Search results for: autonomous vehicle control
10975 Synchronous Reference Frame and Instantaneous P-Q Theory Based Control of Unified Power Quality Conditioner for Power Quality Improvement of Distribution System
Authors: Ambachew Simreteab Gebremedhn
Abstract:
Context: The paper explores the use of synchronous reference frame theory (SRFT) and instantaneous reactive power theory (IRPT) based control of Unified Power Quality Conditioner (UPQC) for improving power quality in distribution systems. Research Aim: To investigate the performance of different control configurations of UPQC using SRFT and IRPT for mitigating power quality issues in distribution systems. Methodology: The study compares three control techniques (SRFT-IRPT, SRFT-SRFT, IRPT-IRPT) implemented in series and shunt active filters of UPQC. Data is collected under various control algorithms to analyze UPQC performance. Findings: Results indicate the effectiveness of SRFT and IRPT based control techniques in addressing power quality problems such as voltage sags, swells, unbalance, harmonics, and current harmonics in distribution systems. Theoretical Importance: The study provides insights into the application of SRFT and IRPT in improving power quality, specifically in mitigating unbalanced voltage sags, where conventional methods fall short. Data Collection: Data is collected under various control algorithms using simulation in MATLAB Simulink and real-time operation executed with experimental results obtained using RT-LAB. Analysis Procedures: Performance analysis of UPQC under different control algorithms is conducted to evaluate the effectiveness of SRFT and IRPT based control techniques in mitigating power quality issues. Questions Addressed: How do SRFT and IRPT based control techniques compare in improving power quality in distribution systems? What is the impact of using different control configurations on the performance of UPQC? Conclusion: The study demonstrates the efficacy of SRFT and IRPT based control of UPQC in mitigating power quality issues in distribution systems, highlighting their potential for enhancing voltage and current quality.Keywords: power quality, UPQC, shunt active filter, series active filter, non-linear load, RT-LAB, MATLAB
Procedia PDF Downloads 810974 Conventional Four Steps Travel Demand Modeling for Kabul New City
Authors: Ahmad Mansoor Stanikzai, Yoshitaka Kajita
Abstract:
This research is a very essential towards transportation planning of Kabul New City. In this research, the travel demand of Kabul metropolitan area (Existing and Kabul New City) are evaluated for three different target years (2015, current, 2025, mid-term, 2040, long-term). The outcome of this study indicates that, though currently the vehicle volume is less the capacity of existing road networks, Kabul city is suffering from daily traffic congestions. This is mainly due to lack of transportation management, the absence of proper policies, improper public transportation system and violation of traffic rules and regulations by inhabitants. On the other hand, the observed result indicates that the current vehicle to capacity ratio (VCR) which is the most used index to judge traffic status in the city is around 0.79. This indicates the inappropriate traffic condition of the city. Moreover, by the growth of population in mid-term (2025) and long-term (2040) and in the case of no development in the road network and transportation system, the VCR value will dramatically increase to 1.40 (2025) and 2.5 (2040). This can be a critical situation for an urban area from an urban transportation perspective. Thus, by introducing high-capacity public transportation system and the development of road network in Kabul New City and integrating these links with the existing city road network, significant improvements were observed in the value of VCR.Keywords: Afghanistan, Kabul new city, planning, policy, urban transportation
Procedia PDF Downloads 33110973 The Experience of Applying Multi-Sensory Stimulation ICU for Arousing a Patient with Traumatic Brain Injury in Intensive Care
Authors: Hsiao-Wen Tsai
Abstract:
Motor vehicle accident is the first cause of head injury in the world; severe head injury cases may cause conscious disturbance and death. This is a report about a case of a young adult patient suffering from motor vehicle accident leading to severe head injury who passed through three time surgical procedures, and his mother (who is the informal caregiver). This case was followed from 28th January to 15th February 2011 by using Gordon’s 11 functional health patterns. Patient’s cognitive-perceptual and self-perception-self-concept patterns were altered. Anxiety was also noted on his informal caregiver due to patients’ condition. During the intensive care period, maintaining patient’s vital signs and cerebral perfusion pressure were essential to avoid secondary neuronal injury. Multi-sensory stimulation, caring accompanying, supporting, listening and encouraging patient’s family involved in patient care were very important to reduce informal caregiver anxiety. Finally, the patient consciousness improved from GCS 4 to GCS 11 before discharging from ICU. Patient’s primary informal caregiver, his mother, also showed anxiety improvement. This is was successful case with traumatic brain injury recovered from coma.Keywords: anxiety, multi-sensory stimulation, reduce intracranial adaptive capacity, traumatic brain injury
Procedia PDF Downloads 26710972 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots
Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu
Abstract:
The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.Keywords: deep reinforcement learning, interpretation, motion control, legged robots
Procedia PDF Downloads 2110971 Inventory Control for Purchased Part under Long Lead Time and Uncertain Demand: MRP vs Demand-Driven MRP Approach
Authors: M. J. Shofa, A. Hidayatno, O. M. Armand
Abstract:
MRP as a production control system is appropriate for the deterministic environment. Unfortunately, most production systems such as customer demands are stochastic. Demand-Driven MRP (DDMRP) is a new approach for inventory control system, and it deals with demand uncertainty. The objective of this paper is to compare the MRP and DDMRP work for a long lead time and uncertain demand in terms of on-hand inventory levels. The evaluation is conducted through a discrete event simulation using purchased part data from an automotive company. The result is MRP gives 50,759 pcs / day while DDMRP gives 34,835 pcs / day (reduce 32%), it means DDMRP is more effective inventory control than MRP in terms of on-hand inventory levels.Keywords: Demand-Driven MRP, long lead time, MRP, uncertain demand
Procedia PDF Downloads 30110970 Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue
Procedia PDF Downloads 44910969 Sliding Mode Control and Its Application in Custom Power Device: A Comprehensive Overview
Authors: Pankaj Negi
Abstract:
Nowadays the demand for receiving the high quality electrical energy is being increasing as consumer wants not only reliable but also quality power. Custom power instruments are of the most well-known compensators of power quality in distributed network. This paper present a comprehensive review of compensating custom power devices mainly DSTATCOM (distribution static compensator),DVR (dynamic voltage restorer), and UPQC (unified power quality compensator) and also deals with sliding mode control and its applications to custom power devices. The sliding mode control strategy provides robustness to custom power device and enhances the dynamic response for compensating voltage sag, swell, voltage flicker, and voltage harmonics. The aim of this paper is to provide a broad perspective on the status of compensating devices in electric power distribution system and sliding mode control strategies to researchers and application engineers who are dealing with power quality and stability issues.Keywords: active power filters(APF), custom power device(CPD), DSTATCOM, DVR, UPQC, sliding mode control (SMC), power quality
Procedia PDF Downloads 43910968 A Theoretical Framework of Patient Autonomy in a High-Tech Care Context
Authors: Catharina Lindberg, Cecilia Fagerstrom, Ania Willman
Abstract:
Patients in high-tech care environments are usually dependent on both formal/informal caregivers and technology, highlighting their vulnerability and challenging their autonomy. Autonomy presumes that a person has education, experience, self-discipline and decision-making capacity. Reference to autonomy in relation to patients in high-tech care environments could, therefore, be considered paradoxical, as in most cases these persons have impaired physical and/or metacognitive capacity. Therefore, to understand the prerequisites for patients to experience autonomy in high-tech care environments and to support them, there is a need to enhance knowledge and understanding of the concept of patient autonomy in this care context. The development of concepts and theories in a practice discipline such as nursing helps to improve both nursing care and nursing education. Theoretical development is important when clarifying a discipline, hence, a theoretical framework could be of use to nurses in high-tech care environments to support and defend the patient’s autonomy. A meta-synthesis was performed with the intention to be interpretative and not aggregative in nature. An amalgamation was made of the results from three previous studies, carried out by members of the same research group, focusing on the phenomenon of patient autonomy from a patient perspective within a caring context. Three basic approaches to theory development: derivation, synthesis, and analysis provided an operational structure that permitted the researchers to move back and forth between these approaches during their work in developing a theoretical framework. The results from the synthesis delineated that patient autonomy in a high-tech care context is: To be in control though trust, co-determination, and transition in everyday life. The theoretical framework contains several components creating the prerequisites for patient autonomy. Assumptions and propositional statements that guide theory development was also outlined, as were guiding principles for use in day-to-day nursing care. Four strategies used by patients to remain or obtain patient autonomy in high-tech care environments were revealed: the strategy of control, the strategy of partnership, the strategy of trust, and the strategy of transition. This study suggests an extended knowledge base founded on theoretical reasoning about patient autonomy, providing an understanding of the strategies used by patients to achieve autonomy in the role of patient, in high-tech care environments. When possessing knowledge about the patient perspective of autonomy, the nurse/carer can avoid adopting a paternalistic or maternalistic approach. Instead, the patient can be considered to be a partner in care, allowing care to be provided that supports him/her in remaining/becoming an autonomous person in the role of patient.Keywords: autonomy, caring, concept development, high-tech care, theory development
Procedia PDF Downloads 20710967 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer
Authors: Timothee Gidenne, Xia Pinqi
Abstract:
In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression
Procedia PDF Downloads 12810966 Aerial Photogrammetry-Based Techniques to Rebuild the 30-Years Landform Changes of a Landslide-Dominated Watershed in Taiwan
Authors: Yichin Chen
Abstract:
Taiwan is an island characterized by an active tectonics and high erosion rates. Monitoring the dynamic landscape of Taiwan is an important issue for disaster mitigation, geomorphological research, and watershed management. Long-term and high spatiotemporal landform data is essential for quantifying and simulating the geomorphological processes and developing warning systems. Recently, the advances in unmanned aerial vehicle (UAV) and computational photogrammetry technology have provided an effective way to rebuild and monitor the topography changes in high spatio-temporal resolutions. This study rebuilds the 30-years landform change in the Aiyuzi watershed in 1986-2017 by using the aerial photogrammetry-based techniques. The Aiyuzi watershed, located in central Taiwan and has an area of 3.99 Km², is famous for its frequent landslide and debris flow disasters. This study took the aerial photos by using UAV and collected multi-temporal historical, stereo photographs, taken by the Aerial Survey Office of Taiwan’s Forestry Bureau. To rebuild the orthoimages and digital surface models (DSMs), Pix4DMapper, a photogrammetry software, was used. Furthermore, to control model accuracy, a set of ground control points was surveyed by using eGPS. The results show that the generated DSMs have the ground sampling distance (GSD) of ~10 cm and ~0.3 cm from the UAV’s and historical photographs, respectively, and vertical error of ~1 m. By comparing the DSMs, there are many deep-seated landslides (with depth over 20 m) occurred on the upstream in the Aiyuzi watershed. Even though a large amount of sediment is delivered from the landslides, the steep main channel has sufficient capacity to transport sediment from the channel and to erode the river bed to ~20 m in depth. Most sediments are transported to the outlet of watershed and deposits on the downstream channel. This case study shows that UAV and photogrammetry technology are useful for topography change monitoring effectively.Keywords: aerial photogrammetry, landslide, landform change, Taiwan
Procedia PDF Downloads 15710965 Advanced Driver Assistance System: Veibra
Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins
Abstract:
Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system
Procedia PDF Downloads 15510964 Real-Time Web Map Service Based on Solar-Powered Unmanned Aerial Vehicle
Authors: Sunghun Jung
Abstract:
The existing web map service providers contract with the satellite operators to update their maps by paying an astronomical amount of money, but the cost could be minimized by operating a cheap and small UAV. In contrast to the satellites, we only need to replace aged battery packs from time to time for the usage of UAVs. Utilizing both a regular camera and an infrared camera mounted on a small, solar-powered, long-endurance, and hoverable UAV, daytime ground surface photographs, and nighttime infrared photographs will be continuously and repeatedly uploaded to the web map server and overlapped with the existing ground surface photographs in real-time. The real-time web map service using a small, solar-powered, long-endurance, and hoverable UAV can also be applied to the surveillance missions, in particular, to detect border area intruders. The improved real-time image stitching algorithm is developed for the graphic map data overlapping. Also, a small home server will be developed to manage the huge size of incoming map data. The map photographs taken at tens or hundreds of kilometers by a UAV would improve the map graphic resolution compared to the map photographs taken at thousands of kilometers by satellites since the satellite photographs are limited by weather conditions.Keywords: long-endurance, real-time web map service (RWMS), solar-powered, unmanned aerial vehicle (UAV)
Procedia PDF Downloads 27410963 Stability Analysis and Experimental Evaluation on Maxwell Model of Impedance Control
Authors: Le Fu, Rui Wu, Gang Feng Liu, Jie Zhao
Abstract:
Normally, impedance control methods are based on a model that connects a spring and damper in parallel. The series connection, namely the Maxwell model, has emerged as a counterpart and draw the attention of robotics researchers. In the theoretical analysis, it turns out that the two pattern are both equivalents to some extent, but notable differences of response characteristics exist, especially in the effect of damping viscosity. However, this novel impedance control design is lack of validation on realistic robot platforms. In this study, stability analysis and experimental evaluation are achieved using a 3-fingered Barrett® robotic hand BH8-282 endowed with tactile sensing, mounted on a torque-controlled lightweight and collaborative robot KUKA® LBR iiwa 14 R820. Object handover and incoming objects catching tasks are executed for validation and analysis. Experimental results show that the series connection pattern has much better performance in natural impact or shock absorption, which indicate promising applications in robots’ safe and physical interaction with humans and objects in various environments.Keywords: impedance control, Maxwell model, force control, dexterous manipulation
Procedia PDF Downloads 49710962 Maximizing the Aerodynamic Performance of Wind and Water Turbines by Utilizing Advanced Flow Control Techniques
Authors: Edwin Javier Cortes, Surupa Shaw
Abstract:
In recent years, there has been a growing emphasis on enhancing the efficiency and performance of wind and water turbines to meet the increasing demand for sustainable energy sources. One promising approach is the utilization of advanced flow control techniques to optimize aerodynamic performance. This paper explores the application of advanced flow control techniques in both wind and water turbines, aiming to maximize their efficiency and output. By manipulating the flow of air or water around the turbine blades, these techniques offer the potential to improve energy capture, reduce drag, and minimize turbulence-induced losses. The paper will review various flow control strategies, including passive and active techniques such as vortex generators, boundary layer suction, and plasma actuators. It will examine their effectiveness in optimizing turbine performance under different operating conditions and environmental factors. Furthermore, the paper will discuss the challenges and opportunities associated with implementing these techniques in practical turbine designs. It will consider factors such as cost-effectiveness, reliability, and scalability, as well as the potential impact on overall turbine efficiency and lifecycle. Through a comprehensive analysis of existing research and case studies, this paper aims to provide insights into the potential benefits and limitations of advanced flow control techniques for wind and water turbines. It will also highlight areas for future research and development, with the ultimate goal of advancing the state-of-the-art in turbine technology and accelerating the transition towards a more sustainable energy future.Keywords: flow control, efficiency, passive control, active control
Procedia PDF Downloads 7010961 Identification and Force Control of a Two Chambers Pneumatic Soft Actuator
Authors: Najib K. Dankadai, Ahmad 'Athif Mohd Faudzi, Khairuddin Osman, Muhammad Rusydi Muhammad Razif, IIi Najaa Aimi Mohd Nordin
Abstract:
Researches in soft actuators are now growing rapidly because of their adequacy to be applied in sectors like medical, agriculture, biological and welfare. This paper presents system identification (SI) and control of the force generated by a two chambers pneumatic soft actuator (PSA). A force mathematical model for the actuator was identified experimentally using data acquisition card and MATLAB SI toolbox. Two control techniques; a predictive functional control (PFC) and conventional proportional integral and derivative (PID) schemes are proposed and compared based on the identified model for the soft actuator flexible mechanism. Results of this study showed that both of the proposed controllers ensure accurate tracking when the closed loop system was tested with the step, sinusoidal and multi step reference input through MATLAB simulation although the PFC provides a better response than the PID.Keywords: predictive functional control (PFC), proportional integral and derivative (PID), soft actuator, system identification
Procedia PDF Downloads 32510960 The Organization of Multi-Field Hospital’s Work Environment in the Republic of Sakha, Yakutia
Authors: Inna Vinokurova, N. Savvina
Abstract:
The goal of research: to study the organization of multi-field hospital’s work environment in the Republic of Sakha (Yakutia), Autonomous public health care institution of Republic of Sakha (Yakutia) - Republican Hospital No. 1 - National Center of Medicine. Results: Autonomous public health care institution of Republic of Sakha (Yakutia) - Republican Hospital No. 1 - National Center of Medicine is a multidisciplinary, specialized hospital complex that provides specialized and high-tech medical care to children and adults in the Republic of Sakha (Yakutia) of the Russian Federation. There are 5 diagnostic and treatment centers (advisory and diagnostic, clinical, pediatric, perinatal, Republican cardiologic dispensary) with 45 clinical specialized departments with 727 cots, 5 resuscitation departments, 20 operating rooms and out-patient department with 905 visits in alternation in the National Center of Medicine. Annually more than 20,000 patients receive treatment in the hospital of the Republican Hospital of the Republic of Sakha (Yakutia), more than 70,000 patients visit out-patient sections, more than 2 million researches are done, more than 12,000 surgeries are performed, more than 2 thousand babies are delivered. National Center of Medicine has a great influence with such population’s health indicators as total mortality, birth rate, maternal, infant and perinatal mortality, circulatory system incidence. The work environment of the Republican Hospital of the Republic of Sakha (Yakutia) is represented by the following structural departments: pharmacy, blood transfusion department, sterilization department, laundry, dietetic department, infant-feeding centre, material and technical supply. More than 200 employees work in this service. The main function of these services is to provide on-time and fail-safe supply with all necessary: wear parts, medical supplies, donated blood and its components, foodstuffs, hospital linen , sterile instruments, etc. Thus, the activity of medical organization depends on the work environment, including quality health care, so it is a main part of multi-field hospital activity.Keywords: organization of multi-field hospital’s, work environment, quality health care, pharmacy, blood transfusion department, sterilization department
Procedia PDF Downloads 24210959 Modeling and Optimal Control of Pneumonia Disease with Cost Effective Strategies
Authors: Getachew Tilahun, Oluwole Makinde, David Malonza
Abstract:
We propose and analyze a non-linear mathematical model for the transmission dynamics of pneumonia disease in a population of varying size. The deterministic compartmental model is studied using stability theory of differential equations. The effective reproduction number is obtained and also the local and global asymptotically stability conditions for the disease free and as well as for the endemic equilibria are established. The model exhibit a backward bifurcation and the sensitivity indices of the basic reproduction number to the key parameters are determined. Using Pontryagin’s maximum principle, the optimal control problem is formulated with three control strategies; namely disease prevention through education, treatment and screening. The cost effectiveness analysis of the adopted control strategies revealed that the combination of prevention and treatment is the most cost effective intervention strategies to combat the pneumonia pandemic. Numerical simulation is performed and pertinent results are displayed graphically.Keywords: cost effectiveness analysis, optimal control, pneumonia dynamics, stability analysis, numerical simulation
Procedia PDF Downloads 32710958 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems
Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe
Abstract:
The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.Keywords: non-linear systems, fuzzy set Models, neural network, control law
Procedia PDF Downloads 21210957 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network
Authors: Habtemariam Alemu
Abstract:
It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink
Procedia PDF Downloads 51710956 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation
Authors: A. Yanik, U. Aldemir
Abstract:
This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.Keywords: bridge structures, passive control, seismic, semi-active control, viscous damping
Procedia PDF Downloads 24210955 Fuzzy Logic Based Sliding Mode Controller for a New Soft Switching Boost Converter
Authors: Azam Salimi, Majid Delshad
Abstract:
This paper presents a modified design of a sliding mode controller based on fuzzy logic for a New ZVThigh step up DC-DC Converter . Here a proportional - integral (PI)-type current mode control is employed and a sliding mode controller is designed utilizing fuzzy algorithm. Sliding mode controller guarantees robustness against all variations and fuzzy logic helps to reduce chattering phenomenon due to sliding controller, in that way efficiency increases and error, voltage and current ripples decreases. The proposed system is simulated using MATLAB / SIMULINK. This model is tested under variations of input and reference voltages and it was found that in comparison with conventional sliding mode controllers they perform better.Keywords: switching mode power supplies, DC-DC converters, sliding mode control, robustness, fuzzy control, current mode control, non-linear behavior
Procedia PDF Downloads 53810954 Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting System
Authors: Saleh Gareh, B. C. Kok, H. H. Goh
Abstract:
Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF) electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H) is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d) and Piezoelectric Voltage Constant (g) values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT) with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.8 mW and 3 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system.Keywords: piezoelectric energy harvesting, cymbal transducer, PZT (lead zirconate titanate), 2-DOF
Procedia PDF Downloads 35510953 Landslide Study Using Unmanned Aerial Vehicle and Resistivity Survey at Bkt Kukus, Penang Island, Malaysia
Authors: Kamal Bahrin Jaafar
Abstract:
The study area is located at Bukit Kukus, Penang where the construction of twin road project in ongoing. A landslide event has occurred on 19th October 2018, which causes fatal deaths. The purpose of this study is to figure out the causes of failure, the estimated volume of failure, and its balance. The study comprises of unmanned aerial vehicle (UAV) sensing and resistivity survey. The resistivity method includes spreading three lines of 200m length resistivity survey with the depth of penetration in the subsurface not exceeding 35m. The result of UAV shows the current view of the site condition. Based on resistivity result, the dominant layer in the study area consists of residual soil/filling material with a thickness of more than 35m. Three selected cross sections from construction drawing are overlain with the current cross sections to understand more on the condition of the subsurface profile. By comparison, there is a difference between past and present topography. The combination of result from the previous data and current condition shows the calculated volume of failure is 85,000 m³, and its balance is 50,000 m³. In conclusion, the failure occurs since the contractor has conducted the construction works without following the construction drawing supplied by the consultant. Besides, the cause of failure is triggered by the geology condition, such as a fault that should be considered prior to the commencement of work.Keywords: UAV, landslide, resistivity survey, cause of failure
Procedia PDF Downloads 11410952 Email Based Global Automation with Raspberry Pi and Control Circuit Module: Development of Smart Home Application
Authors: Lochan Basyal
Abstract:
Global Automation is an emerging technology of today’s era and is based on Internet of Things (IoT). Global automation deals with the controlling of electrical appliances throughout the world. The fabrication of this system has been carried out with interfacing an electrical control system module to Raspberry Pi. An electrical control system module includes a relay driver mechanism through which appliances are controlled automatically in respective condition. In this research project, one email ID has been assigned to Raspberry Pi, and the users from different location having different email ID can mail to Raspberry Pi on assigned email address “[email protected]” with subject heading “Device Control” with predefined command on compose email line. Also, a notification regarding current working condition of this system has been updated on respective user email ID. This approach is an innovative way of implementing smart automation system through which a user can control their electrical appliances like light, fan, television, refrigerator, etc. in their home with the use of email facility. The development of this project helps to enhance the concept of smart home application as well as industrial automation.Keywords: control circuit, e-mail, global automation, internet of things, IOT, Raspberry Pi
Procedia PDF Downloads 16710951 Interaction between Cognitive Control and Language Processing in Non-Fluent Aphasia
Authors: Izabella Szollosi, Klara Marton
Abstract:
Aphasia can be defined as a weakness in accessing linguistic information. Accessing linguistic information is strongly related to information processing, which in turn is associated with the cognitive control system. According to the literature, a deficit in the cognitive control system interferes with language processing and contributes to non-fluent speech performance. The aim of our study was to explore this hypothesis by investigating how cognitive control interacts with language performance in participants with non-fluent aphasia. Cognitive control is a complex construct that includes working memory (WM) and the ability to resist proactive interference (PI). Based on previous research, we hypothesized that impairments in domain-general (DG) cognitive control abilities have negative effects on language processing. In contrast, better DG cognitive control functioning supports goal-directed behavior in language-related processes as well. Since stroke itself might slow down information processing, it is important to examine its negative effects on both cognitive control and language processing. Participants (N=52) in our study were individuals with non-fluent Broca’s aphasia (N = 13), with transcortical motor aphasia (N=13), individuals with stroke damage without aphasia (N=13), and unimpaired speakers (N = 13). All participants performed various computer-based tasks targeting cognitive control functions such as WM and resistance to PI in both linguistic and non-linguistic domains. Non-linguistic tasks targeted primarily DG functions, while linguistic tasks targeted more domain specific (DS) processes. The results showed that participants with Broca’s aphasia differed from the other three groups in the non-linguistic tasks. They performed significantly worse even in the baseline conditions. In contrast, we found a different performance profile in the linguistic domain, where the control group differed from all three stroke-related groups. The three groups with impairment performed more poorly than the controls but similar to each other in the verbal baseline condition. In the more complex verbal PI condition, however, participants with Broca’s aphasia performed significantly worse than all the other groups. Participants with Broca’s aphasia demonstrated the most severe language impairment and the highest vulnerability in tasks measuring DG cognitive control functions. Results support the notion that the more severe the cognitive control impairment, the more severe the aphasia. Thus, our findings suggest a strong interaction between cognitive control and language. Individuals with the most severe and most general cognitive control deficit - participants with Broca’s aphasia - showed the most severe language impairment. Individuals with better DG cognitive control functions demonstrated better language performance. While all participants with stroke damage showed impaired cognitive control functions in the linguistic domain, participants with better language skills performed also better in tasks that measured non-linguistic cognitive control functions. The overall results indicate that the level of cognitive control deficit interacts with the language functions in individuals along with the language spectrum (from severe to no impairment). However, future research is needed to determine any directionality.Keywords: cognitive control, information processing, language performance, non-fluent aphasia
Procedia PDF Downloads 12210950 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective
Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah
Abstract:
In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier
Procedia PDF Downloads 34110949 The Impact of Intelligent Control Systems on Biomedical Engineering and Research
Authors: Melkamu Tadesse Getachew
Abstract:
Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling
Procedia PDF Downloads 4410948 Aerothermal Analysis of the Brazilian 14-X Hypersonic Aerospace Vehicle at Mach Number 7
Authors: Felipe J. Costa, João F. A. Martos, Ronaldo L. Cardoso, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro
Abstract:
The Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies designed the Brazilian 14-X Hypersonic Aerospace Vehicle, which is a technological demonstrator endowed with two innovative technologies: waverider technology, to obtain lift from conical shockwave during the hypersonic flight; and uses hypersonic airbreathing propulsion system called scramjet that is based on supersonic combustion, to perform flights on Earth's atmosphere at 30 km altitude at Mach numbers 7 and 10. The scramjet is an aeronautical engine without moving parts that promote compression and deceleration of freestream atmospheric air at the inlet through the conical/oblique shockwaves generated during the hypersonic flight. During high speed flight, the shock waves and the viscous forces yield the phenomenon called aerodynamic heating, where this physical meaning is the friction between the fluid filaments and the body or compression at the stagnation regions of the leading edge that converts the kinetic energy into heat within a thin layer of air which blankets the body. The temperature of this layer increases with the square of the speed. This high temperature is concentrated in the boundary-layer, where heat will flow readily from the boundary-layer to the hypersonic aerospace vehicle structure. Fay and Riddell and Eckert methods are applied to the stagnation point and to the flat plate segments in order to calculate the aerodynamic heating. On the understanding of the aerodynamic heating it is important to analyze the heat conduction transfer to the 14-X waverider internal structure. ANSYS Workbench software provides the Thermal Numerical Analysis, using Finite Element Method of the 14-X waverider unpowered scramjet at 30 km altitude at Mach number 7 and 10 in terms of temperature and heat flux. Finally, it is possible to verify if the internal temperature complies with the requirements for embedded systems, and, if is necessary to do modifications on the structure in terms of wall thickness and materials.Keywords: aerodynamic heating, hypersonic, scramjet, thermal analysis
Procedia PDF Downloads 45210947 Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach
Authors: M. R. Vaezi, R. Ghasemi, A. Akramizadeh
Abstract:
Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. On this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC). After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems.Keywords: frequency control, islanded microgrid, multi-agent system, load shedding
Procedia PDF Downloads 46310946 Optimization of the Control Scheme for Human Extremity Exoskeleton
Authors: Yang Li, Xiaorong Guan, Cheng Xu
Abstract:
In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results.Keywords: human extremity exoskeleton, interaction force control scheme, simulation study, fuzzy self-adaptive pi controller, man-machine coordinated walking, bear payload
Procedia PDF Downloads 362