Search results for: emotional recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3278

Search results for: emotional recognition

2018 Maresin Like 1 Treatment: Curbing the Pathogenesis of Behavioral Dysfunction and Neurodegeneration in Alzheimer's Disease Mouse Model

Authors: Yan Lu, Song Hong, Janakiraman Udaiyappan, Aarti Nagayach, Quoc-Viet A. Duong, Masao Morita, Shun Saito, Yuichi Kobayashi, Yuhai, Zhao, Hongying Peng, Nicholas B. Pham, Walter J Lukiw, Christopher A. Vuong, Nicolas G. Bazan

Abstract:

Aims: Neurodegeneration and behavior dysfunction occurs in patients with Alzheimer's Disease (AD), and as the disease progresses many patients develop cognitive impairment. 5XFAD mouse model of AD is widely used to study AD pathogenesis and treatment. This study aimed to investigate the effect of maresin like 1 (MaR-L1) treatment in AD pathology using 5XFAD mice. Methods: We tested 12-month-old male 5XFAD mice and wild type control mice treated with MaR-L1 in a battery of behavioral tasks. We performed open field test, beam walking test, clasping test, inverted grid test, acetone test, marble burring test, elevated plus maze test, cross maze test and novel object recognition test. We also studied neuronal loss, amyloid β burden, and inflammation in the brains of 5XFAD mice using immunohistology and Western blotting. Results: MaR-L1 treatment to the 5XFAD mice showed improved cognitive function of 5XFAD mice. MaR-L1 showed decreased anxiety behavior in open field test and marble burring test, increased muscular strength in the beam walking test, clasping test and inverted grid test. Cognitive function was improved in MaR-L1 treated 5XFAD mice in the novel object recognition test. MaR-L1 prevented neuronal loss and aberrant inflammation. Conclusion: Our finding suggests that behavioral abnormalities were normalized by the administration of MaR-L1 and the neuroprotective role of MaR-L1 in the AD. It also indicates that MaR-L1 treatment is able to prevent and or ameliorate neuronal loss and aberrant inflammation. Further experiments to validate the results are warranted using other AD models in the future.

Keywords: Alzheimer's disease, motor and cognitive behavior, 5XFAD mice, Maresin Like 1, microglial cell, astrocyte, neurodegeneration, inflammation, resolution of inflammation

Procedia PDF Downloads 179
2017 Google Translate: AI Application

Authors: Shaima Almalhan, Lubna Shukri, Miriam Talal, Safaa Teskieh

Abstract:

Since artificial intelligence is a rapidly evolving topic that has had a significant impact on technical growth and innovation, this paper examines people's awareness, use, and engagement with the Google Translate application. To see how familiar aware users are with the app and its features, quantitative and qualitative research was conducted. The findings revealed that consumers have a high level of confidence in the application and how far people they benefit from this sort of innovation and how convenient it makes communication.

Keywords: artificial intelligence, google translate, speech recognition, language translation, camera translation, speech to text, text to speech

Procedia PDF Downloads 155
2016 Towards an Equitable Proprietary Regime: Property Rights Over Human Genes as a Case Study

Authors: Aileen Editha

Abstract:

The legal recognition of property rights over human genes is a divisive topic to which there is no resolution. As a frequently discussed topic, scholars and practitioners often highlight the inadequacies of a proprietary regime. However, little has been said in regard to the nature of human genetic materials (HGMs). This paper proposes approaching the issue of property over HGMs from an alternative perspective that looks at the personal and social value and valuation of HGMs. This paper will highlight how the unique and unresolved status of HGMs is incompatible with the main tenets of property and, consequently, contributes to legal ambiguity and uncertainty in the regulation of property rights over human genes. HGMs are perceived as part of nature and a free-for-all while also being within an individual’s private sphere. Additionally, it is also considered to occupy a unique “not-private-nor-public” status. This limbo-like position clashes with property’s fundamental characteristic that relies heavily on a clear public/private dichotomy. Moreover, as property is intrinsically linked to the legal recognition of one’s personhood, this irresolution benefits some while disadvantages others. In particular, it demands the publicization of once-private genes for the “common good” but subsequently encourages privatization (through labor) of these now-public genes. This results in the gain of some (already privileged) individuals while enabling the disenfranchisement of members of minority groups, such as Indigenous communities. This paper will discuss real and intellectual property rights over human genes, such as the right to income or patent rights, in Canada and the US. This paper advocates for a sui generis approach to governing rights and interests over human genes that would not rely on having a strict public/private dichotomy. Not only would this improve legal certainty and clarity, but it would also alleviate—or, at the very least, minimize—the role that the current law plays in further entrenching existing systemic inequalities. Despite the specificity of this topic, this paper argues that there are broader lessons to be learned. This issue is an insightful case study on the interconnection of various principles in law, society, and property, and what must be done when discordance between one or more of those principles has detrimental societal outcomes. Ultimately, it must be remembered that property is an adaptable and malleable instrument that can be developed to ensure it contributes to equity and flourishing.

Keywords: property rights, human genetic materials, critical legal scholarship, systemic inequalities

Procedia PDF Downloads 81
2015 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image

Authors: Abdelkhalek Bakkari

Abstract:

Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.

Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image

Procedia PDF Downloads 481
2014 A Survey on Types of Noises and De-Noising Techniques

Authors: Amandeep Kaur

Abstract:

Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.

Keywords: de-noising techniques, edges, image, image processing

Procedia PDF Downloads 336
2013 The Sense of Recognition of Muslim Women in Western Academia

Authors: Naima Mohammadi

Abstract:

The present paper critically reports on the emergency of Iranian international students in a large public university in Italy. Although the most sizeable diaspora of Iranians dates back to the 1979 revolution, a huge wave of Iranian female students travelled abroad after the Iranian Green Movement (2009) due to the intensification of gender discrimination and Islamization. To explore the experience of Iranian female students at an Italian public university, two complementary methods were adopted: a focus group and individual interviews. Focus groups yield detailed collective conversations and provide researchers with an opportunity to observe the interaction between participants, rather than between participant and researcher, which generates data. Semi-structured interviews allow participants to share their stories in their own words and speak about personal experiences and opinions. Research participants were invited to participate through a public call in a Telegram group of Iranian students. Theoretical and purposive sampling was applied to select participants. All participants were assured that full anonymity would be ensured and they consented to take part in the research. A two-hour focus group was held in English with participants in the presence and some online. They were asked to share their motivations for studying in Italy and talk about their experiences both within and outside the university context. Each of these interviews lasted from 45 to 60 minutes and was mostly carried out online and in Farsi. The focus group consisted of 8 Iranian female post-graduate students. In analyzing the data a blended approach was adopted, with a combination of deductive and inductive coding. According to research findings, although 9/11 was the beginning of the West’s challenges against Muslims, the nuclear threats of Islamic regimes promoted the toughest international sanctions against Iranians as a nation across the world. Accordingly, carrying an Iranian identity contributes to social, political, and economic exclusion. Research findings show that geopolitical factors such as international sanctions and Islamophobia, and a lack of reciprocity in terms of recognition, have created a sense of stigmatization for veiled and unveiled Iranian female students who are the largest groups of ‘non-European Muslim international students’ enrolled in Italian universities. Participants addressed how their nationality has devalued their public image and negatively impacted their self-confidence and self-realization in academia. They highlighted the experience of an unwelcoming atmosphere by different groups of people and institutes, such as receiving marked students’ badges, rejected bank account requests, failed visa processes, secondary security screening selection, and hyper-visibility of veiled students. This study corroborates the need for institutions to pay attention to geopolitical factors and religious diversity in student recruitment and provide support mechanisms and access to basic rights. Accordingly, it is suggested that Higher Education Institutions (HEIs) have a social and moral responsibility towards the discrimination and both social and academic exclusion of Iranian students.

Keywords: Iranian diaspora, female students, recognition theory, inclusive university

Procedia PDF Downloads 75
2012 Snapchat’s Scanning Feature

Authors: Reham Banwair, Lana Alshehri, Sara Hadrawi

Abstract:

The purpose of this project is to identify user satisfaction with the AI functions on Snapchat, in order to generate improvement proposals that allow its development within the app. To achieve this, a qualitative analysis was carried out through interviews to people who usually use the application, revealing their satisfaction or dissatisfaction with the usefulness of the AI. In addition, the background of the company and its introduction in these algorithms were analyzed. Furthermore, the characteristics of the three main functions of AI were explained: identify songs, solve mathematical problems, and recognize plants. As a result, it was obtained that 50% still do not know the characteristics of AI, 50% still believe song recognition is not always correct, 41.7% believe that math problems are usually accurate and 91.7% believes the plant detection tool is working properly.

Keywords: artificial intelligence, scanning, Snapchat, machine learning

Procedia PDF Downloads 135
2011 Use of Didactic Bibliographic Resources to Improve the Teaching and Learning Processes of Animal Reproduction in Veterinary Science

Authors: Yasser Y. Lenis, Amy Jo Montgomery, Diego F. Carrillo-Gonzalez

Abstract:

Introduction: The use of didactic instruments in different learning environments plays a pivotal role in enhancing the level of knowledge in veterinary science students. The direct instruction of basic animal reproduction concepts in students enrolled in veterinary medicine programs allows them to elucidate the biological and molecular mechanisms that perpetuate the animal species in an ecosystem. Therefore, universities must implement didactic strategies that facilitate the teaching and learning processes for students and, in turn, enrich learning environments. Objective: to evaluate the effect of the use of a didactic textbook on the level of theoretical knowledge in embryo-maternal recognition for veterinary medicine students. Methods: the participants (n=24) were divided into two experimental groups: control (Ctrl) and treatment (Treat). Both groups received 4 hours of theoretical training regarding the basic concepts in bovine embryo-maternal recognition. However, the Treat group was also exposed to a guided lecture and the activity play-to-learn from a cow reproduction didactic textbook. A pre-test and a post-test were applied to assess the prior and subsequent knowledge in the participants. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, a repeated measures model was applied where the effect of the intervention was considered. Results: no significant difference (p>0,05) was observed in the number of right answers for groups Ctrl (54,2%±12,7) and Treat (40,8%±16,8) in the pre-test. There was no difference (p>0,05) compering the number of right answers in Ctrl pre-test (54,2%±12,7) and post-test (60,8±18,8). However, the Treat group showed a significant (p>0,05) difference in the number of right answers when comparing pre-test (40,8%±16,8) and post-test (71,7%±14,7). Finally, after the theoretical training and the didactic activity in the Treat group, an increase of 10.9% (p<0,05) in the number of right answers was found when compared with the Ctrl group. Conclusion: the use of didactic tools that include guided lectures and activities like play-to-learn from a didactic textbook enhances the level of knowledge in an animal reproduction course for veterinary medicine students.

Keywords: animal reproduction, pedagogic, level of knowledge, learning environment

Procedia PDF Downloads 65
2010 On the Bias and Predictability of Asylum Cases

Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats

Abstract:

An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.

Keywords: asylum adjudications, automated decision-making, machine learning, text mining

Procedia PDF Downloads 96
2009 Teaching Young Children Social and Emotional Learning through Shared Book Reading: Project GROW

Authors: Stephanie Al Otaiba, Kyle Roberts

Abstract:

Background and Significance Globally far too many students read below grade level; thus improving literacy outcomes is vital. Research suggests that non-cognitive factors, including Social and Emotional Learning (SEL) are linked to success in literacy outcomes. Converging evidence exists that early interventions are more effective than later remediation; therefore teachers need strategies to support early literacy while developing students’ SEL and their vocabulary, or language, for learning. This presentation describe findings from a US federally-funded project that trained teachers to provide an evidence-based read-aloud program for young children, using commercially available books with multicultural characters and themes to help their students “GROW”. The five GROW SEL themes include: “I can name my feelings”, “I can learn from my mistakes”, “I can persist”, “I can be kind to myself and others”, and “I can work toward and achieve goals”. Examples of GROW vocabulary (from over 100 words taught across the 5 units) include: emotions, improve, resilient, cooperate, accomplish, responsible, compassion, adapt, achieve, analyze. Methodology This study used a mixed methods research design, with qualitative methods to describe data from teacher feedback surveys (regarding satisfaction, feasibility), observations of fidelity of implementation, and with quantitative methods to assess the effect sizes for student vocabulary growth. GROW Intervention and Teacher Training Procedures Researchers trained classroom teachers to implement GROW. Each thematic unit included four books, vocabulary cards with images of the vocabulary words, and scripted lessons. Teacher training included online and in-person training; researchers incorporated virtual reality videos of instructors with child avatars to model lessons. Classroom teachers provided 2-3 20 min lessons per week ranging from short-term (8 weeks) to longer-term trials for up to 16 weeks. Setting and Participants The setting for the study included two large urban charter schools in the South. Data was collected across two years; during the first year, participants included 7 kindergarten teachers and 108 and the second year involved an additional set of 5 kindergarten and first grade teachers and 65 students. Initial Findings The initial qualitative findings indicate teachers reported the lessons to be feasible to implement and they reported that students enjoyed the books. Teachers found the vocabulary words to be challenging and important. They were able to implement lessons with fidelity. Quantitative analyses of growth for each taught word suggest that students’ growth on taught words ranged from large (ES = .75) to small (<.20). Researchers will contrast the effects for more and less successful books within the GROW units. Discussion and Conclusion It is feasible for teachers of young students to effectively teach SEL vocabulary and themes during shared book reading. Teachers and students enjoyed the books and students demonstrated growth on taught vocabulary. Researchers will discuss implications of the study and about the GROW program for researchers in learning sciences, will describe some limitations about research designs that are inherent in school-based research partnerships, and will provide some suggested directions for future research and practice.

Keywords: early literacy, learning science, language and vocabulary, social and emotional learning, multi-cultural

Procedia PDF Downloads 43
2008 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management

Authors: Ezgi Şendil

Abstract:

Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.

Keywords: disaster, NLP, postdisaster management, sentiment analysis

Procedia PDF Downloads 75
2007 Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors

Authors: Y. Saylan, F. Yılmaz, A. Denizli

Abstract:

Rheumatoid arthritis (RA) which is the most common autoimmune disorder of the body's own immune system attacking healthy cells. RA has both articular and systemic effects.Until now romatiod factor (RF) assay is used the most commonly diagnosed RA but it is not specific. Anti-cyclic citrullinated peptide (anti-CCP) antibodies are IgG autoantibodies which recognize citrullinated peptides and offer improved specificity in early diagnosis of RA compared to RF. Anti-CCP antibodies have specificity for the diagnosis of RA from 91 to 98% and the sensitivity rate of 41-68%. Molecularly imprinted polymers (MIP) are materials that are easy to prepare, less expensive, stable have a talent for molecular recognition and also can be manufactured in large quantities with good reproducibility. Molecular recognition-based adsorption techniques have received much attention in several fields because of their high selectivity for target molecules. Quartz crystal microbalance (QCM) is an effective, simple, inexpensive approach mass changes that can be converted into an electrical signal. The applications for specific determination of chemical substances or biomolecules, crystal electrodes, cover by the thin films for bind or adsorption of molecules. In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti-CCP, chosen as a model protein, using anti-CCP imprinted nanofilms. For this aim, anti-CCP imprinted QCM nanosensor was characterized by Fourier transform infrared spectroscopy, atomic force microscopy, contact angle measurements and ellipsometry. The non-imprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real-time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (Δm) and frequency shifts (Δf) were used to evaluate adsorption properties and to calculate binding (Ka) and dissociation (Kd) constants. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated.The results indicate that anti-CCP imprinted QCM nanosensor has a higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure.

Keywords: anti-CCP, molecular imprinting, nanosensor, rheumatoid arthritis, QCM

Procedia PDF Downloads 363
2006 Automatic Checkpoint System Using Face and Card Information

Authors: Kriddikorn Kaewwongsri, Nikom Suvonvorn

Abstract:

In the deep south of Thailand, checkpoints for people verification are necessary for the security management of risk zones, such as official buildings in the conflict area. In this paper, we propose an automatic checkpoint system that verifies persons using information from ID cards and facial features. The methods for a person’s information abstraction and verification are introduced based on useful information such as ID number and name, extracted from official cards, and facial images from videos. The proposed system shows promising results and has a real impact on the local society.

Keywords: face comparison, card recognition, OCR, checkpoint system, authentication

Procedia PDF Downloads 321
2005 A Multivariate Exploratory Data Analysis of a Crisis Text Messaging Service in Order to Analyse the Impact of the COVID-19 Pandemic on Mental Health in Ireland

Authors: Hamda Ajmal, Karen Young, Ruth Melia, John Bogue, Mary O'Sullivan, Jim Duggan, Hannah Wood

Abstract:

The Covid-19 pandemic led to a range of public health mitigation strategies in order to suppress the SARS-CoV-2 virus. The drastic changes in everyday life due to lockdowns had the potential for a significant negative impact on public mental health, and a key public health goal is to now assess the evidence from available Irish datasets to provide useful insights on this issue. Text-50808 is an online text-based mental health support service, established in Ireland in 2020, and can provide a measure of revealed distress and mental health concerns across the population. The aim of this study is to explore statistical associations between public mental health in Ireland and the Covid-19 pandemic. Uniquely, this study combines two measures of emotional wellbeing in Ireland: (1) weekly text volume at Text-50808, and (2) emotional wellbeing indicators reported by respondents of the Amárach public opinion survey, carried out on behalf of the Department of Health, Ireland. For this analysis, a multivariate graphical exploratory data analysis (EDA) was performed on the Text-50808 dataset dated from 15th June 2020 to 30th June 2021. This was followed by time-series analysis of key mental health indicators including: (1) the percentage of daily/weekly texts at Text-50808 that mention Covid-19 related issues; (2) the weekly percentage of people experiencing anxiety, boredom, enjoyment, happiness, worry, fear and stress in Amárach survey; and Covid-19 related factors: (3) daily new Covid-19 case numbers; (4) daily stringency index capturing the effect of government non-pharmaceutical interventions (NPIs) in Ireland. The cross-correlation function was applied to measure the relationship between the different time series. EDA of the Text-50808 dataset reveals significant peaks in the volume of texts on days prior to level 3 lockdown and level 5 lockdown in October 2020, and full level 5 lockdown in December 2020. A significantly high positive correlation was observed between the percentage of texts at Text-50808 that reported Covid-19 related issues and the percentage of respondents experiencing anxiety, worry and boredom (at a lag of 1 week) in Amárach survey data. There is a significant negative correlation between percentage of texts with Covid-19 related issues and percentage of respondents experiencing happiness in Amárach survey. Daily percentage of texts at Text-50808 that reported Covid-19 related issues to have a weak positive correlation with daily new Covid-19 cases in Ireland at a lag of 10 days and with daily stringency index of NPIs in Ireland at a lag of 2 days. The sudden peaks in text volume at Text-50808 immediately prior to new restrictions in Ireland indicate an association between a rise in mental health concerns following the announcement of new restrictions. There is also a high correlation between emotional wellbeing variables in the Amárach dataset and the number of weekly texts at Text-50808, and this confirms that Text-50808 reflects overall public sentiment. This analysis confirms the benefits of the texting service as a community surveillance tool for mental health in the population. This initial EDA will be extended to use multivariate modeling to predict the effect of additional Covid-19 related factors on public mental health in Ireland.

Keywords: COVID-19 pandemic, data analysis, digital health, mental health, public health, digital health

Procedia PDF Downloads 144
2004 Examining Moderating Mechanisms of Alignment Practice and Community Response through the Self-Construal Perspective

Authors: Chyong-Ru Liu, Wen-Shiung Huang, Wan-Ching Tang, Shan-Pei Chen

Abstract:

Two of the biggest challenges companies involved in sports and exercise information services face are how to strengthen participation in virtual sports/exercise communities and how to increase the ongoing participatoriness of those communities. In the past, relatively little research has explored mechanisms for strengthening alignment practice and community response from the perspective of self-construal, and as such this study seeks to explore the self-construal of virtual sports/exercise communities, the role it plays in the emotional commitment of forming communities, and the factor that can strengthen alignment practice. Moreover, which factor of the emotional commitment of forming virtual communities have the effect of strengthening interference in the process of transforming customer citizenship behaviors? This study collected 625 responses from the two leading websites in terms of fan numbers in the provision of information on road race and marathon events in Taiwan, with model testing conducted through linear structural equation modelling and the bootstrapping technique to test the proposed hypotheses. The results proved independent construal had a stronger positive direct effect on affective commitment to fellow customers than did interdependent construal, and the influences of affective commitment to fellow customers in enhancing customer citizenship behavior. Public self-consciousness moderates the relationships among independent self-construal and interdependent self-construal on effective commitment to fellow customers. Perceived playfulness moderates the relationships between effective commitment to fellow customers and customer citizenship behavior. The findings of this study provide significant insights for the researchers and related organizations. From the theoretical perspective, this is empirical research that investigated the self-construal theory and responses (i.e., affective commitment to fellow customers, customer citizenship behavior) in virtual sports/exercise communities. We further explore how to govern virtual sports/exercise community participants’ heterogeneity through public self-consciousness mechanism to align participants’ affective commitment. Moreover, perceived playfulness has the effect of strengthening effective commitment to fellow customers with customer citizenship behaviors. The results of this study can provide a foundation for the construction of future theories and can be provided to related organizations for reference in their planning of virtual communities.

Keywords: self-construal theory, public self-consciousness, affective commitment, customer citizenship behavior

Procedia PDF Downloads 107
2003 Application of Electronic Nose Systems in Medical and Food Industries

Authors: Khaldon Lweesy, Feryal Alskafi, Rabaa Hammad, Shaker Khanfar, Yara Alsukhni

Abstract:

Electronic noses are devices designed to emulate the humane sense of smell by characterizing and differentiating odor profiles. In this study, we build a low-cost e-nose using an array module containing four different types of metal oxide semiconductor gas sensors. We used this system to create a profile for a meat specimen over three days. Then using a pattern recognition software, we correlated the odor of the specimen to its age. It is a simple, fast detection method that is both non-expensive and non-destructive. The results support the usage of this technology in food control management.

Keywords: e-nose, low cost, odor detection, food safety

Procedia PDF Downloads 141
2002 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation

Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga

Abstract:

Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.

Keywords: classification, coastline, color, sea-land segmentation

Procedia PDF Downloads 250
2001 A Qualitative Study of Unmet Needs of Families of Children with Cerebral Palsy in Bangladesh

Authors: Reshma Parvin Nuri, Heather Michelle Aldersey, Setareh Ghahari

Abstract:

Objectives: Worldwide, it is well known that taking care of children with disabilities (CWD) can have a significant impact on the entire family unit. Over the last few decades, an increased number of studies have been conducted on families of CWD in higher income countries, and much of this research has identified family needs and strategies to meet those needs. However, family needs are incredibly under-studied in developing countries. Therefore, the aims of this study were to: (a) explore the needs of families of children with cerebral palsy (CP) in Bangladesh; (b) investigate how some of the family needs have been met and (c) identify the sources of supports that might help the families to meet their needs in the future. Methods: A face to face, semi-structured in-depth interview was conducted with 20 family members (12 mothers, 4 fathers, 1 sister, 2 grandmothers, and 1 aunt) who visited the Centre for the Rehabilitation of the Paralysed (CRP), Bangladesh between June and August 2016. Constant comparison method of grounded theory approach within the broader spectrum of qualitative study was used to analyze the data. Results: Participants identified five categories of needs: (a) financial needs, (b) access to disability-related services, (c) family and community cohesion, (d) informational needs, and (e) emotional needs. Participants overwhelmingly reported that financial need is their greatest family need. Participants noted that families encountered additional financial expenses for a child with CP, beyond what they would typically pay for their other children. Participants were seeing education as their non-primary need as they had no hope that their children would be physically able to go to school. Some participants also shared their needs for social inclusion and participation and receiving emotional support. Participants further expressed needs to receive information related to the child’s health condition and availability/accessibility of governmental support programs. Besides unmet needs, participants also highlighted that some of their needs have been met through formal and informal support systems. Formal support systems were mainly institution-based and run by non-governmental organizations, whereas participants identified informal support coming from family, friends and community members. Participants overwhelmingly reported that they receive little to no support from the government. However, participants identified the government as the key stakeholder who can play vital role in meeting their unmet needs. Conclusions: In the next phase of this research, the plan is to understand how the Government of the People’s Republic of Bangladesh is working to meet the needs of families of CWD. There is also need for further study on needs of families of children with conditions other than CP and those who live in the community and do not have access to the CRP Services. There is clear need to investigate ways to enable children with CP have better access to education in Bangladesh.

Keywords: Bangladesh, children with cerebral palsy, family needs, support

Procedia PDF Downloads 377
2000 CONDUCTHOME: Gesture Interface Control of Home Automation Boxes

Authors: J. Branstett, V. Gagneux, A. Leleu, B. Levadoux, J. Pascale

Abstract:

This paper presents the interface CONDUCTHOME which controls home automation systems with a Leap Motion using ‘invariant gesture protocols’. The function of this interface is to simplify the interaction of the user with its environment. A hardware part allows the Leap Motion to be carried around the house. A software part interacts with the home automation box and displays the useful information for the user. An objective of this work is the development a natural/invariant/simple gesture control interface to help elder people/people with disabilities.

Keywords: automation, ergonomics, gesture recognition, interoperability

Procedia PDF Downloads 432
1999 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition

Procedia PDF Downloads 252
1998 Forensic Detection of Errors Permitted by the Witnesses in Their Testimony

Authors: Lev Bertovsky

Abstract:

The purpose of this study was to determine the reasons for the formation of false testimony from witnesses and make recommendations on the recognition of such cases. During the studies, which were based on the achievements of professionals in the field of psychology, as well as personal investigative practice, the stages of perception of the information were studied, as well as the process of its reclaim from the memory and transmission to the communicator upon request. Based on the principles of the human brain, kinds of conscientious witness mistakes were systematized. Proposals were formulated for the optimization of investigative actions in cases where the witnesses make an honest mistake with respect to the effects previously observed by them.

Keywords: criminology, eyewitness testimony, honest mistake, information, investigator, investigation, questioning

Procedia PDF Downloads 186
1997 The Queer Language: A Case Study of the Hyderabadi Queers

Authors: Sreerakuvandana Vandana

Abstract:

Although the term third gender is relatively new, the language that is in use has already made its way to the concept of identity. With the vast recognition and the transparency in expressing their identity without a tint of embarrassment, it is highly essential to take into account the idea of “identity” and “language”. The community however picks up language as a tool to assert their presence in the “mainstream”, albeit contradictory practices. The paper is an attempt to see how Koti claims and tries to be a language just like any other language. With that, it also identifies how the community wants to be identified as a unique group, but yet want to remain grounded to the ‘mainstream’. The work is an attempt to bring out the secret language of the LGBT community and understand their desire to be recognized as "main stream." The paper is also an attempt to bring into light this language and see if it qualifies to be a language at all.

Keywords: identity, language, queer, transgender

Procedia PDF Downloads 543
1996 Extraction of Text Subtitles in Multimedia Systems

Authors: Amarjit Singh

Abstract:

In this paper, a method for extraction of text subtitles in large video is proposed. The video data needs to be annotated for many multimedia applications. Text is incorporated in digital video for the motive of providing useful information about that video. So need arises to detect text present in video to understanding and video indexing. This is achieved in two steps. First step is text localization and the second step is text verification. The method of text detection can be extended to text recognition which finds applications in automatic video indexing; video annotation and content based video retrieval. The method has been tested on various types of videos.

Keywords: video, subtitles, extraction, annotation, frames

Procedia PDF Downloads 603
1995 Coping Strategies among Caregivers of Children with Autism Spectrum Disorders: A Cluster Analysis

Authors: Noor Ismael, Lisa Mische Lawson, Lauren Little, Murad Moqbel

Abstract:

Background/Significance: Caregivers of children with Autism Spectrum Disorders (ASD) develop coping mechanisms to overcome daily challenges to successfully parent their child. There is variability in coping strategies used among caregivers of children with ASD. Capturing homogeneity among such variable groups may help elucidate targeted intervention approaches for caregivers of children with ASD. Study Purpose: This study aimed to identify groups of caregivers of children with ASD based on coping mechanisms, and to examine whether there are differences among these groups in terms of strain level. Methods: This study utilized a secondary data analysis, and included survey responses of 273 caregivers of children with ASD. Measures consisted of the COPE Inventory and the Caregiver Strain Questionnaire. Data analyses consisted of cluster analysis to group caregiver coping strategies, and analysis of variance to compare the caregiver coping groups on strain level. Results: Cluster analysis results showed four distinct groups with different combinations of coping strategies: Social-Supported/Planning (group one), Spontaneous/Reactive (group two), Self-Supporting/Reappraisal (group three), and Religious/Expressive (group four). Caregivers in group one (Social-Supported/Planning) demonstrated significantly higher levels than the remaining three groups in the use of the following coping strategies: planning, use of instrumental social support, and use of emotional social support, relative to the other three groups. Caregivers in group two (Spontaneous/Reactive) used less restraint relative to the other three groups, and less suppression of competing activities relative to the other three groups as coping strategies. Also, group two showed significantly lower levels of religious coping as compared to the other three groups. In contrast to group one, caregivers in group three (Self-Supporting/Reappraisal) demonstrated significantly lower levels of the use of instrumental social support and the use of emotional social support relative to the other three groups. Additionally, caregivers in group three showed more acceptance, positive reinterpretation and growth coping strategies. Caregivers in group four (Religious/Expressive) demonstrated significantly higher levels of religious coping relative to the other three groups and utilized more venting of emotions strategies. Analysis of Variance results showed no significant differences between the four groups on the strain scores. Conclusions: There are four distinct groups with different combinations of coping strategies: Social-Supported/Planning, Spontaneous/Reactive, Self-Supporting/Reappraisal, and Religious/Expressive. Each caregiver group engaged in a combination of coping strategies to overcome the strain of caregiving.

Keywords: autism, caregivers, cluster analysis, coping strategies

Procedia PDF Downloads 282
1994 User Experience in Relation to Eye Tracking Behaviour in VR Gallery

Authors: Veslava Osinska, Adam Szalach, Dominik Piotrowski

Abstract:

Contemporary VR technologies allow users to explore virtual 3D spaces where they can work, socialize, learn, and play. User's interaction with GUI and the pictures displayed implicate perceptual and also cognitive processes which can be monitored due to neuroadaptive technologies. These modalities provide valuable information about the users' intentions, situational interpretations, and emotional states, to adapt an application or interface accordingly. Virtual galleries outfitted by specialized assets have been designed using the Unity engine BITSCOPE project in the frame of CHIST-ERA IV program. Users interaction with gallery objects implies the questions about his/her visual interests in art works and styles. Moreover, an attention, curiosity, and other emotional states are possible to be monitored and analyzed. Natural gaze behavior data and eye position were recorded by built-in eye-tracking module within HTC Vive headset gogle for VR. Eye gaze results are grouped due to various users’ behavior schemes and the appropriate perpetual-cognitive styles are recognized. Parallelly usability tests and surveys were adapted to identify the basic features of a user-centered interface for the virtual environments across most of the timeline of the project. A total of sixty participants were selected from the distinct faculties of University and secondary schools. Users’ primary knowledge about art and was evaluated during pretest and this way the level of art sensitivity was described. Data were collected during two months. Each participant gave written informed consent before participation. In data analysis reducing the high-dimensional data into a relatively low-dimensional subspace ta non linear algorithms were used such as multidimensional scaling and novel technique technique t-Stochastic Neighbor Embedding. This way it can classify digital art objects by multi modal time characteristics of eye tracking measures and reveal signatures describing selected artworks. Current research establishes the optimal place on aesthetic-utility scale because contemporary interfaces of most applications require to be designed in both functional and aesthetical ways. The study concerns also an analysis of visual experience for subsamples of visitors, differentiated, e.g., in terms of frequency of museum visits, cultural interests. Eye tracking data may also show how to better allocate artefacts and paintings or increase their visibility when possible.

Keywords: eye tracking, VR, UX, visual art, virtual gallery, visual communication

Procedia PDF Downloads 45
1993 A Social Network Analysis for Formulating Construction Defect Generation Mechanisms

Authors: Hamad Aljassmi, Sangwon Han

Abstract:

Various solutions for preventing construction defects have been suggested. However, a construction company may have difficulties adopting all these suggestions due to financial and practical constraints. Based on this recognition, this paper aims to identify the most significant defect causes and formulate their defect generation mechanism in order to help a construction company to set priorities of its defect prevention strategies. For this goal, we conducted a questionnaire survey of 106 industry professionals and identified five most significant causes including: (1) organizational culture, (2) time pressure and constraints, (3) workplace quality system, (4) financial constraints upon operational expenses and (5) inadequate employee training or learning opportunities.

Keywords: defect, quality, failure, risk

Procedia PDF Downloads 627
1992 From Shallow Semantic Representation to Deeper One: Verb Decomposition Approach

Authors: Aliaksandr Huminski

Abstract:

Semantic Role Labeling (SRL) as shallow semantic parsing approach includes recognition and labeling arguments of a verb in a sentence. Verb participants are linked with specific semantic roles (Agent, Patient, Instrument, Location, etc.). Thus, SRL can answer on key questions such as ‘Who’, ‘When’, ‘What’, ‘Where’ in a text and it is widely applied in dialog systems, question-answering, named entity recognition, information retrieval, and other fields of NLP. However, SRL has the following flaw: Two sentences with identical (or almost identical) meaning can have different semantic role structures. Let consider 2 sentences: (1) John put butter on the bread. (2) John buttered the bread. SRL for (1) and (2) will be significantly different. For the verb put in (1) it is [Agent + Patient + Goal], but for the verb butter in (2) it is [Agent + Goal]. It happens because of one of the most interesting and intriguing features of a verb: Its ability to capture participants as in the case of the verb butter, or their features as, say, in the case of the verb drink where the participant’s feature being liquid is shared with the verb. This capture looks like a total fusion of meaning and cannot be decomposed in direct way (in comparison with compound verbs like babysit or breastfeed). From this perspective, SRL looks really shallow to represent semantic structure. If the key point in semantic representation is an opportunity to use it for making inferences and finding hidden reasons, it assumes by default that two different but semantically identical sentences must have the same semantic structure. Otherwise we will have different inferences from the same meaning. To overcome the above-mentioned flaw, the following approach is suggested. Assume that: P is a participant of relation; F is a feature of a participant; Vcp is a verb that captures a participant; Vcf is a verb that captures a feature of a participant; Vpr is a primitive verb or a verb that does not capture any participant and represents only a relation. In another word, a primitive verb is a verb whose meaning does not include meanings from its surroundings. Then Vcp and Vcf can be decomposed as: Vcp = Vpr +P; Vcf = Vpr +F. If all Vcp and Vcf will be represented this way, then primitive verbs Vpr can be considered as a canonical form for SRL. As a result of that, there will be no hidden participants caught by a verb since all participants will be explicitly unfolded. An obvious example of Vpr is the verb go, which represents pure movement. In this case the verb drink can be represented as man-made movement of liquid into specific direction. Extraction and using primitive verbs for SRL create a canonical representation unique for semantically identical sentences. It leads to the unification of semantic representation. In this case, the critical flaw related to SRL will be resolved.

Keywords: decomposition, labeling, primitive verbs, semantic roles

Procedia PDF Downloads 367
1991 Quality of Life of Elderly and Factors Associated in Bharatpur Metropolitan City, Chitwan: A Mixed Method Study

Authors: Rubisha Adhikari, Rajani Shah

Abstract:

Introduction: Aging is a natural, global and inevitable phenomenon every single person has to go through, and nobody can escape the process. One of the emerging challenges to public health is to improve the quality of later years of life as life expectancy continues to increase. Quality of life (QoL) has grown to be a key goal for many public health initiatives. Population aging has become a global phenomenon as they are growing more quickly in emerging nations than they are in industrialized nations, leaving minimal opportunities to regulate the consequences of the demographic shift. Methods: A community-based descriptive analytical approach was used to examine the quality of life and associated factors among elderly people. A mixed method was chosen for the study. For the quantitative data collection, a household survey was conducted using the WHOQOL-OLD tool. In-depth interviews were conducted among twenty participants for qualitative data collection. Data generated through in-depth interviews were transcribed verbatim. In-depth interviews lasted about an hour and were audio recorded. The in-depth interview guide had been developed by the research team and pilot-tested before actual interviews. Results: This study result showed the association between quality of life and socio-demographic variables. Among all the variables under socio-demographic variable of this study, age (ꭓ2=14.445, p=0.001), gender (ꭓ2=14.323, p=<0.001), marital status (ꭓ2=10.816, p=0.001), education status (ꭓ2=23.948, p=<0.001), household income (ꭓ2=13.493, p=0.001), personal income (ꭓ2=14.129, p=0.001), source of personal income (ꭓ2=28.332,p=<0.001), social security allowance (ꭓ2=18.005,p=<0.001), alcohol consumption (ꭓ2=9.397,p=0.002) are significantly associated with quality of life of elderly. In addition, affordability (ꭓ2=12.088, p=0.001), physical activity (ꭓ2=9.314, p=0.002), emotional support (ꭓ2=9.122, p=0.003), and economic support (ꭓ2=8.104, p=0.004) are associated with quality of life of elderly people. Conclusion: In conclusion, this mixed method study provides insight into the attributes of the quality of life of elderly people in Nepal and similar settings. As the geriatric population is growing in full swing, maintaining a high quality of life has become a major challenge. This study showed that determinants such as age, gender, marital status, education status, household income, personal income, source of personal income, social security allowance and alcohol consumption, economic support, emotional support, affordability and physical activity have an association with quality of life of the elderly.

Keywords: ageing, chitwan, elderly, health status, quality of life

Procedia PDF Downloads 71
1990 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 265
1989 Analysis of Histogram Asymmetry for Waste Recognition

Authors: Janusz Bobulski, Kamila Pasternak

Abstract:

Despite many years of effort and research, the problem of waste management is still current. So far, no fully effective waste management system has been developed. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.

Keywords: waste management, environmental protection, image processing, computer vision

Procedia PDF Downloads 120