Search results for: drug targeting
1310 Targeting NLRP3 Inflammasome Activation: A New Mechanism Underlying the Protective Effects of Nafamostat Against Acute Pancreatitis
Authors: Jiandong Ren, Lijun Zhao, Peng Chen
Abstract:
Nafamostat (NA), a synthetic broad-spectrum serine protease inhibitor, has been routinely employed for the treatment of acute pancreatitis (AP) and other inflammatory-associated diseases in some East Asia countries. Although the potent inhibitory activity against inflammation-related proteases such as thrombin, trypsin, kallikrein, plasmin, coagulation factors and complement factors is generally considered to be responsible for the anti-inflammatory effects of NA, precise target and molecular mechanism underlying the anti-inflammatory activity in the treatment of AP remain largely unknown yet. As an intracellular inflammatory signaling platform, the NOD-like receptor protein 3 (NLRP3) inflammasome is recently identified to be involved in the development of AP. In present study, we have revealed that NA alleviated pancreatic injury in a caerulein-induced AP model by inhibiting the NLRP3 inflammasome activation in pancreas. Mechanistically, NA interacted with HDAC6, a cytoplasmic deacetylase implicated in the NLRP3 inflammasome pathway, and efficiently abrogated the function of HDAC6. This property enabled NA to influence HDAC6 dependent NF-κB transcriptional activity and thus block NF-κB-driven transcriptional priming of NLRP3 inflammasome. Moreover, NA exerted the potential to interfere HDAC6-mediated intracellular transport of NLRP3, thereby leading to the failure of NLRP3 inflammasome activation. Our current work has provided valuable insight into the molecular mechanism underlying the immunomodulatory effect of NA in treatment of AP, highlighting its promising application in prevention of NLRP3 inflammasome-associated inflammatory pathological damage.Keywords: acute pancreatitis, HDAC6, nafamostat, NLRP3 inflammasome
Procedia PDF Downloads 701309 Influence of Natural Gum on Curcumin Supersaturationin Gastrointestinal Fluids
Authors: Patcharawalai Jaisamut, Kamonthip Wiwattanawongsa, Ruedeekorn Wiwattanapatapee
Abstract:
Supersaturation of drugs in the gastrointestinal tract is one approach to increase the absorption of poorly water-soluble drugs. The stabilization of a supersaturated state was achieved by adding precipitation inhibitors that may act through a variety of mechanisms.In this study, the effect of the natural gums, acacia, gelatin, pectin and tragacanth on curcumin supersaturation in simulated gastric fluid (SGF) (pH 1.2), fasted state simulated gastric fluid (FaSSGF) (pH 1.6), and simulated intestinal fluid (SIF) (pH 6.8)was investigated. The results indicated that all natural gums significantly increased the curcum insolubility (about 1.2-6-fold)when compared to the absence of gum, and assisted in maintaining the supersaturated drug solution. Among the tested gums, pectin at 3% w/w was the best precipitation inhibitor with a significant increase in the degree of supersaturation about 3-fold in SGF, 2.4-fold in FaSSGF and 2-fold in SIF.Keywords: curcumin, solubility, supersaturation, precipitation inhibitor
Procedia PDF Downloads 3491308 A Unified Model for Orotidine Monophosphate Synthesis: Target for Inhibition of Growth of Mycobacterium tuberculosis
Authors: N. Naga Subrahmanyeswara Rao, Parag Arvind Deshpande
Abstract:
Understanding nucleotide synthesis reaction of any organism is beneficial to know the growth of it as in Mycobacterium tuberculosis to design anti TB drug. One of the reactions of de novo pathway which takes place in all organisms was considered. The reaction takes places between phosphoribosyl pyrophosphate and orotate catalyzed by orotate phosphoribosyl transferase and divalent metal ion gives orotdine monophosphate, a nucleotide. All the reaction steps of three experimentally proposed mechanisms for this reaction were considered to develop kinetic rate expression. The model was validated using the data for four organisms. This model could successfully describe the kinetics for the reported data. The developed model can serve as a reliable model to describe the kinetics in new organisms without the need of mechanistic determination. So an organism-independent model was developed.Keywords: mechanism, nucleotide, organism, tuberculosis
Procedia PDF Downloads 3341307 Standardization of the Roots of Gnidia stenophylla Gilg: A Potential Medicinal Plant of South Eastern Ethiopia Traditionally Used as an Antimalarial
Authors: Mebruka Mohammed, Daniel Bisrat, Asfaw Debella, Tarekegn Birhanu
Abstract:
Lack of quality control standards for medicinal plants and their preparations is considered major barrier to their integration in to effective primary health care in Ethiopia. Poor quality herbal preparations led to countless adverse reactions extending to death. Denial of penetration for the Ethiopian medicinal plants in to the world’s booming herbal market is also another significant loss resulting from absence of herbal quality control system. Thus, in the present study, Gnidia stenophylla Gilg (popular antimalarial plant of south eastern Ethiopia), is standardized and a full monograph is produced that can serve as a guideline in quality control of the crude drug. Morphologically, the roots are found to be cylindrical and tapering towards the end. It has a hard, corky and friable touch with saddle brown color externally and it is relatively smooth and pale brown internally. It has got characteristic pungent odor and very bitter taste. Microscopically it has showed lignified xylem vessels, wider medullary rays with some calcium oxalate crystals, reddish brown secondary metabolite contents and slender shaped long fibres. Physicochemical standards quantified and resulted: foreign matter (5.25%), moisture content (6.69%), total ash (40.80%), acid insoluble ash (8.00%), water soluble ash (2.30%), alcohol soluble extractive (15.27%), water soluble extractive (10.98%), foaming index (100.01 ml/g), swelling index (7.60 ml/g). Phytochemically: Phenols, flavonoids, steroids, tannins and saponins were detected in the root extract; TLC and HPLC fingerprints were produced and an analytical marker was also tentatively characterized as 3-(3,4-dihydro-3,5-dihydroxy-2-(4-hydroxy-5-methylhex-1-en-2-yl)-7-methoxy-4-oxo-2H-chromen-8-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one. Residue wise pesticides (i.e. DDT, DDE, g-BHC) and radiochemical levels fall below the WHO limit while Heavy metals (i.e. Co, Ni, Cr, Pb, and Cu), total aerobic count and fungal load lie way above the WHO limit. In conclusion, the result can be taken as signal that employing non standardized medicinal plants could cause many health risks of the Ethiopian people and Africans’ at large (as 80% of inhabitants in the continent depends on it for primary health care). Therefore, following a more universal approach to herbal quality by adopting the WHO guidelines and developing monographs using the various quality parameters is inevitable to minimize quality breach and promote effective herbal drug usage.Keywords: Gnidia stenophylla Gilg, standardization/monograph, pharmacognostic, residue/impurity, quality
Procedia PDF Downloads 2891306 Synergistic Effect between Titanium Oxide and Silver Nanoparticles in Polymeric Binary Systems
Authors: Raquel C. A. G. Mota, Livia R. Menezes, Emerson O. da Silva
Abstract:
Both silver nanoparticles and titanium dioxide have been extensively used in tissue engineering since they’ve been approved by the Food and Drug Administration (FDA), and present a bactericide effect when added to a polymeric matrix. In this work, the focus is on fabricating binary systems with both nanoparticles so that the synergistic effect can be investigated. The systems were tested by Nuclear Magnetic Resonance (NMR), Thermogravimetric Analysis (TGA), Fourier-Transformed Infrared (FTIR), and Differential Scanning Calorimetry (DSC), and X-ray Diffraction (XRD), and had both their bioactivity and bactericide effect tested. The binary systems presented different properties than the individual systems, enhancing both the thermal and biological properties as was to be expected. The crystallinity was also affected, as indicated by the finding of the DSC and XDR techniques, and the NMR showed a good dispersion of both nanoparticles in the polymer matrix. These findings indicate the potential of combining TiO₂ and silver nanoparticles in biomedicine.Keywords: metallic nanoparticles, nanotechnology, polymer nanocomposites, polymer science
Procedia PDF Downloads 1341305 Separation of Fexofenadine Enantiomers Using Beta Cyclodextrin as Chiral Counter Ion in Mobile Phase
Authors: R. Fegas, S. Zerkout, S. Taberkokt, M. Righezza
Abstract:
The present work demonstrate the potential of Betacyclodextrine (BCD) for the chiral analysis of a drug .Various separation mechanisms were applied and several parameters affecting the separation were studied, including the type and concentration of chiral selector, and pH of buffer. A simple and sensitive high-performance liquid chromatography (HPLC) method was developed as an assay for fexofenadine enantiomers in pharmaceutical preparation. Fexofenadine enantiomers were separated using a mobile phase of 0.25mM NaH2PO4–acetonitrile (65:35, v/v) – Betacyclodextrine on achiral phenyl-urea column at a flow rate of 1ml/min and measurement at 220nm. The chiral mechanism of separation was mainly based on specific interaction between the solute and the stationary phase. The retention was directly controlled by mobile phase composition but not the selectivity which results of the two mechanisms, electrostatic interactions and partition mechanism.Keywords: fexofenadine enantiomer, HPLC, achiral phenyl-urea column
Procedia PDF Downloads 4581304 Gamma-Hydroxybutyrate (GHB): A Review for the Prehospital Clinician
Authors: Theo Welch
Abstract:
Background: Gamma-hydroxybutyrate (GHB) is a depressant of the central nervous system with euphoric effects. It is being increasingly used recreationally in the United Kingdom (UK) despite associated morbidity and mortality. Due to the lack of evidence, healthcare professionals remain unsure as to the optimum management of GHB acute toxicity. Methods: A literature review was undertaken of its pharmacology and the emergency management of its acute toxicity.Findings: GHB is inexpensive and readily available over the Internet. Treatment of GHB acute toxicity is supportive. Clinicians should pay particular attention to the airway as emesis is common. Intubation is required in a minority of cases. Polydrug use is common and worsens prognosis. Conclusion: An inexpensive and readily available drug, GHB acute toxicity can be difficult to identify and treat. GHB acute toxicity is generally treated conservatively. Further research is needed to ascertain the indications, benefits, and risks of intubating patients with GHB acute toxicity. instructions give you guidelines for preparing papers for the conference.Keywords: GHB, gamma-hydroxybutyrate, prehospital, emergency, toxicity, management
Procedia PDF Downloads 2011303 Rapid Mitochondrial Reactive Oxygen Species Production Precedes NF-κB Activation and Pro-inflammatory Responses in Macrophages
Authors: Parinaz Tavakoli Zaniani, Dimitrios Balomenos
Abstract:
Mitochondrial reactive oxygen species (mROS) play a crucial role in macrophage pro-inflammatory activation, although a detailed understanding of the mechanism and kinetics by which mROS drive signaling molecules is still lacking. In general, it is thought that NF-κB activation drives mROS and general ROS production. Here, We performed a detailed kinetic analysis of mROS production during macrophage activation. We found early mROS generation after LPS (lipopolysaccharide) stimulation. Remarkably as early as 5 minutes, mROS signaling promoted initial NF-κB, MAPK activation and pro-inflammatory cytokine production, as established through inhibition or quenching of mROS. On the contrary, NF-κB inhibition had no effect on mROS production. Our findings point to a mechanism by which mROS increase TRAF-6 ubiquitination and, thus NF-κB activity. mROS inhibition reduced LPS-induced lethality in an in vivo septic shock model by controlling pro-inflammatory cytokine production. Overall, our research provides novel insights into the role of mROS as a primary messenger in the pathway of macrophage and as a regulator of inflammatory responses. We found that early mROS production promotes initial NF-κB, and MAPK activation by regulating TRAF-6 ubiquitination and that mROS inhibition can reduce LPS-induced inflammatory cytokines and lethality in a septic shock model. These findings might lead to novel immunotherapeutic strategies targeting early mROS production and control of extreme inflammation in the context of sepsis and other inflammatory diseases.Keywords: mitochondria, reactive oxygen species, nuclear factor κB, lipopolysaccharide, macrophages
Procedia PDF Downloads 751302 Farmers’ Access to Agricultural Extension Services Delivery Systems: Evidence from a Field Study in India
Authors: Ankit Nagar, Dinesh Kumar Nauriyal, Sukhpal Singh
Abstract:
This paper examines the key determinants of farmers’ access to agricultural extension services, sources of agricultural extension services preferred and accessed by the farmers. An ordered logistic regression model was used to analyse the data of the 360 sample households based on a primary survey conducted in western Uttar Pradesh, India. The study finds that farmers' decision to engage in the agricultural extension programme is significantly influenced by factors such as education level, gender, farming experience, social group, group membership, farm size, credit access, awareness about the extension scheme, farmers' perception, and distance from extension sources. The most intriguing finding of this study is that the progressive farmers, which have long been regarded as a major source of knowledge diffusion, are the most distrusted sources of information as they are suspected of withholding vital information from potential beneficiaries. The positive relationship between farm size and ‘Access’ underlines that the extension services should revisit their strategies for targeting more marginal and small farmers constituting over 85 percent of the agricultural households by incorporating their priorities in their outreach programs. The study suggests that marginal and small farmers' productive potential could still be greatly augmented by the appropriate technology, advisory services, guidance, and improved market access. Also, the perception of poor quality of the public extension services can be corrected by initiatives aimed at building up extension workers' capacity.Keywords: agriculture, access, extension services, ordered logistic regression
Procedia PDF Downloads 2141301 Spatial Rank-Based High-Dimensional Monitoring through Random Projection
Authors: Chen Zhang, Nan Chen
Abstract:
High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection
Procedia PDF Downloads 2991300 Mitigating the Aggregation of Human Islet Amyloid Polypeptide with Nanomaterials
Authors: Ava Faridi, Pouya Faridi, Aleksandr Kakinen, Ibrahim Javed, Thomas P. Davis, Pu Chun Ke
Abstract:
Human islet amyloid polypeptide (IAPP) is a hormone associated with glycemic control and type 2 diabetes. Biophysically, the chirality of IAPP fibrils has been little explored with respect to the aggregation and toxicity of the peptide. Biochemically, it remains unclear as for how protein expression in pancreatic beta cells may be altered by cell exposure to the peptide, and how such changes may be mitigated by nanoparticle inhibitors for IAPP aggregation. In this study, we first demonstrated the elimination of the IAPP nucleation phase and shortening of its elongation phase by silica nanoribbons. This accelerated IAPP fibrillization translated to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental and behavioral assays. We then examined the proteomes of βTC6 pancreatic beta cells exposed to the three main aggregation states of monomeric, oligomeric and amyloid fibrillar IAPP, and compared that with cellular protein expression modulated by graphene quantum dots (GQDs). A total of 29 proteins were significantly regulated by different forms of IAPP, and the majority of these proteins were nucleotide-binding proteins. A regulatory capacity of GQDs against aberrant protein expression was confirmed. These studies have demonstrated the great potential of employing nanomaterials targeting the mesoscopic enantioselectivity and protein expression dysregulation in pancreatic beta cells.Keywords: graphene quantum dots, IAPP, silica nanoribbons, protein expression, toxicity
Procedia PDF Downloads 1421299 FC and ZFC Studies of Nickel Nano Ferrites and Ni Doped Lithium Nano Ferrites by Citrate-Gel Auto Combustion Method
Authors: D. Ravinder
Abstract:
Nickel ferrites and Ni doped Lithium nano ferrites [Li0.5Fe0.5]1-xNixFe2O4 with x= 0.8 and 1.0 synthesized by citrate-gel auto combustion method. The broad peaks in the X-ray diffraction pattern (XRD) indicate a crystalline behavior of the prepared samples. Low temperature magnetization studies i,e Field Cooled (FC) and Zero Field Cooled (ZFC) magnetic studies of the investigated samples are measured by using vibrating sample magnetometer (VSM). The magnetization of the prepared samples as a function of an applied magnetic field 10 T was measured at two different temperatures 5 K and 310 K. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization measurements under an applied field of 100 Oe and 1000 Oe in the temperature range of 5–375 K were carried out.Keywords: ferro-spinels, field cooled (FC), Zero Field Cooled (ZFC) and blocking temperature, superpara magnetism, drug delivery applications
Procedia PDF Downloads 5571298 Mapping Protein Selectivity Landscapes
Authors: Niv Papo
Abstract:
Characterizing the binding selectivity landscape of interacting proteins is crucial both for elucidating the underlying mechanisms of their interaction and for developing selective inhibitors. However, current mapping methods are laborious and cannot provide a sufficiently comprehensive description of the landscape. Here, we introduce a distinct and efficient strategy for comprehensively mapping the binding landscape of proteins using a combination of experimental multi-target selective library screening and in silico next-generation sequencing analysis. We map the binding landscape of a non-selective trypsin inhibitor, the amyloid protein precursor inhibitor (APPI), to each of four human serine proteases (kallikrein-6, mesotrypsin, and anionic and cationic trypsins). We then use this map to dissect and improve the affinity and selectivity of APPI variants toward each of the four proteases. Our strategy can be used as a platform for the development of a new generation of target-selective probes and therapeutic agents based on selective protein–protein interactions.Keywords: drug design, directed evolution, protein engineering, protease inhibition.
Procedia PDF Downloads 241297 Stereoselective Glycosylation and Functionalization of Unbiased Site of Sweet System via Dual-Catalytic Transition Metal Systems/Wittig Reaction
Authors: Mukul R. Gupta, Rajkumar Gandhi, Rajitha Sachan, Naveen K. Khare
Abstract:
The field of glycoscience has burgeoned in the last several decades, leading to the identification of many glycosides which could serve critical roles in a wide range of biological processes. This has prompted a resurgence in synthetic interest, with a particular focus on new approaches to construct the selective glycosidic bond. Despite the numerous elegant strategies and methods developed for the formation of glycosidic bonds, stereoselective construction of glycosides remains challenging. Here, we have recently developed the novel Hexafluoroisopropanol (HFIP) catalyzed stereoselective glycosylation methods by using KDN imidate glycosyl donor and a variety of alcohols in excellent yield. This method is broadly applicable to a wide range of substrates and with excellent selectivity of glycoside. Also, herein we are reporting the functionalization of the unbiased side of newly formed glycosides by dual-catalytic transition metal systems (Ru- or Fe-). We are using the innovative Reverse & Catalyst strategy, i.e., a reversible activation reaction by one catalyst with a functionalization reaction by another catalyst, together with enabling functionalization of substrates at their inherently unreactive sites. As well, we are targeting the diSia derivative synthesis by Wittig reaction. This synthetic method is applicable in mild conditions, functional group tolerance of the dual-catalytic systems and also highlights the potential of the multicatalytic approach to address challenging transformations to avoid multistep procedures in carbohydrate synthesis.Keywords: KDN, stereoselective glycosylation, dual-catalytic functionalization, Wittig reaction
Procedia PDF Downloads 1931296 Hepatoprotective Effect of Mycophenolate Mofetil against Tacrolimus Exposure in Rat
Authors: Ferjani Hanen, El Arem Amira, Boussema Ayed Imen, Bacha Hassen
Abstract:
Tacrolimus (TAC), a calcineurin inhibitor, is clinically used as an immunosuppressive agent in the transplant recipient, but its use associated-hepatotoxicity. Mycophenolate mofetil (MMF), an anti-metabolite, is a potent immunosuppressive drug. MMF is not hepatotoxic and is the most common adjunctive immunosuppressant for TAC. The effects of TAC and MMF combination in the liver is still not well understood. This work aimed to investigate their combined effect against in liver in rats Wistar after 24 h. The oral median lethal doses (LD50) of TAC and MMF alone were evaluated in rats are 240 mg/kg and 500 mg/kg respectively. Oral administration of the MMF at 50 mg/kg to male Wistar intoxicated with TAC at 60 mg/kg, demonstrated a significant protective effect by lowering the levels of hepatic markers enzymes (AST, ALT) in the serum rat. MMF attenuated oxidative stress by restoring the activities of SOD, CAT and by reducing the malondialdehyde (MDA) and protein carbonyl levels liver. This study provided evidence that MMF protects rat liver from TAC-induced injury and suggests a most combination use for organ transplantation.Keywords: tacrolimus, mycophenolate mofetil, combination, liver, rat
Procedia PDF Downloads 3361295 In vitro and invivo Antioxidant Studies of Grewia crenata Leaves Extract in Albino Rats
Authors: A. N.Ukwuani, A. K. Abdulfatah
Abstract:
G. crenata is used locally for the treatment of fractured bones, wound healing and inflammatory conditions. In vitro and in vivo antioxidant activity of hydromethanolic extracts of the leaves of G. crenata were assessed. The phytochemical analysis shows the presence of phenols, flavonoids, saponins, cardiac glycosides and tannins. An in vitro quantitative analysis of phenols, flavonoids and tannins respectively were (164±1.20, 199±0.88 and 88.67±0.88 mg/100g FW). In vivo studies of hydromethanolic extract demonstrated a dose dependent increase in hepatic superoxide dismutase (1.14±0.14, 2.13±0.11, 2.55±0.11 U/mg Protein) with improvement in hepatic glutathione (6.98±0.42, 8.91±0.37, 11.07±0.46 µM/mg Protein) and Catalase (4.47±0.05, 6.24±0.02, 7.17±0.04 U/mg Protein) and Total protein (6.18±0.08, 6.69±0.18, 7.27±0.16 mg/ml) respectively at 100-300mg/kg body weight Grewia crenata leaves when compared to the control and standard drug. It can be concluded from the present findings of that G. crenata leaves possess antioxidant potential.Keywords: Grewia crenata, antioxidant, hydromethanolic extract, in vivo, in vitro
Procedia PDF Downloads 5531294 Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach
Authors: Nuri Başpınar, Abdullah Başoğlu, Özgür Özdemir, Çağlayan Özel, FundaTerzi, Özgür Yaman
Abstract:
Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like nonalcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family were performed. LDL-cholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARα, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to precede in this effectiveness.Keywords: high protein and energy diet, boron, metabolomics, transcriptomic
Procedia PDF Downloads 6271293 In silico Analysis of Isoniazid Resistance in Mycobacterium tuberculosis
Authors: A. Nusrath Unissa, Sameer Hassan, Luke Elizabeth Hanna
Abstract:
Altered drug binding may be an important factor in isoniazid (INH) resistance, rather than major changes in the enzyme’s activity as a catalase or peroxidase (KatG). The identification of structural or functional defects in the mutant KatGs responsible for INH resistance remains as an area to be explored. In this connection, the differences in the binding affinity between wild-type (WT) and mutants of KatG were investigated, through the generation of three mutants of KatG, Ser315Thr [S315T], Ser315Asn [S315N], Ser315Arg [S315R] and a WT [S315]) with the help of software-MODELLER. The mutants were docked with INH using the software-GOLD. The affinity is lower for WT than mutant, suggesting the tight binding of INH with the mutant protein compared to WT type. These models provide the in silico evidence for the binding interaction of KatG with INH and implicate the basis for rationalization of INH resistance in naturally occurring KatG mutant strains of Mycobacterium tuberculosis.Keywords: Mycobacterium tuberculosis, KatG, INH resistance, mutants, modelling, docking
Procedia PDF Downloads 3181292 Constitutive Androstane Receptor (CAR) Inhibitor CINPA1 as a Tool to Understand CAR Structure and Function
Authors: Milu T. Cherian, Sergio C. Chai, Morgan A. Casal, Taosheng Chen
Abstract:
This study aims to use CINPA1, a recently discovered small-molecule inhibitor of the xenobiotic receptor CAR (constitutive androstane receptor) for understanding the binding modes of CAR and to guide CAR-mediated gene expression profiling studies in human primary hepatocytes. CAR and PXR are xenobiotic sensors that respond to drugs and endobiotics by modulating the expression of metabolic genes that enhance detoxification and elimination. Elevated levels of drug metabolizing enzymes and efflux transporters resulting from CAR activation promote the elimination of chemotherapeutic agents leading to reduced therapeutic effectiveness. Multidrug resistance in tumors after chemotherapy could be associated with errant CAR activity, as shown in the case of neuroblastoma. CAR inhibitors used in combination with existing chemotherapeutics could be utilized to attenuate multidrug resistance and resensitize chemo-resistant cancer cells. CAR and PXR have many overlapping modulating ligands as well as many overlapping target genes which confounded attempts to understand and regulate receptor-specific activity. Through a directed screening approach we previously identified a new CAR inhibitor, CINPA1, which is novel in its ability to inhibit CAR function without activating PXR. The cellular mechanisms by which CINPA1 inhibits CAR function were also extensively examined along with its pharmacokinetic properties. CINPA1 binding was shown to change CAR-coregulator interactions as well as modify CAR recruitment at DNA response elements of regulated genes. CINPA1 was shown to be broken down in the liver to form two, mostly inactive, metabolites. The structure-activity differences of CINPA1 and its metabolites were used to guide computational modeling using the CAR-LBD structure. To rationalize how ligand binding may lead to different CAR pharmacology, an analysis of the docked poses of human CAR bound to CITCO (a CAR activator) vs. CINPA1 or the metabolites was conducted. From our modeling, strong hydrogen bonding of CINPA1 with N165 and H203 in the CAR-LBD was predicted. These residues were validated to be important for CINPA1 binding using single amino-acid CAR mutants in a CAR-mediated functional reporter assay. Also predicted were residues making key hydrophobic interactions with CINPA1 but not the inactive metabolites. Some of these hydrophobic amino acids were also identified and additionally, the differential coregulator interactions of these mutants were determined in mammalian two-hybrid systems. CINPA1 represents an excellent starting point for future optimization into highly relevant probe molecules to study the function of the CAR receptor in normal- and pathophysiology, and possible development of therapeutics (for e.g. use for resensitizing chemoresistant neuroblastoma cells).Keywords: antagonist, chemoresistance, constitutive androstane receptor (CAR), multi-drug resistance, structure activity relationship (SAR), xenobiotic resistance
Procedia PDF Downloads 2871291 Monitoring the Effect of Doxorubicin Liposomal in VX2 Tumor Using Magnetic Resonance Imaging
Authors: Ren-Jy Ben, Jo-Chi Jao, Chiu-Ya Liao, Ya-Ru Tsai, Lain-Chyr Hwang, Po-Chou Chen
Abstract:
Cancer is still one of the serious diseases threatening the lives of human beings. How to have an early diagnosis and effective treatment for tumors is a very important issue. The animal carcinoma model can provide a simulation tool for the study of pathogenesis, biological characteristics and therapeutic effects. Recently, drug delivery systems have been rapidly developed to effectively improve the therapeutic effects. Liposome plays an increasingly important role in clinical diagnosis and therapy for delivering a pharmaceutic or contrast agent to the targeted sites. Liposome can be absorbed and excreted by the human body, and is well known that no harm to the human body. This study aimed to compare the therapeutic effects between encapsulated (doxorubicin liposomal, LipoDox) and un-encapsulated (doxorubicin, Dox) anti-tumor drugs using Magnetic Resonance Imaging (MRI). Twenty-four New Zealand rabbits implanted with VX2 carcinoma at left thigh were classified into three groups: control group (untreated), Dox-treated group and LipoDox-treated group, 8 rabbits for each group. MRI scans were performed three days after tumor implantation. A 1.5T GE Signa HDxt whole body MRI scanner with a high resolution knee coil was used in this study. After a 3-plane localizer scan was performed, Three-Dimensional (3D) Fast Spin Echo (FSE) T2-Weighted Images (T2WI) was used for tumor volumetric quantification. And Two-Dimensional (2D) spoiled gradient recalled echo (SPGR) dynamic Contrast-enhanced (DCE) MRI was used for tumor perfusion evaluation. DCE-MRI was designed to acquire four baseline images, followed by contrast agent Gd-DOTA injection through the ear vein of rabbits. Afterwards, a series of 32 images were acquired to observe the signals change over time in the tumor and muscle. The MRI scanning was scheduled on a weekly basis for a period of four weeks to observe the tumor progression longitudinally. The Dox and LipoDox treatments were prescribed 3 times in the first week immediately after VX2 tumor implantation. ImageJ was used to quantitate tumor volume and time course signal enhancement on DCE images. The changes of tumor size showed that the growth of VX2 tumors was effectively inhibited for both LipoDox-treated and Dox-treated groups. Furthermore, the tumor volume of LipoDox-treated group was significantly lower than that of Dox-treated group, which implies that LipoDox has better therapeutic effect than Dox. The signal intensity of LipoDox-treated group is significantly lower than that of the other two groups, which implies that targeted therapeutic drug remained in the tumor tissue. This study provides a radiation-free and non-invasive MRI method for therapeutic monitoring of targeted liposome on an animal tumor model.Keywords: doxorubicin, dynamic contrast-enhanced MRI, lipodox, magnetic resonance imaging, VX2 tumor model
Procedia PDF Downloads 4571290 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography
Authors: Sudhanshu Sharma
Abstract:
Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.Keywords: lisnopril, surfactant, chromatography, micellar solutions
Procedia PDF Downloads 3671289 The Impact of Inconclusive Results of Thin Layer Chromatography for Marijuana Analysis and It’s Implication on Forensic Laboratory Backlog
Authors: Ana Flavia Belchior De Andrade
Abstract:
Forensic laboratories all over the world face a great challenge to overcame waiting time and backlog in many different areas. Many aspects contribute to this situation, such as an increase in drug complexity, increment in the number of exams requested and cuts in funding limiting laboratories hiring capacity. Altogether, those facts pose an essential challenge for forensic chemistry laboratories to keep both quality and time of response within an acceptable period. In this paper we will analyze how the backlog affects test results and, in the end, the whole judicial system. In this study data from marijuana samples seized by the Federal District Civil Police in Brazil between the years 2013 and 2017 were tabulated and the results analyzed and discussed. In the last five years, the number of petitioned exams increased from 822 in February 2013 to 1358 in March 2018, representing an increase of 32% in 5 years, a rise of more than 6% per year. Meanwhile, our data shows that the number of performed exams did not grow at the same rate. Product numbers are stationed as using the actual technology scenario and analyses routine the laboratory is running in full capacity. Marijuana detection is the most prevalence exam required, representing almost 70% of all exams. In this study, data from 7,110 (seven thousand one hundred and ten) marijuana samples were analyzed. Regarding waiting time, most of the exams were performed not later than 60 days after receipt (77%). Although some samples waited up to 30 months before being examined (0,65%). When marijuana´s exam is delayed we notice the enlargement of inconclusive results using thin-layer chromatography (TLC). Our data shows that if a marijuana sample is stored for more than 18 months, inconclusive results rise from 2% to 7% and when if storage exceeds 30 months, inconclusive rates increase to 13%. This is probably because Cannabis plants and preparations undergo oxidation under storage resulting in a decrease in the content of Δ9-tetrahydrocannabinol ( Δ9-THC). An inconclusive result triggers other procedures that require at least two more working hours of our analysts (e.g., GC/MS analysis) and the report would be delayed at least one day. Those new procedures increase considerably the running cost of a forensic drug laboratory especially when the backlog is significant as inconclusive results tend to increase with waiting time. Financial aspects are not the only ones to be observed regarding backlog cases; there are also social issues as legal procedures can be delayed and prosecution of serious crimes can be unsuccessful. Delays may slow investigations and endanger public safety by giving criminals more time on the street to re-offend. This situation also implies a considerable cost to society as at some point, if the exam takes a long time to be performed, an inconclusive can turn into a negative result and a criminal can be absolved by flawed expert evidence.Keywords: backlog, forensic laboratory, quality management, accreditation
Procedia PDF Downloads 1221288 Analysis of Saudi Breast Cancer Patients’ Primary Tumors using Array Comparative Genomic Hybridization
Authors: L. M. Al-Harbi, A. M. Shokry, J. S. M. Sabir, A. Chaudhary, J. Manikandan, K. S. Saini
Abstract:
Breast cancer is the second most common cause of cancer death worldwide and is the most common malignancy among Saudi females. During breast carcinogenesis, a wide-array of cytogenetic changes involving deletions, or amplification, or translocations, of part or whole of chromosome regions have been observed. Because of the limitations of various earlier technologies, newer tools are developed to scan for changes at the genomic level. Recently, Array Comparative Genomic Hybridization (aCGH) technique has been applied for detecting segmental genomic alterations at molecular level. In this study, aCGH was performed on twenty breast cancer tumors and their matching non-tumor (normal) counterparts using the Agilent 2x400K. Several regions were identified to be either amplified or deleted in a tumor-specific manner. Most frequent alterations were amplification of chromosome 1q, chromosome 8q, 20q, and deletions at 16q were also detected. The amplification of genetic events at 1q and 8q were further validated using FISH analysis using probes targeting 1q25 and 8q (MYC gene). The copy number changes at these loci can potentially cause a significant change in the tumor behavior, as deletions in the E-Cadherin (CDH1)-tumor suppressor gene as well as amplification of the oncogenes-Aurora Kinase A. (AURKA) and MYC could make these tumors highly metastatic. This study validates the use of aCGH in Saudi breast cancer patients and sets the foundations necessary for performing larger cohort studies searching for ethnicity-specific biomarkers and gene copy number variations.Keywords: breast cancer, molecular biology, ecology, environment
Procedia PDF Downloads 3761287 Photochemical Degradation of Ibuprofren in Aqueous Solutions
Authors: Stavros Poulopoulos, Aphrodite Tetorou, Constantine Philippopoulos
Abstract:
Day after day more pharmaceutical compounds that are not efficiently removed by conventional treatment methods are found in treated wastewaters and drinking waters. Due to their refractory nature, they escape conventional wastewater treatment facilities, and thus advanced oxidation processes have to be utilized to effectively eliminate them. In the present study, the removal of Ibuprofen from aqueous solutions containing the commercial drug Algofren (non-steroidal, anti-inflammatory) using UV irradiation, hydrogen peroxide, titanium dioxide and ferric ions was examined. All experiments were conducted in a batch photoreactor operated for 120 min. The main target was to select the most effective operating conditions for the mineralization of the solutions treated. The combination of Fe(III)/ H₂O₂/UV proved to be very efficient in terms of total organic carbon removal and ibuprofen conversion. For solutions containing 5 mg/L ibuprofen and initial total carbon 51.1 mg/L, complete mineralization was achieved by means of 2.2 ppm Fe(III) and 333 mg/L H₂O₂.Keywords: pharmaceuticals, photocatalytic, photo-Fenton, TiO₂
Procedia PDF Downloads 1491286 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors
Authors: Navid Kaboudi, Ali Shayanfar
Abstract:
Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.Keywords: logistic regression, breastfeeding, descriptors, penetration
Procedia PDF Downloads 721285 The Experiences of Claiming Welfare Benefits for People with Disabilities in the UK
Authors: Jennifer McNeill
Abstract:
Over the years UK Governments have extended the use of welfare conditionality to more marginalised groups. Whereas in the past, disabled people’s rights to unconditional welfare were defended, significant numbers of disabled people have in recent years been re-classified as ‘fit for work’ as a result of this policy shift towards increased conditionality targeting more welfare service user groups. This paper discusses findings from a five-year project exploring the ethics and efficacy of welfare conditionality. Drawing on repeat interviews over three years with 58 disabled welfare service users across England and Scotland, the paper explores the experience of, and impact of conditionality upon, disabled participants. In particular, participants described the process of claiming disability-related benefits as stigmatising, with some describing the medical assessments as demeaning, traumatic and even painful. The medical assessments are conducted by private contractors and participants felt they were treated unfairly, under suspicion and under surveillance. This finding is important in line with a recent UN report concerned with the practice of such assessments. The findings reveal that notions of ‘deservedness’ are embedded in this system as disabled recipients argue for their entitlement to welfare claims relative to what are deemed to be less deserving groups of benefit claimants. This indicates an increasing competition ethic within different sections of the most marginalised social groups that facilitate further forms of social fragmentation, particularly in relation to opposition to benefit cuts and other changes requiring concerted and organised forms of resistance. The impact of media and political scapegoating of the most marginal has generated divisions within even those who position themselves as legitimate recipients.Keywords: disability, medical assessments, stigma, welfare conditionality
Procedia PDF Downloads 2021284 The Influence of Carbamazepine on the Activity of CYP3A4 in Patients with Alcoholism
Authors: Mikhail S. Zastrozhin, Valery V. Smirnov, Dmitry A. Sychev, Ludmila M. Savchenko, Evgeny A. Bryun, Mark O. Nechaev
Abstract:
Cytochrome P-450 isoenzyme 3A4 takes part in the biotransformation of medical drugs. The activity of CYP isoenzymes depends on genetic (polymorphisms of genes which encoded it) and phenotypic factors (a kind of food, a concomitant drug therapy). The aim of the study was to evaluate a carbamazepine effect on the CYP3A4 activity in patients with alcohol addiction. The study included 25 men with alcohol dependence, who received haloperidol during the exacerbation of the addiction. CYP3A4 activity was assessed by urinary 6-beta-hydroxycortisol/cortisol ratios measured by high performance liquid chromatography with mass spectrometry. The study modeled a graph and an equation of the logarithmic regression, that reflects the dependence of CYP3A4 activity on a dose of carbamazepine: y = 5,5 * 9,1 * 10-5 * x2. The study statistically significant demonstrates the effect of carbamazepine on CYP2D6 isozyme activity in patients with alcohol addiction.Keywords: CYP3A4, biotransformation, carbamazepine, alcohol abuse
Procedia PDF Downloads 2791283 Functionalized Nanoparticles for Biomedical Applications
Authors: Temesgen Geremew
Abstract:
Functionalized nanoparticles have emerged as a revolutionary class of materials with immense potential in various biomedical applications. These engineered nanoparticles possess unique properties tailored to interact with biological systems, offering unprecedented opportunities in drug delivery, imaging, diagnostics, and therapy. This research delves into the design, synthesis, and characterization of functionalized nanoparticles for targeted biomedical applications. The primary focus lies on developing nanoparticles with precisely controlled size, surface chemistry, and biocompatibility for specific medical purposes. The research will also explore the crucial interaction of these nanoparticles with biological systems, encompassing cellular uptake, biodistribution, and potential toxicity evaluation. The successful development of functionalized nanoparticles holds the promise to revolutionize various aspects of healthcare. This research aspires to contribute significantly to this advancement by providing valuable insights into the design and application of these versatile materials within the ever-evolving field of biomedicine.Keywords: nanoparticles, biomedicals, cancer, biocompatibility
Procedia PDF Downloads 661282 Enhancing Food Quality and Safety Management in Ethiopia's Food Processing Industry: Challenges, Causes, and Solutions
Authors: Tuji Jemal Ahmed
Abstract:
Food quality and safety challenges are prevalent in Ethiopia's food processing industry, which can have adverse effects on consumers' health and wellbeing. The country is known for its diverse range of agricultural products, which are essential to its economy. However, poor food quality and safety policies and management systems in the food processing industry have led to several health problems, foodborne illnesses, and economic losses. This paper aims to highlight the causes and effects of food safety and quality issues in the food processing industry of Ethiopia and discuss potential solutions to address these issues. One of the main causes of poor food quality and safety in Ethiopia's food processing industry is the lack of adequate regulations and enforcement mechanisms. The absence of comprehensive food safety and quality policies and guidelines has led to substandard practices in the food manufacturing process. Moreover, the lack of monitoring and enforcement of existing regulations has created a conducive environment for unscrupulous businesses to engage in unsafe practices that endanger the public's health. The effects of poor food quality and safety are significant, ranging from the loss of human lives, increased healthcare costs, and loss of consumer confidence in the food processing industry. Foodborne illnesses, such as diarrhea, typhoid fever, and cholera, are prevalent in Ethiopia, and poor food quality and safety practices contribute significantly to their prevalence. Additionally, food recalls due to contamination or mislabeling often result in significant economic losses for businesses in the food processing industry. To address these challenges, the Ethiopian government has begun to take steps to improve food quality and safety in the food processing industry. One of the most notable initiatives is the Ethiopian Food and Drug Administration (EFDA), which was established in 2010 to regulate and monitor the quality and safety of food and drug products in the country. The EFDA has implemented several measures to enhance food safety, such as conducting routine inspections, monitoring the importation of food products, and enforcing strict labeling requirements. Another potential solution to improve food quality and safety in Ethiopia's food processing industry is the implementation of food safety management systems (FSMS). An FSMS is a set of procedures and policies designed to identify, assess, and control food safety hazards throughout the food manufacturing process. Implementing an FSMS can help businesses in the food processing industry identify and address potential hazards before they cause harm to consumers. Additionally, the implementation of an FSMS can help businesses comply with existing food safety regulations and guidelines. In conclusion, improving food quality and safety policies and management systems in Ethiopia's food processing industry is critical to protecting public health and enhancing the country's economy. Addressing the root causes of poor food quality and safety and implementing effective solutions, such as the establishment of regulatory agencies and the implementation of food safety management systems, can help to improve the overall safety and quality of the country's food supply.Keywords: food quality, food safety, policy, management system, food processing industry
Procedia PDF Downloads 851281 Impact of Soci̇al Media in Tourism Marketing
Authors: Betül Garda
Abstract:
Technological developments have diversified marketing activities of the tourism sector and it has increased tourism opportunities to compete on a global scale for tourism businesses. Tourism businesses have been forced to use its core skills and knowledge effectively with the increase in effectiveness of the technology in the global competitive environment. Tourism businesses have been reached beyond the traditional boundaries because of their commercial activities, so, the boundaries of the national market either eliminated or blurred. Therefore, the internet is the alternative promotion tool and distribution channel to providing unlimited facilities for tourism suppliers. For example, the internet provides an opportunity to reach customers on a global scale with direct email marketing, advertising, customer service, promotion, sales, and marketing. Tourism businesses have improved themselves with the continuous information flows and also they have provided the permanence of the changes. Especially in terms of tourism businesses, social media is emerging as an extremely important tool in the use of knowledge effectively. This research paper investigates the impact of social media on the tourism businesses. A social networking site is a type of social media that provides a platform for business and people to connect with each other. Social media is so flexible that it can be used for both leisure and business purposes. In the tourism industry, social networking sites are one of the essential tools that play an important and beneficial role. The topic that will be discussed in this research paper are consumer behavior, connection with consumers, effectiveness in terms of time and cost, creating brand awareness and building the image of the company, promoting company, targeting consumers in a conceptual frame.Keywords: branding, promoting, social media in tourism, tourism marketing tools
Procedia PDF Downloads 283