Search results for: pulsed electric current sintering
9087 Qusai-Solid-State Electrochromic Device Based on PolyMethyl Methacrylate (PMMA)/Succinonitrile Gel Polymer Electrolyte
Authors: Jen-Yuan Wang, Min-Chuan Wang, Der-Jun Jan
Abstract:
Polymer electrolytes can be classified into four major categories, solid polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), polyelectrolytes and composite polymer electrolytes. SPEs suffer from low ionic conductivity at room temperature. The main problems for GPEs are the poor thermal stability and mechanical properties. In this study, a GPE containing PMMA and succinonitrile is prepared to solve the problems mentioned above, and applied to the assembly of a quasi-solid-state electrochromic device (ECD). In the polymer electrolyte, poly(methyl methacrylate) (PMMA) is the polymer matrix and propylene carbonate (PC) is used as the plasticizer. To enhance the mechanical properties of this GPE, succinonitrile (SN) is introduced as the additive. For the electrochromic materials, tungsten oxide (WO3) is used as the cathodic coloring film, which is fabricated by pulsed dc magnetron reactive sputtering. For the anodic coloring material, Prussian blue nanoparticles (PBNPs) are synthesized and coated on the transparent Sn-doped indium oxide (ITO) glass. The thickness of ITO, WO3 and PB film is 110, 170 and 200 nm, respectively. The size of the ECD is 5×5 cm2. The effect of the introduction of SN into the GPEs is discussed by observing the electrochromic behaviors of the WO3-PB ECD. Besides, the composition ratio of PC to SN is also investigated by measuring the ionic conductivity. The optimized ratio of PC to SN is 4:1, and the ionic conductivity under this condition is 6.34x10-5 S∙cm-1, which is higher than that of PMMA/PC (1.35x10-6 S∙cm-1) and PMMA/EC/PC (4.52x10-6 S∙cm-1). This quasi-solid-state ECD fabricated with the PMMA/SN based GPE shows an optical contrast of ca. 53% at 690 nm. The optical transmittance of the ECD can be reversibly modulated from 72% (bleached) to 19% (darkened), by applying potentials of 1.5 and -2.2 V, respectively. During the durability test, the optical contrast of this ECD remains 44.5% after 2400 cycles, which is 83% of the original one.Keywords: electrochromism, tungsten oxide, prussian blue, poly(methyl methacrylate), succinonitrile
Procedia PDF Downloads 2979086 Development and Characterization of Ceramic-Filled Composite Filaments and Functional Structures for Fused Deposition Modeling
Authors: B. Khatri, K. Lappe, M. Habedank, T. Müller, C. Megnin, T. Hanemann
Abstract:
We present a process flow for the development of ceramic-filled polymer composite filaments compatible with the fused deposition modeling (FDM) 3D printing process. Thermoplastic-ceramic composites were developed using acrylonitrile butadiene styrene (ABS) and 10- and 20 vol.% barium titanate (BaTiO3) powder (corresponding to 39.47- and 58.23 wt.% respectively) and characterized for their flow properties. To make them compatible with the existing FDM process, the composites were extruded into filaments. These composite filaments were subsequently structured into tensile stress specimens using a commercially available FDM 3D printer and characterized for their mechanical properties. Rheometric characterization of the material composites revealed non-Newtonian behavior with the viscosity logarithmically decreasing over increasing shear rates, as well as higher viscosities for samples with higher BaTiO3 filler content for a given shear rate (with the ABS+20vol.% BaTiO3 composite being over 50% more viscous compared to pure ABS at a shear rate of 1x〖10〗^3 s^(-1)). Mechanical characterization of the tensile stress specimens exhibited increasingly brittle behavior as well as a linearly decreasing ultimate tensile strength of the material composites with increasing volumetric ratio of BaTiO3 (from σ_max=32.4MPa for pure ABS to σ_max=21.3MPa for ABS+20vol.% BaTiO3). Further studies being undertaken include the development of composites with higher filler concentrations, sintering of the printed composites to yield pure dielectric structures and the determination of the dielectric characteristics of the composites.Keywords: ceramic composites, fused deposition modeling, material characterization, rapid prototyping
Procedia PDF Downloads 3319085 Statistical Study and Simulation of 140 Kv X– Ray Tube by Monte Carlo
Authors: Mehdi Homayouni, Karim Adinehvand, Bakhtiar Azadbakht
Abstract:
In this study, we used Monte Carlo code (MCNP4C) that is a general method, for simulation, electron source and electric field, a disc source with 0.05 cm radius in direct of anode are used, radius of disc source show focal spot of X-ray tube that here is 0.05 cm. In this simulation, the anode is from tungsten with 18.9 g/cm3 density and angle of the anode is 18°. We simulated X-ray tube for 140 kv. For increasing of speed data acquisition, we use F5 tally. With determination the exact position of F5 tally in the program, outputs are acquired. In this spectrum the start point is about 0.02 Mev, the absorption edges are about 0.06 Mev and 0.07 Mev, and average energy is about 0.05 Mev.Keywords: X-spectrum, simulation, Monte Carlo, tube
Procedia PDF Downloads 7229084 Polymeric Microspheres for Bone Tissue Engineering
Authors: Yamina Boukari, Nashiru Billa, Andrew Morris, Stephen Doughty, Kevin Shakesheff
Abstract:
Poly (lactic-co-glycolic) acid (PLGA) is a synthetic polymer that can be used in bone tissue engineering with the aim of creating a scaffold in order to support the growth of cells. The formation of microspheres from this polymer is an attractive strategy that would allow for the development of an injectable system, hence avoiding invasive surgical procedures. The aim of this study was to develop a microsphere delivery system for use as an injectable scaffold in bone tissue engineering and evaluate various formulation parameters on its properties. Porous and lysozyme-containing PLGA microspheres were prepared using the double emulsion solvent evaporation method from various molecular weights (MW). Scaffolds were formed by sintering to contain 1 -3mg of lysozyme per gram of scaffold. The mechanical and physical properties of the scaffolds were assessed along with the release of lysozyme, which was used as a model protein. The MW of PLGA was found to have an influence on microsphere size during fabrication, with increased MW leading to an increased microsphere diameter. An inversely proportional relationship was displayed between PLGA MW and mechanical strength of formed scaffolds across loadings for low, intermediate and high MW respectively. Lysozyme release from both microspheres and formed scaffolds showed an initial burst release phase, with both microspheres and scaffolds fabricated using high MW PLGA showing the lowest protein release. Following the initial burst phase, the profiles for each MW followed a similar slow release over 30 days. Overall, the results of this study demonstrate that lysozyme can be successfully incorporated into porous PLGA scaffolds and released over 30 days in vitro, and that varying the MW of the PLGA can be used as a method of altering the physical properties of the resulting scaffolds.Keywords: bone, microspheres, PLGA, tissue engineering
Procedia PDF Downloads 4259083 Photoelectrical Stimulation for Cancer Therapy
Authors: Mohammad M. Aria, Fatma Öz, Yashar Esmaeilian, Marco Carofiglio, Valentina Cauda, Özlem Yalçın
Abstract:
Photoelectrical stimulation of cells with semiconductor organic polymers have been shown promising applications in neuroprosthetics such as retinal prosthesis. Photoelectrical stimulation of the cell membranes can be induced through a photo-electric charge separation mechanism in the semiconductor materials, and it can alter intracellular calcium level through both stimulation of voltage-gated ion channels and increase of intracellular reactive oxygen species (ROS) level. On the other hand, targeting voltage-gated ion channels in cancer cells to induce cell apoptosis through calcium signaling alternation is an effective mechanism which has been explained before. In this regard, remote control of the voltage-gated ion channels aimed to alter intracellular calcium by using photo-active organic polymers can be novel technology in cancer therapy. In this study, we used P (ITO/Indium thin oxide)/P3HT(poly(3-hexylthiophene-2,5-diyl)) and PN (ITO/ZnO/P3HT) photovoltaic junctions to stimulate MDA-MB-231 breast cancer cells. We showed that the photo-stimulation of breast cancer cells through photo capacitive current generated by the photovoltaic junctions are able to excite the cells and alternate intracellular calcium based on the calcium imaging (at 8mW/cm² green light intensity and 10-50 ms light durations), which has been reported already to safety stimulate neurons. The control group did not undergo light treatment and was cultured in T-75 flasks. We detected 20-30% cell death for ITO/P3HT and 51-60% cell death for ITO/ZnO/P3HT samples in the light treated MDA-MB-231 cell group. Western blot analysis demonstrated poly(ADP-ribose) polymerase (PARP) activated cell death in the light treated group. Furthermore, Annexin V and PI fluorescent staining indicated both apoptosis and necrosis in treated cells. In conclusion, our findings revealed that the photoelectrical stimulation of cells (through long time overstimulation) can induce cell death in cancer cells.Keywords: Ca²⁺ signaling, cancer therapy, electrically excitable cells, photoelectrical stimulation, voltage-gated ion channels
Procedia PDF Downloads 1779082 Sunset Tourism for the Rebirth of Shrinking Cities
Authors: Luca Lezzerini
Abstract:
Albania is suffering a continuous shrinking of its population and demographic distribution that faces all the problems connected with age increase. The paper examines the case of Gjirokastër, a city in the south of Albania that, despite having a UNESCO label as a world heritage site, is experimenting with the same shrinking phenomenon. The paper analyses in detail the current situation and propose an interdisciplinary approach based on smart technologies and sunset tourism to restart Gjirokastër’s economy and invert bad demographic trends. The proposed approach needs to review the current urban planning, reshaping and connecting some areas. It also proposes a smart city architecture to support this process.Keywords: smart city, sunset tourism, shrinking city, Gjirokastër
Procedia PDF Downloads 919081 The Search of Possibility of Running Six Sigma Process in It Education Center
Authors: Mohammad Amini, Aliakbar Alijarahi
Abstract:
This research that is collected and title as ‘ the search of possibility of running six sigma process in IT education center ‘ goals to test possibility of running the six sigma process and using in IT education center system. This process is a good method that is used for reducing process, errors. To evaluate running off six sigma in the IT education center, some variables relevant to this process is selected. These variables are: - The amount of support from organization master boss to process. - The current specialty. - The ability of training system for compensating reduction. - The amount of match between current culture whit six sigma culture . - The amount of current quality by comparing whit quality gain from running six sigma. For evaluation these variables we select four question and to gain the answers, we set a questionnaire from with 28 question and distribute it in our typical society. Since, our working environment is a very competition, and organization needs to decree the errors to minimum, otherwise it lasts their customers. The questionnaire from is given to 55 persons, they were filled and returned by 50 persons, after analyzing the forms these results is gained: - IT education center needs to use and run this system (six sigma) for improving their process qualities. - The most factors need to run the six sigma exist in the IT education center, but there is a need to support.Keywords: education, customer, self-action, quality, continuous improvement process
Procedia PDF Downloads 3409080 Development of CaO-based Sorbents Applied to Sorption Enhanced Steam Reforming Processes
Authors: P. Comendador, I. Garcia, S. Orozco, L. Santamaria, M. Amutio, G. Lopez, M. Olazar
Abstract:
In situ CO₂ capture in steam reforming processes has been studied in the last years as an alternative for increasing H₂ yields and H₂ purity in the product stream. For capturing the CO₂ at the reforming conditions, CaO-based sorbents are usually employed due to their properties at high temperature, low cost and high availability. However, the challenge is to develop high-capacity (gCO₂/gsorbent) materials that retain their capacity over cycles of operation. Besides, since the objective is to capture the CO₂ generated in situ, another key aspect is the sorption dynamics, which means that, in order to efficiently use the sorbent, it has to capture the CO₂ at a rate equal to or higher than the generation rate. In this work, different CaO-based materials have been prepared to aim at meeting these criteria. First, and by using the wet mixing method, different inert materials (Mg, Ce and Al) were combined with CaO. Second, and with the inert material selected (Mg), the effect of its concentration in the final material was studied. Transversally, the calcination temperature was also evaluated. It was determined that the wet mixing method is a simple procedure suitable for the preparation of CaO sorbents mixed with inert materials. The materials prepared by mixing the CaO with Mg have shown satisfactory anti-sintering properties and adequate sorption kinetics for their application in steam reforming processes. Regarding the concentration of Mg in the solid, it was concluded that high values contribute to the stability but at the expense of losing sorption capacity. Finally, it was observed that high calcination temperatures negatively affected the sorption properties of the final materials due to the decrease in the pore volume and the specific surface area.Keywords: calcination temperature effect, CO₂ capture, Mg-Ce-Al stabilizers, Mg varying concentration effect, Sorbent stabilization
Procedia PDF Downloads 819079 Realization of Sustainable Urban Society by Personal Electric Transporter and Natural Energy
Authors: Yuichi Miyamoto
Abstract:
In regards to the energy sector in the modern period, two points were raised. First is a vast and growing energy demand, and second is an environmental impact associated with it. The enormous consumption of fossil fuel to the mobile unit is leading to its rapid depletion. Nuclear power is not the only problem. A modal shift that utilizes personal transporters and independent power, in order to realize a sustainable society, is very effective. The paper proposes that the world will continue to work on this. Energy of the future society, innovation in battery technology and the use of natural energy is a big key. And it is also necessary in order to save on energy consumption.Keywords: natural energy, modal shift, personal transportation, battery
Procedia PDF Downloads 4089078 Simulation of 140 Kv X– Ray Tube by MCNP4C Code
Authors: Amin Sahebnasagh, Karim Adinehvand, Bakhtiar Azadbakht
Abstract:
In this study, we used Monte Carlo code (MCNP4C) that is a general method, for simulation, electron source and electric field, a disc source with 0.05 cm radius in direct of anode are used, radius of disc source show focal spot of x-ray tube that here is 0.05 cm. In this simulation, anode is from tungsten with 18.9 g/cm3 density and angle of anode is 180. we simulated x-ray tube for 140 kv. For increasing of speed data acquisition we use F5 tally. With determination the exact position of F5 tally in program, outputs are acquired. In this spectrum the start point is about 0.02 Mev, the absorption edges are about 0.06 Mev and 0.07 Mev and average energy is about 0.05 Mev.Keywords: x-spectrum, simulation, Monte Carlo, MCNP4C code
Procedia PDF Downloads 6469077 The Effect of Low Power Laser on CK and Some of Markers Delayed Onset Muscle Soreness (DOMS)
Authors: Bahareh Yazdanparast Chaharmahali
Abstract:
The study showed effect of low power laser therapy on knee range of motion (flexion and extension), resting angle of knee joint, knee circumference and rating of delayed onset muscle soreness induced pain, 24 and 48 hours after eccentric training of knee flexor muscle (hamstring muscle). We investigate the effects of pulsed ultrasound on swelling, relaxed, flexion and extension knee angle and pain. 20 volunteers among girl students of college voluntary participated in this research. After eccentric training, subjects were randomly divided into two groups, control and laser therapy. In day 1 and in order to induce delayed onset muscle soreness, subjects eccentrically trained their knee flexor muscles. In day 2, subjects were randomly divided into two groups: control and low power laser therapy. 24 and 48 hours after eccentric training. Variables (knee flexion and extension, srang of motion, resting knee joint angle and knee circumferences) were measured and analyzed. Data are reported as means ± standard error (SE) and repeated measured was used to assess differences within groups. Methods of treatment (low power laser therapy) have significant effects on delayed onset muscle soreness markers. 24 and 48 hours after training a significant difference was observed between mean pains of 2 groups. This difference was significant between low power laser therapy and C groups. The Bonferroni post hock is significant. Low power laser therapy trophy as used in this study did significantly diminish the effects of delayed – onset muscle soreness on swelling, relaxed – knee extension and flexion angle.Keywords: creatine kinase, DOMS, eccentric training, low power laser
Procedia PDF Downloads 2469076 Diagnosis of Static Eccentricity in 400 kW Induction Machine Based on the Analysis of Stator Currents
Authors: Saleh Elawgali
Abstract:
Current spectrums of a four pole-pair, 400 kW induction machine were calculated for the cases of full symmetry and static eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. Zooms of the current spectrums, around the 50 Hz fundamental harmonic as well as of the main slot harmonic zone, were included. The spectrums included refer to both calculated and measured currents.Keywords: diagnostic, harmonic, induction machine, spectrum
Procedia PDF Downloads 5239075 Drilling Quantification and Bioactivity of Machinable Hydroxyapatite : Yttrium phosphate Bioceramic Composite
Authors: Rupita Ghosh, Ritwik Sarkar, Sumit K. Pal, Soumitra Paul
Abstract:
The use of Hydroxyapatite bioceramics as restorative implants is widely known. These materials can be manufactured by pressing and sintering route to a particular shape. However machining processes are still a basic requirement to give a near net shape to those implants for ensuring dimensional and geometrical accuracy. In this context, optimising the machining parameters is an important factor to understand the machinability of the materials and to reduce the production cost. In the present study a method has been optimized to produce true particulate drilled composite of Hydroxyapatite Yttrium Phosphate. The phosphates are used in varying ratio for a comparative study on the effect of flexural strength, hardness, machining (drilling) parameters and bioactivity.. The maximum flexural strength and hardness of the composite that could be attained are 46.07 MPa and 1.02 GPa respectively. Drilling is done with a conventional radial drilling machine aided with dynamometer with high speed steel (HSS) and solid carbide (SC) drills. The effect of variation in drilling parameters (cutting speed and feed), cutting tool, batch composition on torque, thrust force and tool wear are studied. It is observed that the thrust force and torque varies greatly with the increase in the speed, feed and yttrium phosphate content in the composite. Significant differences in the thrust and torque are noticed due to the change of the drills as well. Bioactivity study is done in simulated body fluid (SBF) upto 28 days. The growth of the bone like apatite has become denser with the increase in the number of days for all the composition of the composites and it is comparable to that of the pure hydroxyapatite.Keywords: Bioactivity, Drilling, Hydroxyapatite, Yttrium Phosphate
Procedia PDF Downloads 3009074 Study and Experimental Analysis of a Photovoltaic Pumping System under Three Operating Modes
Authors: Rekioua D., Mohammedi A., Rekioua T., Mehleb Z.
Abstract:
Photovoltaic water pumping systems is considered as one of the most promising areas in photovoltaic applications, the economy and reliability of solar electric power made it an excellent choice for remote water pumping. Two conventional techniques are currently in use; the first is the directly coupled technique and the second is the battery buffered photovoltaic pumping system. In this paper, we present different performances of a three operation modes of photovoltaic pumping system. The aim of this work is to determine the effect of different parameters influencing the photovoltaic pumping system performances, such as pumping head, System configuration and climatic conditions. The obtained results are presented and discussed.Keywords: batteries charge mode, photovoltaic pumping system, pumping head, submersible pump
Procedia PDF Downloads 5099073 Level of Understanding of the Catholic Doctrines in Relation to the Way of Life of Ignatian Graduates
Authors: Maria Wendy Mendoza-Solomo
Abstract:
The study assessed the level of understanding of catholic doctrines in relation to the way of life of Ignatian graduates of Ateneo de Naga University (ADNU). It was conducted to find out if ADNU is successful in leading their students to a deeper moral understanding of the world centered on Jesus Christ through their curriculum, academic programs, activities and practices. This study further evaluated if their graduates live out their Catholic commitment to Christ in their current way of life. It also determined the factors that affected their level of understanding of Catholic doctrines and their current way of life. The descriptive, qualitative, evaluative and correlational analyses determined the level of understanding of the Catholic doctrines and the current way of life of 390 graduates. It also correlated the level of understanding to moral life and worship. The factors that affected the graduates’ level of understanding and their current way of life were measured. A researcher-made instrument was distributed to the respondents either using the traditional way or the online survey to reach out graduates across the globe. Major findings were (1) The weighted mean of graduates’ level of understanding of Catholic doctrines was 4.63. (2) Along moral life, 4.07 while along worship, 3.83. (3) The Catholic doctrines and moral life had Pearson r value of 0.79. The doctrines and worship, 0.87; and worship and moral life, 0.89. (4) The understanding of the doctrines was affected highly by the teacher factor with 4.09 mean. The moral life and worship were affected highly by the teacher and technological factors both ranked 1.5 (4.04). (5) Along Catholic doctrines, the teacher factor had 0.90 r value; and environmental, -0.40. Along moral life, teacher had r value of -0.30; technological (-0.92), socio-economic (-0.93), political (-0.83), and environmental (-0.90). Along worship, the teacher had 0.36 Pearson r value, technological and socio-economic (-0.78), political (-0.73) and environmental (-0.72). Major conclusions were: (1) Graduates had very high level of understanding of the Catholic doctrines as summarized in the Creed which is grounded in the Sacred Scriptures. (2) They live out this Catholic commitment to Christ by obeying the Commandments very extensively but needed more participation in religious and parish activities. They have overwhelming spirituality and religiosity in terms of receiving of sacraments and sacramental practices except reading the Bible and reflecting on its passages. (3) The graduates’ level of understanding of the Catholic doctrines had very strong correlation with their current way of life. (4) Teacher, socio-economic, technological, environmental, and political factors significantly affected their understanding of the Catholic doctrines and their current way of life. (5) The teacher factor had very strong relationship with the doctrines; technological and political, weak; environmental, moderate; and socio-economic, very weak relationship. The teacher factor had weak relationship but the other factors had very strong relationship with moral life and strong relationship with worship.Keywords: Catholic doctrines, Ignatian graduates, relationship, way of life
Procedia PDF Downloads 3559072 Experimental and Characterization Studies on Micro Direct Methanol Fuel Cell
Authors: S. Muthuraja Soundrapandian, C.K. Subramaniam
Abstract:
A micro Direct Methanol Fuel Cell (DMFC) of 1 cm2 active area with selective sensor materials to sense methanol for redox, has been developed. Among different Pt alloys, Pt-Sn/C was able to produce high current density and repeatability. Membrane Elecctrode Assembly (MEA) of anode catalyst Pt-Sn/C was prepared with nafion as active membrane and Pt black as cathode catalyst. The sensor’s maximum ability to detect the trace levels of methanol in ppm has been analyzed. A compact sensor set up has also been made and the characterization studies were carried out. The acceptable value of current density was derived by the cell and the results are able to fulfill the needs of DMFC technology for the practical applications.Keywords: DMFC, sensor, MEA, Pt-Sn
Procedia PDF Downloads 1409071 Electrical Transport through a Large-Area Self-Assembled Monolayer of Molecules Coupled with Graphene for Scalable Electronic Applications
Authors: Chunyang Miao, Bingxin Li, Shanglong Ning, Christopher J. B. Ford
Abstract:
While it is challenging to fabricate electronic devices close to atomic dimensions in conventional top-down lithography, molecular electronics is promising to help maintain the exponential increase in component densities via using molecular building blocks to fabricate electronic components from the bottom up. It offers smaller, faster, and more energy-efficient electronic and photonic systems. A self-assembled monolayer (SAM) of molecules is a layer of molecules that self-assembles on a substrate. They are mechanically flexible, optically transparent, low-cost, and easy to fabricate. A large-area multi-layer structure has been designed and investigated by the team, where a SAM of designed molecules is sandwiched between graphene and gold electrodes. Each molecule can act as a quantum dot, with all molecules conducting in parallel. When a source-drain bias is applied, significant current flows only if a molecular orbital (HOMO or LUMO) lies within the source-drain energy window. If electrons tunnel sequentially on and off the molecule, the charge on the molecule is well-defined and the finite charging energy causes Coulomb blockade of transport until the molecular orbital comes within the energy window. This produces ‘Coulomb diamonds’ in the conductance vs source-drain and gate voltages. For different tunnel barriers at either end of the molecule, it is harder for electrons to tunnel out of the dot than in (or vice versa), resulting in the accumulation of two or more charges and a ‘Coulomb staircase’ in the current vs voltage. This nanostructure exhibits highly reproducible Coulomb-staircase patterns, together with additional oscillations, which are believed to be attributed to molecular vibrations. Molecules are more isolated than semiconductor dots, and so have a discrete phonon spectrum. When tunnelling into or out of a molecule, one or more vibronic states can be excited in the molecule, providing additional transport channels and resulting in additional peaks in the conductance. For useful molecular electronic devices, achieving the optimum orbital alignment of molecules to the Fermi energy in the leads is essential. To explore it, a drop of ionic liquid is employed on top of the graphene to establish an electric field at the graphene, which screens poorly, gating the molecules underneath. Results for various molecules with different alignments of Fermi energy to HOMO have shown highly reproducible Coulomb-diamond patterns, which agree reasonably with DFT calculations. In summary, this large-area SAM molecular junction is a promising candidate for future electronic circuits. (1) The small size (1-10nm) of the molecules and good flexibility of the SAM lead to the scalable assembly of ultra-high densities of functional molecules, with advantages in cost, efficiency, and power dissipation. (2) The contacting technique using graphene enables mass fabrication. (3) Its well-observed Coulomb blockade behaviour, narrow molecular resonances, and well-resolved vibronic states offer good tuneability for various functionalities, such as switches, thermoelectric generators, and memristors, etc.Keywords: molecular electronics, Coulomb blokade, electron-phonon coupling, self-assembled monolayer
Procedia PDF Downloads 639070 TA6V Selective Laser Melting as an Innovative Method Produce Complex Shapes
Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud
Abstract:
Additive manufacturing is a hot topic for industry. Among the additive techniques, Selective Laser Melting (SLM) becomes even more popular, especially for making parts for aerospace applications, thanks to its design freedom (customized and light structures) and its reduced time to market. However, some functional surfaces have to be machined to achieve small tolerances and low surface roughness to fulfill industry specifications. The complex shapes designed for SLM (ex: titanium turbine blades) necessitate the use of ball end milling operations like in the conventional process after forging. However, the metallurgical state of TA6V is very different from the one obtained usually from forging, because of the laser sintering layer by layer. So this paper aims to investigate the influence of new TA6V metallurgies produced by SLM on the machinability in ball end milling. Machinability is considered as the property of a material to obtain easily and by a cheap way a functional surface. This means, for instance, the property to limit cutting tool wear rate and to get smooth surfaces. So as to reach this objective, SLM parts have been produced and heat treated with various conditions leading to various metallurgies that are compared with a standard equiaxed α+β wrought microstructure. The machinability is analyzed by measuring surface roughness, tool wear and cutting forces for a range of cutting conditions (depth of cut 'ap', feed per tooth 'fz', spindle speed 'N') in accordance with industrial practices. This work has revealed that TA6V produced by SLM can lead to a better machinability that standard wrought alloys.Keywords: ball milling, selective laser melting, surface roughness, titanium, wear
Procedia PDF Downloads 2799069 The Development Stages of Transformation of Water Policy Management in Victoria
Authors: Ratri Werdiningtyas, Yongping Wei, Andrew Western
Abstract:
The status quo of social-ecological systems is the results of not only natural processes but also the accumulated consequence of policies applied in the past. Often water management objectives are challenging and are only achieved to a limited degree on the ground. In choosing water management approaches, it is important to account for current conditions and important differences due to varied histories. Since the mid-nineteenth century, Victorian water management has evolved through a series of policy regime shifts. The main goal of this research to explore and identify the stages of the evolution of the water policy instruments as practiced in Victoria from 1890-2016. This comparative historical analysis has identified four stages in Victorian policy instrument development. In the first stage, the creation of policy instruments aimed to match the demand and supply of the resource (reserve condition). The second stage begins after natural system alone failed to balance supply and demand. The focus of the policy instrument shifted to an authority perspective in this stage. Later, the increasing number of actors interested in water led to another change in policy instrument. The third stage focused on the significant role of information from different relevant actors. The fourth and current stage is the most advanced, in that it involved the creation of a policy instrument for synergizing the previous three focal factors: reserve, authority, and information. When considering policy in other jurisdiction, these findings suggest that a key priority should be to reflect on the jurisdictions current position among these four evolutionary stages and try to make improve progressively rather than directly adopting approaches from elsewhere without understanding the current position.Keywords: policy instrument, policy transformation, socio-ecolgical system, water management
Procedia PDF Downloads 1459068 Financial Products Held by University Students: An Empirical Study from the Czech Republic
Authors: Barbora Chmelikova
Abstract:
Current financial markets offer a wide range of financial products to the consumers. However, access to the financial products is not always provided or guaranteed, particularly in less developed countries. For this reason, financial inclusion is an important component in the modern society. This paper investigates financial inclusion and what financial products are held by university students majoring in finance fields. The OECD methodology was used to examine the awareness and use of financial products. The study was conducted via online questionnaire at Masaryk University in the Czech Republic among finance students. The results show that the students use current and savings accounts more than any other financial products.Keywords: financial inclusion, financial products, personal finance, university students
Procedia PDF Downloads 3759067 Proportional and Integral Controller-Based Direct Current Servo Motor Speed Characterization
Authors: Adel Salem Bahakeem, Ahmad Jamal, Mir Md. Maruf Morshed, Elwaleed Awad Khidir
Abstract:
Direct Current (DC) servo motors, or simply DC motors, play an important role in many industrial applications such as manufacturing of plastics, precise positioning of the equipment, and operating computer-controlled systems where speed of feed control, maintaining the position, and ensuring to have a constantly desired output is very critical. These parameters can be controlled with the help of control systems such as the Proportional Integral Derivative (PID) controller. The aim of the current work is to investigate the effects of Proportional (P) and Integral (I) controllers on the steady state and transient response of the DC motor. The controller gains are varied to observe their effects on the error, damping, and stability of the steady and transient motor response. The current investigation is conducted experimentally on a servo trainer CE 110 using analog PI controller CE 120 and theoretically using Simulink in MATLAB. Both experimental and theoretical work involves varying integral controller gain to obtain the response to a steady-state input, varying, individually, the proportional and integral controller gains to obtain the response to a step input function at a certain frequency, and theoretically obtaining the proportional and integral controller gains for desired values of damping ratio and response frequency. Results reveal that a proportional controller helps reduce the steady-state and transient error between the input signal and output response and makes the system more stable. In addition, it also speeds up the response of the system. On the other hand, the integral controller eliminates the error but tends to make the system unstable with induced oscillations and slow response to eliminate the error. From the current work, it is desired to achieve a stable response of the servo motor in terms of its angular velocity subjected to steady-state and transient input signals by utilizing the strengths of both P and I controllers.Keywords: DC servo motor, proportional controller, integral controller, controller gain optimization, Simulink
Procedia PDF Downloads 1109066 High-Frequency Half Bridge Inverter Applied to Induction Heating
Authors: Amira Zouaoui, Hamed Belloumi, Ferid Kourda
Abstract:
This paper presents the analysis and design of a DC–AC resonant converter applied to induction heating. The proposed topology based on the series-parallel half-bridge resonant inverter is described. It can operate with Zero-Voltage Switching (ZVS). At the resonant frequency, the secondary current is amplified over the heating coil with small switching angle, which keeps the reactive power low and permits heating with small current through the resonant inductor and the transformer. The operation and control principle of the proposed high frequency inverter is described and verified through simulated and experimental results.Keywords: induction heating, inverter, high frequency, resonant
Procedia PDF Downloads 4649065 The Development of a Digitally Connected Factory Architecture to Enable Product Lifecycle Management for the Assembly of Aerostructures
Authors: Nicky Wilson, Graeme Ralph
Abstract:
Legacy aerostructure assembly is defined by large components, low build rates, and manual assembly methods. With an increasing demand for commercial aircraft and emerging markets such as the eVTOL (electric vertical take-off and landing) market, current methods of manufacturing are not capable of efficiently hitting these higher-rate demands. This project will look at how legacy manufacturing processes can be rate enabled by taking a holistic view of data usage, focusing on how data can be collected to enable fully integrated digital factories and supply chains. The study will focus on how data is flowed both up and down the supply chain to create a digital thread specific to each part and assembly while enabling machine learning through real-time, closed-loop feedback systems. The study will also develop a bespoke architecture to enable connectivity both within the factory and the wider PLM (product lifecycle management) system, moving away from traditional point-to-point systems used to connect IO devices to a hub and spoke architecture that will exploit report-by-exception principles. This paper outlines the key issues facing legacy aircraft manufacturers, focusing on what future manufacturing will look like from adopting Industry 4 principles. The research also defines the data architecture of a PLM system to enable the transfer and control of a digital thread within the supply chain and proposes a standardised communications protocol to enable a scalable solution to connect IO devices within a production environment. This research comes at a critical time for aerospace manufacturers, who are seeing a shift towards the integration of digital technologies within legacy production environments, while also seeing build rates continue to grow. It is vital that manufacturing processes become more efficient in order to meet these demands while also securing future work for many manufacturers.Keywords: Industry 4, digital transformation, IoT, PLM, automated assembly, connected factories
Procedia PDF Downloads 789064 Landmark Based Catch Trends Assessment of Gray Eel Catfish (Plotosus canius) at Mangrove Estuary in Bangladesh
Authors: Ahmad Rabby
Abstract:
The present study emphasizing the catch trends assessment of Gray eel catfish (Plotosus canius) that was scrutinized on the basis of monthly length frequency data collected from mangrove estuary, Bangladesh during January 2017 to December 2018. A total amount of 1298 specimens were collected to estimate the total length (TL) and weight (W) of P. canius ranged from 13.3 cm to 87.4 cm and 28 g to 5200 g, respectively. The length-weight relationship was W=0.006 L2.95 with R2=0.972 for both sexes. The von Bertalanffy growth function parameters were L∞=93.25 cm and K=0.28 yr-1, hypothetical age at zero length of t0=0.059 years and goodness of the fit of Rn=0.494. The growth performances indices for L∞ and W∞ were computed as Φ'=3.386 and Φ=1.84, respectively. The size at first sexual maturity was estimated in TL as 48.8 cm for pool sexes. The natural mortality was 0.51 yr-1 at average annual water surface temperature as 22 0C. The total instantaneous mortality was 1.24 yr-1 at CI95% of 0.105–1.42 (r2=0.986). While fishing mortality was 0.73 yr-1 and the current exploitation ratio as 0.59. The recruitment was continued throughout the year with one major peak during May-June was 17.20-17.96%. The Beverton-Holt yield per recruit model was analyzed by FiSAT-II, when tc was at 1.43 yr, the Fmax was estimated as 0.6 yr-1 and F0.1 was 0.33 yr-1. Current age at the first capture was approximately 0.6 year, however Fcurrent = 0.73 yr-1 which is beyond the F0.1 indicated that the current stock of P. canius of Bangladesh was overexploited.Keywords: Plotosus canius, mangrove estuary, asymptotic length, FiSAT-II
Procedia PDF Downloads 1519063 The Effects of Transcranial Direct Current Stimulation on Brain Oxygenation and Pleasure during Exercise
Authors: Alexandre H. Okano, Pedro M. D. Agrícola, Daniel G. Da S. Machado, Luiz I. Do N. Neto, Luiz F. Farias Junior, Paulo H. D. Nascimento, Rickson C. Mesquita, John F. Araujo, Eduardo B. Fontes, Hassan M. Elsangedy, Shinsuke Shimojo, Li M. Li
Abstract:
The prefrontal cortex is involved in the reward system and the insular cortex integrates the afferent inputs arriving from the body’ systems and turns into feelings. Therefore, modulating neuronal activity in these regions may change individuals’ perception in a given situation such as exercise. We tested whether transcranial direct current stimulation (tDCS) change cerebral oxygenation and pleasure during exercise. Fourteen volunteer healthy adult men were assessed into five different sessions. First, subjects underwent to a maximum incremental test on a cycle ergometer. Then, subjects were randomly assigned to a transcranial direct current stimulation (2mA for 15 min) intervention in a cross over design in four different conditions: anode and cathode electrodes on T3 and Fp2 targeting the insular cortex, and Fpz and F4 targeting prefrontal cortex, respectively; and their respective sham. These sessions were followed by 30 min of moderate intensity exercise. Brain oxygenation was measured in prefrontal cortex with a near infrared spectroscopy. Perceived exertion and pleasure were also measured during exercise. The asymmetry in prefrontal cortex oxygenation before the stimulation decreased only when it was applied over this region which did not occur after insular cortex or sham stimulation. Furthermore, pleasure was maintained during exercise only after prefrontal cortex stimulation (P > 0.7), while there was a decrease throughout exercise (P < 0.03) during the other conditions. We conclude that tDCS over the prefrontal cortex changes brain oxygenation in ventromedial prefrontal cortex and maintains perceived pleasure during exercise. Therefore, this technique might be used to enhance effective responses related to exercise.Keywords: affect, brain stimulation, dopamine neuromodulation, pleasure, reward, transcranial direct current stimulation
Procedia PDF Downloads 3269062 Large-Scale Photovoltaic Generation System Connected to HVDC Grid with Centralized High Voltage and High Power DC/DC Converter
Authors: Xinke Huang, Huan Wang, Lidong Guo, Changbin Ju, Runbiao Liu, Shanshan Meng, Yibo Wang, Honghua Xu
Abstract:
Large-scale photovoltaic (PV) generation system connected to HVDC grid has many advantages compared to its counterpart of AC grid. DC connection can solve many problems that AC connection faces, such as the grid-connection and power transmission, and DC connection is the tendency. DC/DC converter as the most important device in the system has become one of the hot spots recently. The paper proposes a centralized DC/DC converter which uses Boost Full Bridge Isolated DC/DC Converter(BFBIC) topology and combination through input parallel output series(IPOS) method to improve power capacity and output voltage to match with the HVDC grid voltage. Meanwhile, it adopts input current sharing control strategy to realize input current and output voltage balance. A ±30kV/1MW system is modeled in MATLAB/SIMULINK, and a downscaled ±10kV/200kW DC/DC converter platform is built to verify the proposed topology and control strategy.Keywords: photovoltaic generation, cascaded dc/dc converter, galvanic isolation, high-voltage, direct current (HVDC)
Procedia PDF Downloads 4429061 Simulation and Characterization of Compact Magnetic Proton Recoil Spectrometer for Fast Neutron Spectra Measurements
Authors: Xingyu Peng, Qingyuan Hu, Xuebin Zhu, Xi Yuan
Abstract:
Neutron spectrometry has contributed much to the development of nuclear physics since 1932 and has also become an importance tool in several other fields, notably nuclear technology, fusion plasma diagnostics and radiation protection. Compared with neutron fluxes, neutron spectra can provide more detailed information on the internal physical process of neutron sources, such as fast neutron reactors, fusion plasma, fission-fusion hybrid reactors, and so on. However, high performance neutron spectrometer is not so commonly available as it requires the use of large and complex instrumentation. This work describes the development and characterization of a compact magnetic proton recoil (MPR) spectrometer for high-resolution measurements of fast neutron spectra. The compact MPR spectrometer is featured by its large recoil angle, small size permanent analysis magnet, short beam transport line and dual-purpose detector array for both steady state and pulsed neutron spectra measurement. A 3-dimensional electromagnetic particle transport code is developed to simulate the response function of the spectrometer. Simulation results illustrate that the performance of the spectrometer is mainly determined by n-p recoil foil and proton apertures, and an overall energy resolution of 3% is achieved for 14 MeV neutrons. Dedicated experiments using alpha source and mono-energetic neutron beam are employed to verify the simulated response function of the compact MPR spectrometer. These experimental results show a good agreement with the simulated ones, which indicates that the simulation code possesses good accuracy and reliability. The compact MPR spectrometer described in this work is a valuable tool for fast neutron spectra measurements for the fission or fusion devices.Keywords: neutron spectrometry, magnetic proton recoil spectrometer, neutron spectra, fast neutron
Procedia PDF Downloads 2029060 Heading for Modern Construction Management: Recommendation for Employers
Authors: Robin Becker, Maike Eilers, Nane Roetmann, Manfred Helmus
Abstract:
The shortage of junior staff in the construction industry is a problem that will be further exacerbated in the coming years by the retirement of the baby-boom generations (1955-1969) from employment. In addition, the current working conditions in the field of construction management are not attractive for young professionals. A survey of students revealed a desire for an increase in flexibility and an improved work-life balance in everyday working life. Students of civil engineering and architecture are basically interested in a career in construction management but have reservations due to the image of the profession and the current working conditions. A survey among experts from the construction industry shows that the profession can become more attractive. This report provides recommendations for action in the form of working modules to improve the working conditions of employees. If these are taken into account, graduates can be attracted to the profession of construction management, and existing staff can be retained more effectively. The aim of this report is to show incentives for employers to respond to the wishes and needs of their current and future employees to the extent that can be implemented.Keywords: modern construction management, construction industry, work modules, shortage of junior staff, sustainable personnel management, making construction management more attractive, working time model
Procedia PDF Downloads 839059 Thermal Interruption Performance of High Voltage Gas Circuit Breaker Operating with CO₂ Mixtures
Authors: Yacine Babou, Nitesh Ranjan, Branimir Radisavljevic , Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti, Paulo Cristini
Abstract:
In the frame of replacement of Sulfur hexafluoride (SF6) gas as insulating and switching medium, diverse alternative gases, offering acceptable Global Warming Potential and fulfilling requirements in terms of heat dissipation, insulation and arc quenching performances are currently investigated for High Voltage Circuit Breaker applications. Among the potential gases, CO₂ seems a promising candidate for replacing SF6, because on one hand it is environmentally friendly, harmless, non-toxic, non-corrosive, non-flammable and on the other hand previous studies have demonstrated its fair interruption capabilities. The present study aims at investigating the performance of CO₂ for the thermal interruption in high voltage self-blast circuit breakers. In particular, the correlation between thermal interruption performance and arc voltage is considered and the effect of the arc-network interaction on the performance is rigorously analyzed. For the considered designs, the thermal interruption was evaluated by varying the slope at current zero (i.e., di/dt) for which the breaker could interrupt. Besides, the characteristics of the post-arc current are examined in detail for various rated voltages and currents. The outcome of these experimental investigations will be reported and analyzed.Keywords: current zero measurement, high voltage circuit breaker, thermal arc discharge, thermal interruption
Procedia PDF Downloads 1859058 Applications and Development of a Plug Load Management System That Automatically Identifies the Type and Location of Connected Devices
Authors: Amy Lebar, Kim L. Trenbath, Bennett Doherty, William Livingood
Abstract:
Plug and process loads (PPLs) account for 47% of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering and data storage. A laboratory proof of concept (PoC) demonstrated all but the data storage capabilities and these capabilities were validated using an office building scenario. The PoC can identify when a device is plugged into an outlet and the location of the device in the building. When a device is moved, the PoC’s dashboard and database are automatically updated with the new location. The PoC implements controls to devices from the system dashboard so that devices maintain correct schedules regardless of where they are plugged in within a building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. A system like ATLIS could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.Keywords: commercial buildings, grid-interactive efficient buildings (GEB), miscellaneous electric loads (MELs), plug loads, plug load management (PLM)
Procedia PDF Downloads 132