is preferable than methanol in food applications, the ethanolic extract prepared from S. fruticosa could be used as an alternative natural antioxidant.

Keywords: antioxidant activity, corn oil, oxidative deterioration, sage

Procedia PDF Downloads 205
99 Pond Site Diagnosis: Monoclonal Antibody-Based Farmer Level Tests to Detect the Acute Hepatopancreatic Necrosis Disease in Shrimp

Authors: B. T. Naveen Kumar, Anuj Tyagi, Niraj Kumar Singh, Visanu Boonyawiwat, A. H. Shanthanagouda, Orawan Boodde, K. M. Shankar, Prakash Patil, Shubhkaramjeet Kaur

Abstract:

Early mortality syndrome (EMS)/Acute Hepatopancreatic Necrosis Disease (AHPND) has emerged as a major obstacle for the shrimp farming around the world. It is caused by a strain of Vibrio parahaemolyticus. The possible preventive and control measure is, early and rapid detection of the pathogen in the broodstock, post-larvae and monitoring the shrimp during the culture period. Polymerase chain reaction (PCR) based early detection methods are good, but they are costly, time taking and requires a sophisticated laboratory. The present study was conducted to develop a simple, sensitive and rapid diagnostic farmer level kit for the reliable detection of AHPND in shrimp. A panel of monoclonal antibodies (MAbs) were raised against the recombinant Pir B protein (rPirB). First, an immunodot was developed by using MAbs G3B8 and Mab G3H2 which showed specific reactivity to purified r-PirB protein with no cross-reactivity to other shrimp bacterial pathogens (AHPND free Vibrio parahaemolyticus (Indian strains), V. anguillarum, WSSV, Aeromonas hydrophila, and Aphanomyces invadans). Immunodot developed using Mab G3B8 is more sensitive than that with the Mab G3H2. However, immunodot takes almost 2.5 hours to complete with several hands-on steps. Therefore, the flow-through assay (FTA) was developed by using a plastic cassette containing the nitrocellulose membrane with absorbing pads below. The sample was dotted in the test zone on the nitrocellulose membrane followed by continuos addition of five solutions in the order of i) blocking buffer (BSA) ii) primary antibody (MAb) iii) washing Solution iv) secondary antibody and v) chromogen substrate (TMB) clear purple dots against a white background were considered as positive reactions. The FTA developed using MAbG3B8 is more sensitive than that with MAb G3H2. In FTA the two MAbs showed specific reactivity to purified r-PirB protein and not to other shrimp bacterial pathogens. The FTA is simple to farmer/field level, sensitive and rapid requiring only 8-10 min for completion. Tests can be developed to kits, which will be ideal for use in biosecurity, for the first line of screening (at the port or pond site) and during monitoring and surveillance programmes overall for the good management practices to reduce the risk of the disease.

Keywords: acute hepatopancreatic necrosis disease, AHPND, flow-through assay, FTA, farmer level, immunodot, pond site, shrimp

Procedia PDF Downloads 174
98 Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints

Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig

Abstract:

Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed.

Keywords: laser surface treatment, pre-treatment, bonding, corrosion, durability, interface, automotive, aluminium alloys, joint, fusion bonding

Procedia PDF Downloads 77
97 Combined Treatment of Estrogen-Receptor Positive Breast Microtumors with 4-Hydroxytamoxifen and Novel Non-Steroidal Diethyl Stilbestrol-Like Analog Produces Enhanced Preclinical Treatment Response and Decreased Drug Resistance

Authors: Sarah Crawford, Gerry Lesley

Abstract:

This research is a pre-clinical assessment of anti-cancer effects of novel non-steroidal diethyl stilbestrol-like estrogen analogs in estrogen-receptor positive/ progesterone-receptor positive human breast cancer microtumors of MCF 7 cell line. Tamoxifen analog formulation (Tam A1) was used as a single agent or in combination with therapeutic concentrations of 4-hydroxytamoxifen, currently used as a long-term treatment for the prevention of breast cancer recurrence in women with estrogen receptor positive/ progesterone receptor positive malignancies. At concentrations ranging from 30-50 microM, Tam A1 induced microtumor disaggregation and cell death. Incremental cytotoxic effects correlated with increasing concentrations of Tam A1. Live tumor microscopy showed that microtumos displayed diffuse borders and substrate-attached cells were rounded-up and poorly adherent. A complete cytotoxic effect was observed using 40-50 microM Tam A1 with time course kinetics similar to 4-hydroxytamoxifen. Combined treatment with TamA1 (30-50 microM) and 4-hydroxytamoxifen (10-15 microM) induced a highly cytotoxic, synergistic combined treatment response that was more rapid and complete than using 4-hydroxytamoxifen as a single agent therapeutic. Microtumors completely dispersed or formed necrotic foci indicating a highly cytotoxic combined treatment response. Moreover, breast cancer microtumors treated with both 4-hydroxytamoxifen and Tam A1 displayed lower levels of long-term post-treatment regrowth, a critical parameter of primary drug resistance, than observed for 4-hydroxytamoxifen when used as a single agent therapeutic. Tumor regrowth at 6 weeks post-treatment with either single agent 4-hydroxy tamoxifen, Tam A1 or a combined treatment was assessed for the development of drug resistance. Breast cancer cells treated with both 4-hydroxytamoxifen and Tam A1 displayed significantly lower levels of post-treatment regrowth, indicative of decreased drug resistance, than observed for either single treatment modality. The preclinical data suggest that combined treatment involving the use of tamoxifen analogs may be a novel clinical approach for long-term maintenance therapy in patients with estrogen-receptor positive/progesterone-receptor positive breast cancer receiving hormonal therapy to prevent disease recurrence. Detailed data on time-course, IC50 and tumor regrowth assays post- treatment as well as a proposed mechanism of action to account for observed synergistic drug effects will be presented.

Keywords: 4-hydroxytamoxifen, tamoxifen analog, drug-resistance, microtumors

Procedia PDF Downloads 68
96 Industrial Waste Multi-Metal Ion Exchange

Authors: Thomas S. Abia II

Abstract:

Intel Chandler Site has internally developed its first-of-kind (FOK) facility-scale wastewater treatment system to achieve multi-metal ion exchange. The process was carried out using a serial process train of carbon filtration, pH / ORP adjustment, and cationic exchange purification to treat dilute metal wastewater (DMW) discharged from a substrate packaging factory. Spanning a trial period of 10 months, a total of 3,271 samples were collected and statistically analyzed (average baseline + standard deviation) to evaluate the performance of a 95-gpm, multi-reactor continuous copper ion exchange treatment system that was consequently retrofitted for manganese ion exchange to meet environmental regulations. The system is also equipped with an inline acid and hot caustic regeneration system to rejuvenate exhausted IX resins and occasionally remove surface crud. Data generated from lab-scale studies was transferred to system operating modifications following multiple trial-and-error experiments. Despite the DMW treatment system failing to meet internal performance specifications for manganese output, it was observed to remove the cation notwithstanding the prevalence of copper in the waste stream. Accordingly, the average manganese output declined from 6.5 + 5.6 mg¹L⁻¹ at pre-pilot to 1.1 + 1.2 mg¹L⁻¹ post-pilot (83% baseline reduction). This milestone was achieved regardless of the average influent manganese to DMW increasing from 1.0 + 13.7 mg¹L⁻¹ at pre-pilot to 2.1 + 0.2 mg¹L⁻¹ post-pilot (110% baseline uptick). Likewise, the pre-trial and post-trial average influent copper values to DMW were 22.4 + 10.2 mg¹L⁻¹ and 32.1 + 39.1 mg¹L⁻¹, respectively (43% baseline increase). As a result, the pre-trial and post-trial average copper output values were 0.1 + 0.5 mg¹L⁻¹ and 0.4 + 1.2 mg¹L⁻¹, respectively (300% baseline uptick). Conclusively, the operating pH range upstream of treatment (between 3.5 and 5) was shown to be the largest single point of influence for optimizing manganese uptake during multi-metal ion exchange. However, the high variability of the influent copper-to-manganese ratio was observed to adversely impact the system functionality. The journal herein intends to discuss the operating parameters such as pH and oxidation-reduction potential (ORP) that were shown to influence the functional versatility of the ion exchange system significantly. The literature also proposes to discuss limitations of the treatment system such as influent copper-to-manganese ratio variations, operational configuration, waste by-product management, and system recovery requirements to provide a balanced assessment of the multi-metal ion exchange process. The take-away from this literature is intended to analyze the overall feasibility of ion exchange for metals manufacturing facilities that lack the capability to expand hardware due to real estate restrictions, aggressive schedules, or budgetary constraints.

Keywords: copper, industrial wastewater treatment, multi-metal ion exchange, manganese

Procedia PDF Downloads 143
95 Metalorganic Chemical Vapor Deposition Overgrowth on the Bragg Grating for Gallium Nitride Based Distributed Feedback Laser

Authors: Junze Li, M. Li

Abstract:

Laser diodes fabricated from the III-nitride material system are emerging solutions for the next generation telecommunication systems and optical clocks based on Ca at 397nm, Rb at 420.2nm and Yb at 398.9nm combined 556 nm. Most of the applications require single longitudinal optical mode lasers, with very narrow linewidth and compact size, such as communication systems and laser cooling. In this case, the GaN based distributed feedback (DFB) laser diode is one of the most effective candidates with gratings are known to operate with narrow spectra as well as high power and efficiency. Given the wavelength range, the period of the first-order diffraction grating is under 100 nm, and the realization of such gratings is technically difficult due to the narrow line width and the high quality nitride overgrowth based on the Bragg grating. Some groups have reported GaN DFB lasers with high order distributed feedback surface gratings, which avoids the overgrowth. However, generally the strength of coupling is lower than that with Bragg grating embedded into the waveguide within the GaN laser structure by two-step-epitaxy. Therefore, the overgrowth on the grating technology need to be studied and optimized. Here we propose to fabricate the fine step shape structure of first-order grating by the nanoimprint combined inductively coupled plasma (ICP) dry etching, then carry out overgrowth high quality AlGaN film by metalorganic chemical vapor deposition (MOCVD). Then a series of gratings with different period, depths and duty ratios are designed and fabricated to study the influence of grating structure to the nano-heteroepitaxy. Moreover, we observe the nucleation and growth process by step-by-step growth to study the growth mode for nitride overgrowth on grating, under the condition that the grating period is larger than the mental migration length on the surface. The AFM images demonstrate that a smooth surface of AlGaN film is achieved with an average roughness of 0.20 nm over 3 × 3 μm2. The full width at half maximums (FWHMs) of the (002) reflections in the XRD rocking curves are 278 arcsec for the AlGaN film, and the component of the Al within the film is 8% according to the XRD mapping measurement, which is in accordance with design values. By observing the samples with growth time changing from 200s, 400s to 600s, the growth model is summarized as the follow steps: initially, the nucleation is evenly distributed on the grating structure, as the migration length of Al atoms is low; then, AlGaN growth alone with the grating top surface; finally, the AlGaN film formed by lateral growth. This work contributed to carrying out GaN DFB laser by fabricating grating and overgrowth on the nano-grating patterned substrate by wafer scale, moreover, growth dynamics had been analyzed as well.

Keywords: DFB laser, MOCVD, nanoepitaxy, III-niitride

Procedia PDF Downloads 189
94 Dietary Flaxseed Decreases Central Blood Pressure and the Concentrations of Plasma Oxylipins Associated with Hypertension in Patients with Peripheral Arterial Disease

Authors: Stephanie PB Caligiuri, Harold M Aukema, Delfin Rodriguez-Leyva, Amir Ravandi, Randy Guzman, Grant N. Pierce

Abstract:

Background: Hypertension leads to cardiac and cerebral events and therefore is the leading risk factor attributed to death in the world. Oxylipins may be mediators in these events as they can regulate vascular tone and inflammation. Oxylipins are derived from fatty acids. Dietary flaxseed is rich in the n3 fatty acid, alpha-linolenic acid, and, therefore, may have the ability to change the substrate profile of oxylipins. As a result, this could alter blood pressure. Methods: A randomized, double-blinded, controlled clinical trial, the Flax-PAD trial, was used to assess the impact of dietary flaxseed on blood pressure (BP), and to also assess the relationship of plasma oxylipins to BP in 81 patients with peripheral arterial disease (PAD). Patients with PAD were chosen for the clinical trial as they are at an increased risk for hypertension and cardiac and cerebral events. Thirty grams of ground flaxseed were added to food products to consume on a daily basis for 6 months. The control food products contained wheat germ, wheat bran, and mixed dietary oils instead of flaxseed. Central BP, which is more significantly associated to organ damage, cardiac, and cerebral events versus brachial BP, was measured by pulse wave analysis at baseline and 6 months. A plasma profile of 43 oxylipins was generated using solid phase extraction, HPLC-MS/MS, and stable isotope dilution quantitation. Results: At baseline, the central BP (systolic/diastolic) in the placebo and flaxseed group were, 131/73 ± 2.5/1.4 mmHg and 128/71 ± 2.6/1.4 mmHg, respectively. After 6 months of intervention, the flaxseed group exhibited a decrease in blood pressure of 4.0/1.0 mmHg. The 6 month central BP in the placebo and flaxseed groups were, 132/74 ± 2.9/1.8 mmHg and 124/70 ± 2.6/1.6 mmHg (P<0.05). Correlation and logistic regression analyses between central blood pressure and oxylipins were performed. Significant associations were observed between central blood pressure and 17 oxylipins, primarily produced from arachidonic acid. Every 1 nM increase in 16-hydroxyeicosatetraenoic acid (HETE) increased the odds of having high central systolic BP by 15-fold, of having high central diastolic BP by 6-fold and of having high central mean arterial pressure by 15-fold. In addition, every 1 nM increase in 5,6-dihydroxyeicosatrienoic acid (DHET) and 11,12-DHET increased the odds of having high central mean arterial pressure by 45- and 18-fold, respectively. Flaxseed induced a significant decrease in these as well as 4 other vasoconstrictive oxylipins. Conclusion: Dietary flaxseed significantly lowered blood pressure in patients with PAD and hypertension. Plasma oxylipins were strongly associated with central blood pressure and may have mediated the flaxseed-induced decrease in blood pressure.

Keywords: hypertension, flaxseed, oxylipins, peripheral arterial disease

Procedia PDF Downloads 468
93 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images

Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso

Abstract:

Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.

Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence

Procedia PDF Downloads 19
92 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films

Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya

Abstract:

Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.

Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film

Procedia PDF Downloads 366
91 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection

Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi

Abstract:

During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.

Keywords: coating, stainless steel, tribology, wear

Procedia PDF Downloads 150
90 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties

Authors: Hsyi-En Cheng, Ying-Yi Liou

Abstract:

Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.

Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide

Procedia PDF Downloads 242
89 Anti-DNA Antibodies from Patients with Schizophrenia Hydrolyze DNA

Authors: Evgeny A. Ermakov, Lyudmila P. Smirnova, Valentina N. Buneva

Abstract:

Schizophrenia associated with dysregulation of neurotransmitter processes in the central nervous system and disturbances in the humoral immune system resulting in the formation of antibodies (Abs) to the various components of the nervous tissue. Abs to different neuronal receptors and DNA were detected in the blood of patients with schizophrenia. Abs hydrolyzing DNA were detected in pool of polyclonal autoantibodies in autoimmune and infectious diseases, such catalytic Abs were named abzymes. It is believed that DNA-hydrolyzing abzymes are cytotoxic, cause nuclear DNA fragmentation and induce cell death by apoptosis. Abzymes with DNAase activity are interesting because of the mechanism of formation and the possibility of use as diagnostic markers. Therefore, in our work we have set following goals: to determine the level anti-DNA Abs in the serum of patients with schizophrenia and to study DNA-hydrolyzing activity of IgG of patients with schizophrenia. Materials and methods: In our study there were included 41 patients with a verified diagnosis of paranoid or simple schizophrenia and 24 healthy donors. Electrophoretically and immunologically homogeneous IgGs were obtained by sequential affinity chromatography of the serum proteins on protein G-Sepharose and gel filtration. The levels of anti-DNA Abs were determined using ELISA. DNA-hydrolyzing activity was detected as the level of supercoiled pBluescript DNA transition in circular and linear forms, the hydrolysis products were analyzed by agarose electrophoresis followed by ethidium bromide stain. To correspond the registered catalytic activity directly to the antibodies we carried out a number of strict criteria: electrophoretic homogeneity of the antibodies, gel filtration (acid shock analysis) and in situ activity. Statistical analysis was performed in ‘Statistica 9.0’ using the non-parametric Mann-Whitney test. Results: The sera of approximately 30% of schizophrenia patients displayed a higher level of Abs interacting with single-stranded (ssDNA) and double-stranded DNA (dsDNA) compared with healthy donors. The average level of Abs interacting with ssDNA was only 1.1-fold lower than that for interacting with dsDNA. IgG of patient with schizophrenia were shown to possess DNA hydrolyzing activity. Using affinity chromatography, electrophoretic analysis of isolated IgG homogeneity, gel filtration in acid shock conditions and in situ DNAse activity analysis we proved that the observed activity is intrinsic property of studied antibodies. We have shown that the relative DNAase activity of IgG in patients with schizophrenia averaged 55.4±32.5%, IgG of healthy donors showed much lower activity (average of 9.1±6.5%). It should be noted that DNAase activity of IgG in patients with schizophrenia with a negative symptoms was significantly higher (73.3±23.8%), than in patients with positive symptoms (43.3±33.1%). Conclusion: Anti-DNA Abs of patients with schizophrenia not only bind DNA, but quite efficiently hydrolyze the substrate. The data show a correlation with the level of DNase activity and leading symptoms of patients with schizophrenia.

Keywords: anti-DNA antibodies, abzymes, DNA hydrolysis, schizophrenia

Procedia PDF Downloads 328
88 Growth and Characterization of Cuprous Oxide (Cu2O) Nanorods by Reactive Ion Beam Sputter Deposition (Ibsd) Method

Authors: Assamen Ayalew Ejigu, Liang-Chiun Chao

Abstract:

In recent semiconductor and nanotechnology, quality material synthesis, proper characterizations, and productions are the big challenges. As cuprous oxide (Cu2O) is a promising semiconductor material for photovoltaic (PV) and other optoelectronic applications, this study was aimed at to grow and characterize high quality Cu2O nanorods for the improvement of the efficiencies of thin film solar cells and other potential applications. In this study, well-structured cuprous oxide (Cu2O) nanorods were successfully fabricated using IBSD method in which the Cu2O samples were grown on silicon substrates with a substrate temperature of 400°C in an IBSD chamber of pressure of 4.5 x 10-5 torr using copper as a target material. Argon, and oxygen gases were used as a sputter and reactive gases, respectively. The characterization of the Cu2O nanorods (NRs) were done in comparison with Cu2O thin film (TF) deposited with the same method but with different Ar:O2 flow rates. With Ar:O2 ratio of 9:1 single phase pure polycrystalline Cu2O NRs with diameter of ~500 nm and length of ~4.5 µm were grow. Increasing the oxygen flow rates, pure single phase polycrystalline Cu2O thin film (TF) was found at Ar:O2 ratio of 6:1. The field emission electron microscope (FE-SEM) measurements showed that both samples have smooth morphologies. X-ray diffraction and Rama scattering measurements reveals the presence of single phase Cu2O in both samples. The differences in Raman scattering and photoluminescence (PL) bands of the two samples were also investigated and the results showed us there are differences in intensities, in number of bands and in band positions. Raman characterization shows that the Cu2O NRs sample has pronounced Raman band intensities, higher numbers of Raman bands than the Cu2O TF which has only one second overtone Raman signal at 2 (217 cm-1). The temperature dependent photoluminescence (PL) spectra measurements, showed that the defect luminescent band centered at 720 nm (1.72 eV) is the dominant one for the Cu2O NRs and the 640 nm (1.937 eV) band was the only PL band observed from the Cu2O TF. The difference in optical and structural properties of the samples comes from the oxygen flow rate change in the process window of the samples deposition. This gave us a roadmap for further investigation of the electrical and other optical properties for the tunable fabrication of the Cu2O nano/micro structured sample for the improvement of the efficiencies of thin film solar cells in addition to other potential applications. Finally, the novel morphologies, excellent structural and optical properties seen exhibits the grown Cu2O NRs sample has enough quality to be used in further research of the nano/micro structured semiconductor materials.

Keywords: defect levels, nanorods, photoluminescence, Raman modes

Procedia PDF Downloads 241
87 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 66
86 Finite Element Modeling and Analysis of Reinforced Concrete Coupled Shear Walls Strengthened with Externally Bonded Carbon Fiber Reinforced Polymer Composites

Authors: Sara Honarparast, Omar Chaallal

Abstract:

Reinforced concrete (RC) coupled shear walls (CSWs) are very effective structural systems in resisting lateral loads due to winds and earthquakes and are particularly used in medium- to high-rise RC buildings. However, most of existing old RC structures were designed for gravity loads or lateral loads well below the loads specified in the current modern seismic international codes. These structures may behave in non-ductile manner due to poorly designed joints, insufficient shear reinforcement and inadequate anchorage length of the reinforcing bars. This has been the main impetus to investigate an appropriate strengthening method to address or attenuate the deficiencies of these structures. The objective of this paper is to twofold: (i) evaluate the seismic performance of existing reinforced concrete coupled shear walls under reversed cyclic loading; and (ii) investigate the seismic performance of RC CSWs strengthened with externally bonded (EB) carbon fiber reinforced polymer (CFRP) sheets. To this end, two CSWs were considered as follows: (a) the first one is representative of old CSWs and therefore was designed according to the 1941 National Building Code of Canada (NBCC, 1941) with conventionally reinforced coupling beams; and (b) the second one, representative of new CSWs, was designed according to modern NBCC 2015 and CSA/A23.3 2014 requirements with diagonally reinforced coupling beam. Both CSWs were simulated using ANSYS software. Nonlinear behavior of concrete is modeled using multilinear isotropic hardening through a multilinear stress strain curve. The elastic-perfectly plastic stress-strain curve is used to simulate the steel material. Bond stress–slip is modeled between concrete and steel reinforcement in conventional coupling beam rather than considering perfect bond to better represent the slip of the steel bars observed in the coupling beams of these CSWs. The old-designed CSW was strengthened using CFRP sheets bonded to the concrete substrate and the interface was modeled using an adhesive layer. The behavior of CFRP material is considered linear elastic up to failure. After simulating the loading and boundary conditions, the specimens are analyzed under reversed cyclic loading. The comparison of results obtained for the two unstrengthened CSWs and the one retrofitted with EB CFRP sheets reveals that the strengthening method improves the seismic performance in terms of strength, ductility, and energy dissipation capacity.

Keywords: carbon fiber reinforced polymer, coupled shear wall, coupling beam, finite element analysis, modern code, old code, strengthening

Procedia PDF Downloads 197
85 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom

Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou

Abstract:

The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.

Keywords: microbial community, harmful algal bloom, ecological process, network

Procedia PDF Downloads 114
84 Reactors with Effective Mixing as a Solutions for Micro-Biogas Plant

Authors: M. Zielinski, M. Debowski, P. Rusanowska, A. Glowacka-Gil, M. Zielinska, A. Cydzik-Kwiatkowska, J. Kazimierowicz

Abstract:

Technologies for the micro-biogas plant with heating and mixing systems are presented as a part of the Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications (Record Biomap). The main objective of the Record Biomap project is to build a network of operators and scientific institutions interested in cooperation and the development of promising technologies in the sector of small and medium-sized biogas plants. The activities carried out in the project will bridge the gap between research and market and reduce the time of implementation of new, efficient technological and technical solutions. Reactor with simultaneously mixing and heating system is a concrete tank with a rectangular cross-section. In the reactor, heating is integrated with the mixing of substrate and anaerobic sludge. This reactor is solution dedicated for substrates with high solids content, which cannot be introduced to the reactor with pumps, even with positive displacement pumps. Substrates are poured to the reactor and then with a screw pump, they are mixed with anaerobic sludge. The pumped sludge, flowing through the screw pump, is simultaneously heated by a heat exchanger. The level of the fermentation sludge inside the reactor chamber is above the bottom edge of the cover. Cover of the reactor is equipped with the screw pump driver. Inside the reactor, an electric motor is installed that is driving a screw pump. The heated sludge circulates in the digester. The post-fermented sludge is collected using a drain well. The inlet to the drain well is below the level of the sludge in the digester. The biogas is discharged from the reactor by the biogas intake valve located on the cover. The technology is very useful for fermentation of lignocellulosic biomass and substrates with high content of dry mass (organic wastes). The other technology is a reactor for micro-biogas plant with a pressure mixing system. The reactor has a form of plastic or concrete tank with a circular cross-section. The effective mixing of sludge is ensured by profiled at 90° bottom of the tank. Substrates for fermentation are supplied by an inlet well. The inlet well is equipped with a cover that eliminates odour release. The introduction of a new portion of substrates is preceded by pumping of digestate to the disposal well. Optionally, digestate can gravitationally flow to digestate storage tank. The obtained biogas is discharged into the separator. The valve supplies biogas to the blower. The blower presses the biogas from the fermentation chamber in such a way as to facilitate the introduction of a new portion of substrates. Biogas is discharged from the reactor by valve that enables biogas removal but prevents suction from outside the reactor.

Keywords: biogas, digestion, heating system, mixing system

Procedia PDF Downloads 154
83 Inhibition of the Activity of Polyphenol Oxidase Enzyme Present in Annona muricata and Musa acuminata by the Experimentally Identified Natural Anti-Browning Agents

Authors: Michelle Belinda S. Weerawardana, Gobika Thiripuranathar, Priyani A. Paranagama

Abstract:

Most of fresh vegetables and fruits available in the retail markets undergo a physiological disorder in its appearance and coloration, which indeed discourages consumer purchase. A loss of millions of dollars yearly to the food industry had been due to this pronounced color reaction called Enzymatic Browning which is driven due to the catalytic activity by an oxidoreductase enzyme, polyphenol oxidase (PPO). The enzyme oxidizes the phenolic compounds which are abundantly available in fruits and vegetables as substrates into quinones, which could react with proteins in its surrounding to generate black pigments, called melanins, which are highly UV-active compounds. Annona muricata (Katu anoda) and Musa acuminata (Ash plantains) is a fruit and a vegetable consumed by Sri Lankans widely due to their high nutritional values, medicinal properties and economical importance. The objective of the present study was to evaluate and determine the effective natural anti-browning inhibitors that could prevent PPO activity in the selected fruit and vegetable. Enzyme extracts from Annona muricata (Katu anoda) and Musa acuminata (Ash plantains), were prepared by homogenizing with analytical grade acetone, and pH of each enzyme extract was maintained at 7.0 using a phosphate buffer. The extracts of inhibitors were prepared using powdered ginger rhizomes and essential oil from the bark of Cinnamomum zeylanicum. Water extracts of ginger were prepared and the essential oil from Ceylon cinnamon bark was extracted using steam distillation method. Since the essential oil is not soluble in water, 0.1µl of cinnamon bark oil was mixed with 0.1µl of Triton X-100 emulsifier and 5.00 ml of water. The effect of each inhibitor on the PPO activity was investigated using catechol (0.1 mol dm-3) as the substrate and two samples of enzyme extracts prepared. The dosages of the prepared Cinnamon bark oil, and ginger (2 samples) which were used to measure the activity were 0.0035 g/ml, 0.091 g/ml and 0.087 g/ml respectively. The measurements of the inhibitory activity were obtained at a wavelength of 525 nm using the UV-visible spectrophotometer. The results evaluated thus revealed that % inhibition observed with cinnamon bark oil, and ginger for Annona muricata was 51.97%, and 60.90% respectively. The effects of cinnamon bark oil, and ginger extract on PPO activity of Musa acuminata were 49.51%, and 48.10%. The experimental findings thus revealed that Cinnamomum zeylanicum bark oil was a more effective inhibitor for PPO enzyme present in Musa acuminata and ginger was effective for PPO enzyme present in Annona muricata. Overall both the inhibitors were proven to be more effective towards the activities of PPO enzyme present in both samples. These inhibitors can thus be corroborated as effective, natural, non-toxic, anti-browning extracts, which when added to the above fruit and vegetable will increase the shelf life and also the acceptance of the product by the consumers.

Keywords: anti-browning agent, enzymatic browning, inhibitory activity, polyphenol oxidase

Procedia PDF Downloads 275
82 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition

Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang

Abstract:

Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.

Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model

Procedia PDF Downloads 109
81 Development of Bilayer Coating System for Mitigating Corrosion of Offshore Wind Turbines

Authors: Adamantini Loukodimou, David Weston, Shiladitya Paul

Abstract:

Offshore structures are subjected to harsh environments. It is documented that carbon steel needs protection from corrosion. The combined effect of UV radiation, seawater splash, and fluctuating temperatures diminish the integrity of these structures. In addition, the possibility of damage caused by floating ice, seaborne debris, and maintenance boats make them even more vulnerable. Their inspection and maintenance when far out in the sea are difficult, risky, and expensive. The most known method of mitigating corrosion of offshore structures is the use of cathodic protection. There are several zones in an offshore wind turbine. In the atmospheric zone, due to the lack of a continuous electrolyte (seawater) layer between the structure and the anode at all times, this method proves inefficient. Thus, the use of protective coatings becomes indispensable. This research focuses on the atmospheric zone. The conversion of commercially available and conventional paint (epoxy) system to an autonomous self-healing paint system via the addition of suitable encapsulated healing agents and catalyst is investigated in this work. These coating systems, which can self-heal when damaged, can provide a cost-effective engineering solution to corrosion and related problems. When the damage of the paint coating occurs, the microcapsules are designed to rupture and release the self-healing liquid (monomer), which then will react in the presence of the catalyst and solidify (polymerization), resulting in healing. The catalyst should be compatible with the system because otherwise, the self-healing process will not occur. The carbon steel substrate will be exposed to a corrosive environment, so the use of a sacrificial layer of Zn is also investigated. More specifically, the first layer of this new coating system will be TSZA (Thermally Sprayed Zn85/Al15) and will be applied on carbon steel samples with dimensions 100 x 150 mm after being blasted with alumina (size F24) as part of the surface preparation. Based on the literature, it corrodes readily, so one additional paint layer enriched with microcapsules will be added. Also, the reaction and the curing time are of high importance in order for this bilayer system of coating to work successfully. For the first experiments, polystyrene microcapsules loaded with 3-octanoyltio-1-propyltriethoxysilane were conducted. Electrochemical experiments such as Electrochemical Impedance Spectroscopy (EIS) confirmed the corrosion inhibiting properties of the silane. The diameter of the microcapsules was about 150-200 microns. Further experiments were conducted with different reagents and methods in order to obtain diameters of about 50 microns, and their self-healing properties were tested in synthetic seawater using electrochemical techniques. The use of combined paint/electrodeposited coatings allows for further novel development of composite coating systems. The potential for the application of these coatings in offshore structures will be discussed.

Keywords: corrosion mitigation, microcapsules, offshore wind turbines, self-healing

Procedia PDF Downloads 115
80 The Impact of Glass Additives on the Functional and Microstructural Properties of Sand-Lime Bricks

Authors: Anna Stepien

Abstract:

The paper presents the results of research on modifications of sand-lime bricks, especially using glass additives (glass fiber and glass sand) and other additives (e.g.:basalt&barite aggregate, lithium silicate and microsilica) as well. The main goal of this paper is to answer the question ‘How to use glass additives in the sand-lime mass and get a better bricks?’ The article contains information on modification of sand-lime bricks using glass fiber, glass sand, microsilica (different structure of silica). It also presents the results of the conducted compression tests, which were focused on compressive strength, water absorption, bulk density, and their microstructure. The Scanning Electron Microscope, spectrum EDS, X-ray diffractometry and DTA analysis helped to define the microstructural changes of modified products. The interpretation of the products structure revealed the existence of diversified phases i.e.the C-S-H and tobermorite. CaO-SiO2-H2O system is the object of intensive research due to its meaning in chemistry and technologies of mineral binding materials. Because the blocks are the autoclaving materials, the temperature of hydrothermal treatment of the products is around 200°C, the pressure - 1,6-1,8 MPa and the time - up to 8hours (it means: 1h heating + 6h autoclaving + 1h cooling). The microstructure of the products consists mostly of hydrated calcium silicates with a different level of structural arrangement. The X-ray diffraction indicated that the type of used sand is an important factor in the manufacturing of sand-lime elements. Quartz sand of a high hardness is also a substrate hardly reacting with other possible modifiers, which may cause deterioration of certain physical and mechanical properties. TG and DTA curves show the changes in the weight loss of the sand-lime bricks specimen against time as well as the endo- and exothermic reactions that took place. The endothermic effect with the maximum at T=573°C is related to isomorphic transformation of quartz. This effect is not accompanied by a change of the specimen weight. The next endothermic effect with the maximum at T=730-760°C is related to the decomposition of the calcium carbonates. The bulk density of the brick it is 1,73kg/dm3, the presence of xonotlite in the microstructure and significant weight loss during DTA and TG tests (around 0,6% after 70 minutes) have been noticed. Silicate elements were assessed on the basis of their compressive property. Orthogonal compositional plan type 3k (with k=2), i.e.full two-factor experiment was applied in order to carry out the experiments both, in the compression strength test and bulk density test. Some modification (e.g.products with barite and basalt aggregate) have improved the compressive strength around 41.3 MPa and water absorption due to capillary raising have been limited to 12%. The next modification was adding glass fiber to sand-lime mass, then glass sand. The results show that the compressive strength was higher than in the case of traditional bricks, while modified bricks were lighter.

Keywords: bricks, fiber, glass, microstructure

Procedia PDF Downloads 347
79 Immobilization of β-Galactosidase from Kluyveromyces Lactis on Polyethylenimine-Agarose for Production of Lactulose

Authors: Carlos A. C. G. Neto, Natan C. G. Silva, Thais O. Costa, Luciana R. B. Goncalves, Maria v. P. Rocha

Abstract:

Galactosidases are enzymes responsible for catalyzing lactose hydrolysis reactions and also favoring transgalactosylation reactions for the production of prebiotics, among which lactulose stands out. These enzymes, when immobilized, can have some enzymatic characteristics substantially improved, and the coating of supports with multifunctional polymers in immobilization processes is a promising alternative in order to extend the useful life of the biocatalysts, for example, the coating with polyethyleneimine (PEI). PEI is a flexible polymer that suits the structure of the enzyme, giving greater stability, especially for multimeric enzymes such as β-galactosidases and also protects it from environmental variations, for example, pH and temperature. In addition, it can substantially improve the immobilization parameters and also the efficiency of enzymatic reactions. In this context, the aim of the present work was first to develop biocatalysts of β-galactosidase from Kluyveromyces lactis immobilized on PEI coated agarose, determining the immobilization parameters, its operational and thermal stability, and then to apply it in the hydrolysis of lactose and synthesis of lactulose, using whey as a substrate. This immobilization strategy was chosen in order to improve the catalytic efficiency of the enzyme in the transgalactosylation reaction for the production of prebiotics, and there are few studies with β-galactosidase from this strain. The immobilization of β-galactosidase in agarose previously functionalized with 48% (w/v) glycidol and then coated with 10% (w/v) PEI solution was evaluated using an enzymatic load of 10 mg/g of protein. Subsequently, the hydrolysis and transgalactosylation reactions were conducted at 50 °C, 120 RPM for 20 minutes, using whey (66.7 g/L of lactose) supplemented with 133.3 g/L fructose at a ratio of 1:2 (lactose/fructose). Operational stability studies were performed in the same conditions for 10 cycles. Thermal stabilities of biocatalysts were conducted at 50 ºC in 50 mM phosphate buffer, pH 6.6, with 0.1 mM MnCl2. The biocatalysts whose supports were coated were named AGA_GLY_PEI_GAL, and those that were not coated were named AGA_GLY_GAL. The coating of the support with PEI considerably improved immobilization yield (2.6-fold), the biocatalyst activity (1.4-fold), and efficiency (2.2-fold). The biocatalyst AGA_GLY_PEI_GAL was better than AGA_GLY_GAL in hydrolysis and transgalactosylation reactions, converting 88.92% of lactose at 5 min of reaction and obtaining a residual concentration of 5.24 g/L. Besides that, it was produced 13.90 g/L lactulose in the same time interval. AGA_GLY_PEI_GAL biocatalyst was stable during the 10 cycles evaluated, converting approximately 80% of lactose and producing 10.95 g/L of lactulose even after the tenth cycle. However, the thermal stability of AGA_GLY_GAL biocatalyst was superior, with a half-life time 5 times higher, probably because the enzyme was immobilized by covalent bonding, which is stronger than adsorption (AGA_GLY_PEI_GAL). Therefore, the strategy of coating the supports with PEI has proven to be effective for the immobilization of β-galactosidase from K. lactis, considerably improving the immobilization parameters, as well as the enzyme, catalyzed reactions. In addition, the use of whey as a raw material for lactulose production has proved to be an industrially advantageous alternative.

Keywords: β-galactosidase, immobilization, lactulose, polyethylenimine, whey

Procedia PDF Downloads 119
78 Cloning and Expression a Gene of β-Glucosidase from Penicillium echinulatum in Pichia pastoris

Authors: Amanda Gregorim Fernandes, Lorena Cardoso Cintra, Rosalia Santos Amorim Jesuino, Fabricia Paula De Faria, Marcio José Poças Fonseca

Abstract:

Bioethanol is one of the most promising biofuels and able to replace fossil fuels and reduce its different environmental impacts and can be generated from various agroindustrial waste. The Brazil is in first place in bioethanol production to be the largest producer of sugarcane. The bagasse sugarcane (SCB) has lignocellulose which is composed of three major components: cellulose, hemicellulose and lignin. Cellulose is a homopolymer of glucose units connected by glycosidic linkages. Among all species of Penicillium, Penicillium echinulatum has been the focus of attention because they produce high quantities of cellulase and the mutant strain 9A02S1 produces higher enzyme levels compared to the wild. Among the cellulases, the cellobiohydrolases enzymes are the main components of the cellulolytic system of fungi, and are also responsible for most of the potential hydrolytic in enzyme cocktails for the industrial processing of plant biomass and several cellobiohydrolases Penicillium had higher specific activity against cellulose compared to CBH I from Trichoderma reesei. This fact makes it an interesting pattern for higher yields in the enzymatic hydrolysis, and also they are important enzymes in the hydrolysis of crystalline regions of cellulose. Therefore, finding new and more active enzymes become necessary. Meanwhile, β-glycosidases act on soluble substrates and are highly dependent on cellobiohydrolases and endoglucanases action to provide the substrate in the hydrolysis of the biomass, but the cellobiohydrolases and endoglucanases are highly dependent β-glucosidases to maintain efficient hydrolysis. Thus, there is a need to understand the structure-function relationships that govern the catalytic activity of cellulolytic enzymes to elucidate its mechanism of action and optimize its potential as industrial biocatalysts. To evaluate the enzyme β-glucosidase of Penicillium echinulatum (PeBGL1) the gene was synthesized from the assembly sequence from a library in induction conditions and then the PeBGL1 gene was cloned in the vector pPICZαA and transformed into P. pastoris GS115. After processing, the producers of PeBGL1 were analyzed for enzyme activity and protein profile where a band of approximately 100 kDa was viewed. It was also carried out the zymogram. In partial characterization it was determined optimum temperature of 50°C and optimum pH of 6,5. In addition, to increase the secreted recombinant PeBGL1 production by Pichia pastoris, three parameters of P. pastoris culture medium were analysed: methanol, nitrogen source concentrations and the inoculum size. A 23 factorial design was effective in achieving the optimum condition. Altogether, these results point to the potential application of this P. echinulatum β-glucosidase in hydrolysis of cellulose for the production of bioethanol.

Keywords: bioethanol, biotechnology, beta-glucosidase, penicillium echinulatum

Procedia PDF Downloads 242
77 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting

Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva

Abstract:

The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.

Keywords: dipole antenna, double-band, high efficiency, rectenna

Procedia PDF Downloads 124
76 Anaerobic Digestion of Spent Wash through Biomass Development for Obtaining Biogas

Authors: Sachin B. Patil, Narendra M. Kanhe

Abstract:

A typical cane molasses based distillery generates 15 L of waste water per liter of alcohol production. Distillery waste with COD of over 1,00,000 mg/l and BOD of over 30,000 mg/l ranks high amongst the pollutants produced by industries both in magnitude and strength. Treatment and safe disposal of this waste is a challenging task since long. The high strength of waste water renders aerobic treatment very expensive and physico-chemical processes have met with little success. Thermophilic anaerobic treatment of distillery waste may provide high degree of treatment and better recovery of biogas. It may prove more feasible in most part of tropical country like India, where temperature is suitable for thermophilic micro-organisms. Researchers have reviled that, at thermophilic conditions due to increased destruction rate of organic matter and pathogens, higher digestion rate can be achieved. Literature review reveals that the variety of anaerobic reactors including anaerobic lagoon, conventional digester, anaerobic filter, two staged fixed film reactors, sludge bed and granular bed reactors have been studied, but little attempts have been made to evaluate the usefulness of thermophilic anaerobic treatment for treating distillery waste. The present study has been carried out, to study feasibility of thermophilic anaerobic digestion to facilitate the design of full scale reactor. A pilot scale anaerobic fixed film fixed bed reactor (AFFFB) of capacity 25m3 was designed, fabricated, installed and commissioned for thermophilic (55-65°C) anaerobic digestion at a constant pH of 6.5-7.5, because these temperature and pH ranges are considered to be optimum for biogas recovery from distillery wastewater. In these conditions, working of the reactor was studied, for different hydraulic retention times (HRT) (0.25days to 12days) and variable organic loading rates (361.46 to 7.96 Kg COD/m3d). The parameters such as flow rate and temperature, various chemical parameters such as pH, chemical oxygen demands (COD), biogas quantity, and biogas composition were regularly monitored. It was observed that, with the increase in OLR, the biogas production was increased, but the specific biogas yield decreased. Similarly, with the increase in HRT, the biogas production got decrease, but the specific biogas yield was increased. This may also be due to the predominant activity of acid producers to methane producers at the higher substrate loading rates. From the present investigation, it can be concluded that for thermophilic conditions the highest COD removal percentage was obtained at an HRT of 08 days, thereafter it tends to decrease from 8 to 12 days HRT. There is a little difference between COD removal efficiency of 8 days HRT (74.03%) and 5 day HRT (78.06%), therefore it would not be feasible to increase the reactor size by 1.5 times for mere 4 percent more efficiency. Hence, 5 days HRT is considered to be optimum, at which the biogas yield was 98 m3/day and specific biogas yield was 0.385 CH4 m3/Kg CODr.

Keywords: spent wash, anaerobic digestion, biomass, biogas

Procedia PDF Downloads 265
75 Growth and Differentiation of Mesenchymal Stem Cells on Titanium Alloy Ti6Al4V and Novel Beta Titanium Alloy Ti36Nb6Ta

Authors: Eva Filová, Jana Daňková, Věra Sovková, Matej Daniel

Abstract:

Titanium alloys are biocompatible metals that are widely used in clinical practice as load bearing implants. The chemical modification may influence cell adhesion, proliferation, and differentiation as well as stiffness of the material. The aim of the study was to evaluate the adhesion, growth and differentiation of pig mesenchymal stem cells on the novel beta titanium alloy Ti36Nb6Ta compared to standard medical titanium alloy Ti6Al4V. Discs of Ti36Nb6Ta and Ti6Al4V alloy were sterilized by ethanol, put in 48-well plates, and seeded by pig mesenchymal stem cells at the density of 60×103/cm2 and cultured in Minimum essential medium (Sigma) supplemented with 10% fetal bovine serum and penicillin/streptomycin. Cell viability was evaluated using MTS assay (CellTiter 96® AQueous One Solution Cell Proliferation Assay;Promega), cell proliferation using Quant-iT™ ds DNA Assay Kit (Life Technologies). Cells were stained immunohistochemically using monoclonal antibody beta-actin, and secondary antibody conjugated with AlexaFluor®488 and subsequently the spread area of cells was measured. Cell differentiation was evaluated by alkaline phosphatase assay using p-nitrophenyl phosphate (pNPP) as a substrate; the reaction was stopped by NaOH, and the absorbance was measured at 405 nm. Osteocalcin, specific bone marker was stained immunohistochemically and subsequently visualized using confocal microscopy; the fluorescence intensity was analyzed and quantified. Moreover, gene expression of osteogenic markers osteocalcin and type I collagen was evaluated by real-time reverse transcription-PCR (qRT-PCR). For statistical evaluation, One-way ANOVA followed by Student-Newman-Keuls Method was used. For qRT-PCR, the nonparametric Kruskal-Wallis Test and Dunn's Multiple Comparison Test were used. The absorbance in MTS assay was significantly higher on titanium alloy Ti6Al4V compared to beta titanium alloy Ti36Nb6Ta on days 7 and 14. Mesenchymal stem cells were well spread on both alloys, but no difference in spread area was found. No differences in alkaline phosphatase assay, fluorescence intensity of osteocalcin as well as the expression of type I collagen, and osteocalcin genes were observed. Higher expression of type I collagen compared to osteocalcin was observed for cells on both alloys. Both beta titanium alloy Ti36Nb6Ta and titanium alloy Ti6Al4V Ti36Nb6Ta supported mesenchymal stem cellsˈ adhesion, proliferation and osteogenic differentiation. Novel beta titanium alloys Ti36Nb6Ta is a promising material for bone implantation. The project was supported by the Czech Science Foundation: grant No. 16-14758S, the Grant Agency of the Charles University, grant No. 1246314 and by the Ministry of Education, Youth and Sports NPU I: LO1309.

Keywords: beta titanium, cell growth, mesenchymal stem cells, titanium alloy, implant

Procedia PDF Downloads 316
74 Highly Conducting Ultra Nanocrystalline Diamond Nanowires Decorated ZnO Nanorods for Long Life Electronic Display and Photo-Detectors Applications

Authors: A. Saravanan, B. R. Huang, C. J. Yeh, K. C. Leou, I. N. Lin

Abstract:

A new class of ultra-nano diamond-graphite nano-hybrid (DGH) composite materials containing nano-sized diamond needles was developed at low temperature process. Such kind of diamond- graphite nano-hybrid composite nanowires exhibit high electrical conductivity and excellent electron field emission (EFE) properties. Few earlier reports mention that addition of N2 gas to the growth plasma requires high growth temperature (800°C) to trigger the dopants to generate the conductivity in the films. High growth temperature is not familiar with the Si-based device fabrications. We have used a novel process such as bias-enhanced-grown (beg) MPECVD process to grow diamond films at low substrate temperature (450°C). We observed that the beg-N/UNCD films thus obtained possess high conductivity of σ=987 S/cm, ever reported for diamond films with excellent Electron field emission (EFE) properties. TEM investigation indicated that these films contain needle-like diamond grains about 5 nm in diameter and hundreds of nanometers in length. Each of the grains was encased in graphitic layers about tens of nano-meters in thickness. These materials properties suitable for more specific applications, such as high conductivity for electron field emitters, high robustness for microplasma cathodes and high electrochemical activity for electro-chemical sensing. Subsequently, other hand, the highly conducting DGH films were coated on vertically aligned ZnO nanorods, there is no prior nucleation or seeding process needed due to the use of BEG method. Such a composite structure provides significant enhancement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage 1.78 V/μm with high EFE current density of 3.68 mA/ cm2 (at 4.06V/μm) due to decoration of DGH material on ZnO nanorods. The DGH/ZNRs based device get stable emission for longer duration of 562min than bare ZNRs (104min) without any current degradation because the diamond coating protects the ZNRs from ion bombardment when they are used as the cathode for microplasma devices. The potential application of these materials is demonstrated by the plasma illumination measurements that ignited the plasma at the minimum voltage by 290 V. The photoresponse (Iphoto/Idark) behavior of the DGH/ZNRs based photodetectors exhibits a much higher photoresponse (1202) than bare ZNRs (229). During the process the electron transport is easy from ZNRs to DGH through graphitic layers, the EFE properties of these materials comparable to other primarily used field emitters like carbon nanotubes, graphene. The DGH/ZNRs composite also providing a possibility of their use in flat panel, microplasma and vacuum microelectronic devices.

Keywords: bias-enhanced nucleation and growth, ZnO nanorods, electrical conductivity, electron field emission, photo-detectors

Procedia PDF Downloads 370
73 Primary-Color Emitting Photon Energy Storage Nanophosphors for Developing High Contrast Latent Fingerprints

Authors: G. Swati, D. Haranath

Abstract:

Commercially available long afterglow /persistent phosphors are proprietary materials and hence the exact composition and phase responsible for their luminescent characteristics such as initial intensity and afterglow luminescence time are not known. Further to generate various emission colors, commercially available persistence phosphors are physically blended with fluorescent organic dyes such as rodhamine, kiton and methylene blue etc. Blending phosphors with organic dyes results into complete color coverage in visible spectra, however with time, such phosphors undergo thermal and photo-bleaching. This results in the loss of their true emission color. Hence, the current work is dedicated studies on inorganic based thermally and chemically stable primary color emitting nanophosphors namely SrAl2O4:Eu2+, Dy3+, (CaZn)TiO3:Pr3+, and Sr2MgSi2O7:Eu2+, Dy3+. SrAl2O4: Eu2+, Dy3+ phosphor exhibits a strong excitation in UV and visible region (280-470 nm) with a broad emission peak centered at 514 nm is the characteristic emission of parity allowed 4f65d1→4f7 transitions of Eu2+ (8S7/2→2D5/2). Sunlight excitable Sr2MgSi2O7:Eu2+,Dy3+ nanophosphors emits blue color (464 nm) with Commercial international de I’Eclairage (CIE) coordinates to be (0.15, 0.13) with a color purity of 74 % with afterglow time of > 5 hours for dark adapted human eyes. (CaZn)TiO3:Pr3+ phosphor system possess high color purity (98%) which emits intense, stable and narrow red emission at 612 nm due intra 4f transitions (1D2 → 3H4) with afterglow time of 0.5 hour. Unusual property of persistence luminescence of these nanophoshphors supersedes background effects without losing sensitive information these nanophosphors offer several advantages of visible light excitation, negligible substrate interference, high contrast bifurcation of ridge pattern, non-toxic nature revealing finger ridge details of the fingerprints. Both level 1 and level 2 features from a fingerprint can be studied which are useful for used classification, indexing, comparison and personal identification. facile methodology to extract high contrast fingerprints on non-porous and porous substrates using a chemically inert, visible light excitable, and nanosized phosphorescent label in the dark has been presented. The chemistry of non-covalent physisorption interaction between the long afterglow phosphor powder and sweat residue in fingerprints has been discussed in detail. Real-time fingerprint development on porous and non-porous substrates has also been performed. To conclude, apart from conventional dark vision applications, as prepared primary color emitting afterglow phosphors are potentional candidate for developing high contrast latent fingerprints.

Keywords: fingerprints, luminescence, persistent phosphors, rare earth

Procedia PDF Downloads 221
72 Electroactive Fluorene-Based Polymer Films Obtained by Electropolymerization

Authors: Mariana-Dana Damaceanu

Abstract:

Electrochemical oxidation is one of the most convenient ways to obtain conjugated polymer films as polypyrrole, polyaniline, polythiophene or polycarbazole. The research in the field has been mainly directed to the study of electrical conduction properties of the materials obtained by electropolymerization, often the main reason being their use as electroconducting electrodes, and very little attention has been paid to the morphological and optical quality of the films electrodeposited on flat surfaces. Electropolymerization of the monomer solution was scarcely used in the past to manufacture polymer-based light-emitting diodes (PLED), most probably due to the difficulty of obtaining defectless polymer films with good mechanical and optical properties, or conductive polymers with well controlled molecular weights. Here we report our attempts in using electrochemical deposition as appropriate method for preparing ultrathin films of fluorene-based polymers for PLED applications. The properties of these films were evaluated in terms of structural morphology, optical properties, and electrochemical conduction. Thus, electropolymerization of 4,4'-(9-fluorenylidene)-dianiline was performed in dichloromethane solution, at a concentration of 10-2 M, using 0.1 M tetrabutylammonium tetrafluoroborate as electrolyte salt. The potential was scanned between 0 and 1.3 V on the one hand, and 0 - 2 V on the other hand, when polymer films with different structures and properties were obtained. Indium tin oxide-coated glass substrate of different size was used as working electrode, platinum wire as counter electrode and calomel electrode as reference. For each potential range 100 cycles were recorded at a scan rate of 100 mV/s. The film obtained in the potential range from 0 to 1.3 V, namely poly(FDA-NH), is visible to the naked eye, being light brown, transparent and fluorescent, and displays an amorphous morphology. Instead, the electrogrowth poly(FDA) film in the potential range of 0 - 2 V is yellowish-brown and opaque, presenting a self-assembled structure in aggregates of irregular shape and size. The polymers structure was identified by FTIR spectroscopy, which shows the presence of broad bands specific to a polymer, the band centered at approx. 3443 cm-1 being ascribed to the secondary amine. The two polymer films display two absorption maxima, at 434-436 nm assigned to π-π* transitions of polymers, and another at 832 and 880 nm assigned to polaron transitions. The fluorescence spectra indicated the presence of emission bands in the blue domain, with two peaks at 422 and 488 nm for poly (FDA-NH), and four narrow peaks at 422, 447, 460 and 484 nm for poly(FDA), peaks originating from fluorene-containing segments of varying degrees of conjugation. Poly(FDA-NH) exhibited two oxidation peaks in the anodic region and the HOMO energy value of 5.41 eV, whereas poly(FDA) showed only one oxidation peak and the HOMO level localized at 5.29 eV. The electrochemical data are discussed in close correlation with the proposed chemical structure of the electrogrowth films. Further research will be carried out to study their use and performance in light-emitting devices.

Keywords: electrogrowth polymer films, fluorene, morphology, optical properties

Procedia PDF Downloads 345
71 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles

Authors: K. Verma, v. S. Moholkar

Abstract:

In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.

Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation

Procedia PDF Downloads 67