Search results for: vapor volume fraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3667

Search results for: vapor volume fraction

2437 Defect Correlation of Computed Tomography and Serial Sectioning in Additively Manufactured Ti-6Al-4V

Authors: Bryce R. Jolley, Michael Uchic

Abstract:

This study presents initial results toward the correlative characterization of inherent defects of Ti-6Al-4V additive manufacture (AM). X-Ray Computed Tomography (CT) defect data are compared and correlated with microscopic photographs obtained via automated serial sectioning. The metal AM specimen was manufactured out of Ti-6Al-4V virgin powder to specified dimensions. A post-contour was applied during the fabrication process with a speed of 1050 mm/s, power of 260 W, and a width of 140 µm. The specimen was stress relief heat-treated at 16°F for 3 hours. Microfocus CT imaging was accomplished on the specimen within a predetermined region of the build. Microfocus CT imaging was conducted with parameters optimized for Ti-6Al-4V additive manufacture. After CT imaging, a modified RoboMet. 3D version 2 was employed for serial sectioning and optical microscopy characterization of the same predetermined region. Automated montage capture with sub-micron resolution, bright-field reflection, 12-bit monochrome optical images were performed in an automated fashion. These optical images were post-processed to produce 2D and 3D data sets. This processing included thresholding and segmentation to improve visualization of defect features. The defects observed from optical imaging were compared and correlated with the defects observed from CT imaging over the same predetermined region of the specimen. Quantitative results of area fraction and equivalent pore diameters obtained via each method are presented for this correlation. It is shown that Microfocus CT imaging does not capture all inherent defects within this Ti-6Al-4V AM sample. Best practices for this correlative effort are also presented as well as the future direction of research resultant from this current study.

Keywords: additive manufacture, automated serial sectioning, computed tomography, nondestructive evaluation

Procedia PDF Downloads 127
2436 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics

Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat

Abstract:

CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.

Keywords: nanocrystals, CuInSe, thin film, optical properties

Procedia PDF Downloads 142
2435 Abatement of NO by CO on Pd Catalysts: Influence of the Support in Oxyfuel Combustion Conditions

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

The CO2 emitted from anthropic activities is perceived as a constraint in industrial activity due to taxes, stringent environmental regulations, impact on global warming… To limit these CO2 emissions, reuse of CO2 represents a promising alternative, with important applications in chemical industry and for power generation. However, CO2 valorization process requires a gas as pure as possible Oxyfuel-combustion that enables obtaining a CO2 rich stream, with water vapor (10%) is then interesting. Nevertheless to decrease the amount of the by-products found with the CO2 (especially CO and NOx which are harmful to the environment) a catalytic treatment must be applied. Nowadays three-way catalysts are well-developed material for simultaneous conversion of unburned hydrocarbons, carbon monoxide (CO) and nitrogen oxides (NOx). The use of Pd attracted considerable attention on the basis of economic factors (the high cost and scarcity of Pt and Rh). This explains the large number of studies concerning the CO-NO reaction on Pd in the recent years. In the present study, we will compare a series of Pd materials supported on different oxides for CO2 purification from the oxyfuel combustion system, by reducing NO with CO in an oxidizing environment containing CO2 rich stream and presence of 8.2% of water. Al2O3, CeO2, MgO, SiO2 and TiO2 were used as support materials of the catalysts. 1wt% Pd/Support catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2]. The obtained samples were subsequently characterized by H2 chemisorption, BET surface area and TEM. Finally, their catalytic performances were evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200mL.min−1, in the same GHSV. The catalytic performance of the Pd catalysts for CO2 purification revealed that: -The support material has a strong influence on the catalytic activity of 1wt.% Pd supported catalysts. depending of the nature of support, the Pd-based catalysts activity changes. -The highest reduction of NO with CO is obtained in the following ranking: TiO2>CeO2>Al2O3. -The supports SiO2 and MgO should be avoided for this reaction, -Total oxidation of CO occurred over different materials, -CO2 purification can reach 97%, -The presence of H2O has a positive effect on the NO reduction due to the production of the reductant H2 from WGS reaction H2O+CO → H2+CO2

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis, oxyfuel combustion

Procedia PDF Downloads 241
2434 Ecophysiological Features of Acanthosicyos horridus (!Nara) to Survive the Namib Desert

Authors: Jacques M. Berner, Monja Gerber, Gillian L. Maggs-Kolling, Stuart J. Piketh

Abstract:

The enigmatic melon species, Acanthosicyos horridus Welw. ex Hook. f., locally known as !nara, is endemic to the hyper-arid Namib Desert, where it thrives in sandy dune areas and dry river banks. The Namib Desert is characterized by extreme weather conditions which include high temperatures, very low rainfall, and extremely dry air. Plant and animals that have made the Namib Dessert their home are dependent on non-rainfall water inputs, like fog, dew and water vapor, for survival. Fog is believed to be the most important non-rainfall water input for most of the coastal Namib Desert and is a life line to many Namib plants and animals. It is commonly assumed that the !nara plant is adapted and dependent upon coastal fog events. The !nara plant shares many comparable adaptive features with other organisms that are known to exploit fog as a source of moisture. These include groove-like structures on the stems and the cone-like structures of thorns. These structures are believed to be the driving forces behind directional water flow that allow plants to take advantage of fog events. The !nara-fog interaction was investigated in this study to determine the dependence of !nara on these fog events, as it would illustrate strategies to benefit from non-rainfall water inputs. The direct water uptake capacity of !nara shoots was investigated through absorption tests. Furthermore, the movement and behavior of fluorescent water droplets on a !nara stem were investigated through time-lapse macrophotography. The shoot water potential was measured to investigate the effect of fog on the water status of !nara stems. These tests were used to determine whether the morphology of !nara has evolved to exploit fog as a non-rainfall water input and whether the !nara plant has adapted physiologically in response to fog. Chlorophyll a fluorescence was used to compare the photochemical efficiency of !nara plants on days with fog events to that on non-foggy days. The results indicate that !nara plants do have the ability to take advantage of fog events as commonly believed. However, the !nara plant did not exhibit visible signs of drought stress and this, together with the strong shoot water potential, indicates that these plants are reliant on permanent underground water sources. Chlorophyll a fluorescence data indicated that temperature stress and wind were some of the main abiotic factors influencing the plants’ overall vitality.

Keywords: Acanthosicyos horridus, chlorophyll a fluorescence, fog, foliar absorption, !nara

Procedia PDF Downloads 143
2433 Characterization of Tailings From Traditional Panning of Alluvial Gold Ore (A Case Study of Ilesa - Southwestern Nigeria Goldfield Tailings Dumps)

Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke

Abstract:

Field observation revealed a lot of artisanal gold mining activities in Ilesa gold belt of southwestern Nigeria. The possibility of alluvial and lode gold deposits in commercial quantities around this location is very high, as there are many resident artisanal gold miners who have been mining and trading alluvial gold ore for decades and to date in the area. Their major process of solid gold recovery from its ore is by gravity concentration using the convectional panning method. This method is simple to learn and fast to recover gold from its alluvial ore, but its effectiveness is based on rules of thumb and the artisanal miners' experience in handling gold ore panning tool while processing the ore. Research samples from five alluvial gold ore tailings dumps were collected and studied. Samples were subjected to particle size analysis and mineralogical and elemental characterization using X-Ray Diffraction (XRD) and Particle-Induced X-ray Emission (PIXE) methods, respectively. The results showed that the tailings were of major quartz in association with albite, plagioclase, mica, gold, calcite and sulphide minerals. The elemental composition analysis revealed a 15ppm of gold concentration in particle size fraction of -90 microns in one of the tailings dumps investigated. These results are significant. It is recommended that heaps of panning tailings should be further reprocessed using other gold recovery methods such as shaking tables, flotation and controlled cyanidation that can efficiently recover fine gold particles that were previously lost into the gold panning tailings. The tailings site should also be well controlled and monitored so that these heavy minerals do not find their way into surrounding water streams and rivers, thereby causing health hazards.

Keywords: gold ore, panning, PIXE, tailings, XRD

Procedia PDF Downloads 72
2432 Comparative Study of Bread Prepared with and without Germinated Soyabean (Glycine Max) Flour

Authors: Muhammad Arsalan Mahmoo, Allah Rakha, Muhammad Sohail

Abstract:

The supplementation of wheat flour with high lysine legume flours has positive effects on the nutritional value of bread. In present study, germinated and terminated soya flour blends were prepared and supplemented in bread in variable proportions (10 % and 20 % of each) to check its impact on quality and sensory attributes of bread. The results showed that there was a significant increase in protein, ash and crude fat contents due to increase in the level of germinated and ungerminated soya flour. However, the moisture and crude fiber contents of composite flours containing germinated and ungerminated soya flour decreased with increased level of supplementation. Mean values for physical analysis (loaf volume, specific volume, weight loss and force for texture) were significantly higher in breads prepared with germinated soya bean flour.The scores assigned to sensory parameters of breads like volume, color of crust, symmetry, color of crumb, texture, taste and aroma decreased significantly by increasing the level of germinated and ungerminated soya flour in wheat flour while color of crust and taste slightly improved. The scores given to overall acceptability of bread prepared from composite flour supplemented with 10 % germinated soya flour.

Keywords: composite bread, protein energy malnutrition, supplementation, amino acid profile, grain legumes

Procedia PDF Downloads 412
2431 Numerical Simulation of Two-Dimensional Flow over a Stationary Circular Cylinder Using Feedback Forcing Scheme Based Immersed Boundary Finite Volume Method

Authors: Ranjith Maniyeri, Ahamed C. Saleel

Abstract:

Two-dimensional fluid flow over a stationary circular cylinder is one of the bench mark problem in the field of fluid-structure interaction in computational fluid dynamics (CFD). Motivated by this, in the present work, a two-dimensional computational model is developed using an improved version of immersed boundary method which combines the feedback forcing scheme of the virtual boundary method with Peskin’s regularized delta function approach. Lagrangian coordinates are used to represent the cylinder and Eulerian coordinates are used to describe the fluid flow. A two-dimensional Dirac delta function is used to transfer the quantities between the sold to fluid domain. Further, continuity and momentum equations governing the fluid flow are solved using fractional step based finite volume method on a staggered Cartesian grid system. The developed code is validated by comparing the values of drag coefficient obtained for different Reynolds numbers with that of other researcher’s results. Also, through numerical simulations for different Reynolds numbers flow behavior is well captured. The stability analysis of the improved version of immersed boundary method is tested for different values of feedback forcing coefficients.

Keywords: Feedback Forcing Scheme, Finite Volume Method, Immersed Boundary Method, Navier-Stokes Equations

Procedia PDF Downloads 294
2430 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: subcooled boiling flow, computational fluid dynamics (CFD), mechanistic approach, two-fluid model

Procedia PDF Downloads 300
2429 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay

Authors: Zhen Cao, Yu Zhu, Junxue Fu

Abstract:

Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.

Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration

Procedia PDF Downloads 90
2428 Evaluation of Impact on Traffic Conditions Due to Electronic Toll Collection System Design in Thailand

Authors: Kankrong Suangka

Abstract:

This research explored behaviors of toll way users that impact their decision to use the Electronic Toll Collection System (ETC). It also went on to explore and evaluated the efficiency of toll plaza in terms of number of ETC booths in toll plaza and its lane location. The two main parameters selected for the scenarios analyzed were (1) the varying ration of ETC enabled users (2) the varying locations of the dedicated ETC lane. There were a total of 42 scenarios analyzed. Researched data indicated that in A.D.2013, the percentage of ETC user from the total toll user is 22%. It was found that the delay at the payment booth was reduced by increasing the ETC booth by 1 more lane under the condition that the volume of ETC users passing through the plaza less than 1,200 vehicles/hour. Meanwhile, increasing the ETC lanes by 2 lanes can accommodate an increased traffic volume to around 1,200 to 1,800 vehicles/hour. Other than that, in terms of the location of ETC lane, it was found that if for one ETC lane-plazas, installing the ETC lane at the far right are the best alternative. For toll plazas with 2 ETC lanes, the best layout is to have 1 lane in the middle and 1 lane at the far right. This layout shows the least delay when compared to other layouts. Furthermore, the results from this research showed that micro-simulator traffic models have potential for further applications and use in designing toll plaza lanes. Other than that, the results can also be used to analyze the system of the nearby area with similar traffic volume and can be used for further design improvements.

Keywords: the electronic toll collection system, average queuing delay, toll plaza configuration, bioinformatics, biomedicine

Procedia PDF Downloads 222
2427 Effects of Climate Change and Land Use, Land Cover Change on Atmospheric Mercury

Authors: Shiliang Wu, Huanxin Zhang

Abstract:

Mercury has been well-known for its negative effects on wildlife, public health as well as the ecosystem. Once emitted into atmosphere, mercury can be transformed into different forms or enter the ecosystem through dry deposition or wet deposition. Some fraction of the mercury will be reemitted back into the atmosphere and be subject to the same cycle. In addition, the relatively long lifetime of elemental mercury in the atmosphere enables it to be transported long distances from source regions to receptor regions. Global change such as climate change and land use/land cover change impose significant challenges for mercury pollution control besides the efforts to regulate mercury anthropogenic emissions. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from changes in climate and land use/land cover on the global budget of mercury as well as its atmospheric transport, chemical transformation, and deposition. We carry out a suite of sensitivity model simulations to separate the impacts on atmospheric mercury associated with changes in climate and land use/land cover. Both climate change and land use/land cover change are found to have significant impacts on global mercury budget but through different pathways. Land use/land cover change primarily increase mercury dry deposition in northern mid-latitudes over continental regions and central Africa. Climate change enhances the mobilization of mercury from soil and ocean reservoir to the atmosphere. Also, dry deposition is enhanced over most continental areas while a change in future precipitation dominates the change in mercury wet deposition. We find that 2000-2050 climate change could increase the global atmospheric burden of mercury by 5% and mercury deposition by up to 40% in some regions. Changes in land use and land cover also increase mercury deposition over some continental regions, by up to 40%. The change in the lifetime of atmospheric mercury has important implications for long-range transport of mercury. Our case study shows that changes in climate and land use and cover could significantly affect the source-receptor relationships for mercury.

Keywords: mercury, toxic pollutant, atmospheric transport, deposition, climate change

Procedia PDF Downloads 472
2426 Experimental Study on Heat and Mass Transfer of Humidifier for Fuel Cell

Authors: You-Kai Jhang, Yang-Cheng Lu

Abstract:

Major contributions of this study are threefold: designing a new model of planar-membrane humidifier for Proton Exchange Membrane Fuel Cell (PEMFC), an index to measure the Effectiveness (εT) of that humidifier, and an air compressor system to replicate related planar-membrane humidifier experiments. PEMFC as a kind of renewable energy has become more and more important in recent years due to its reliability and durability. To maintain the efficiency of the fuel cell, the membrane of PEMFC need to be controlled in a good hydration condition. How to maintain proper membrane humidity is one of the key issues to optimize PEMFC. We developed new humidifier to recycle water vapor from cathode air outlet so as to keep the moisture content of cathode air inlet in a PEMFC. By measuring parameters such as dry side air outlet dew point temperature, dry side air inlet temperature and humidity, wet side air inlet temperature and humidity, and differential pressure between dry side and wet side, we calculated indices obtained by dew point approach temperature (DPAT), water flux (J), water recovery ratio (WRR), effectiveness (εT), and differential pressure (ΔP). We discussed six topics including sealing effect, flow rate effect, flow direction effect, channel effect, temperature effect, and humidity effect by using these indices. Gas cylinders are used as sources of air supply in many studies of humidifiers. Gas cylinder depletes quickly during experiment at 1kW air flow rate, and it causes replication difficult. In order to ensure high stable air quality and better replication of experimental data, this study designs an air supply system to overcome this difficulty. The experimental result shows that the best rate of pressure loss of humidifier is 0.133×10³ Pa(g)/min at the torque of 25 (N.m). The best humidifier performance ranges from 30-40 (LPM) of air flow rates. The counter flow configured humidifies moisturizes the dry side inlet air more effectively than the parallel flow humidifier. From the performance measurements of the channel plates various rib widths studied in this study, it is found that the narrower the rib width is, the more the performance of humidifier improves. Raising channel width in same hydraulic diameter (Dh ) will obtain higher εT and lower ΔP. Moreover, increasing the dry side air inlet temperature or humidity will lead to lower εT. In addition, when the dry side air inlet temperature exceeds 50°C, the effect becomes even more obvious.

Keywords: PEM fuel cell, water management, membrane humidifier, heat and mass transfer, humidifier performance

Procedia PDF Downloads 154
2425 A Study of Impact of Changing Fuel Practices on Organic Carbon and Elemental Carbon Levels in Indoor Air in Two States of India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

India is a rural major country and majority of rural population is dependent on burning of biomass as fuel for domestic cooking on traditional stoves (Chullahs) and heating purposes. This results into indoor air pollution and ultimately affects health of the residents. Still, a very small fraction of rural population has been benefitted by the facilities of Liquefied Petroleum Gas (LPG) cylinders. Different regions of country follow different methods and use different type of biomass for cooking. So in order to study the differences in cooking practices and resulting indoor air pollution, this study was carried out in two rural areas of India viz. Budhwada, Madhya Pradesh and Baggi, Himachal Pradesh. Both the regions have significant differences in terms of topography, culture and daily practices. Budhwada lies in plain area and Baggi belongs to hilly terrain. The study of carbonaceous aerosols was carried out in four different houses of each village. The residents were asked to bring slight change in their practices by cooking only with biomass (BB) then with a mix of biomass and LPG (BL) and then finally only with LPG (LP). It was found that in BB, average values of organic carbon (OC) and elemental carbon (EC) were 28% and 44% lower in Budhwada than in Baggi whereas a reverse trend was found where OC and EC was respectively more by 56% and 26% with BL and by 54% and 29% with LP in Budhwada than in Baggi. Although, a significant reduction was found both in Budhwada (OC by 49% and EC by 34%) as well as in Baggi (OC by 84% and EC by 73%) when cooking was shifted from BB to LP. The OC/EC ratio was much higher for Budhwada (BB=9.9; BL=2.5; LP=6.1) than for Baggi (BB=1.7; BL=1.6; LP=1.3). The correlation in OC and EC was found to be excellent in Baggi (r²=0.93) and relatively poor in Budhwada (r²=0.65). A questionnaire filled by the residents suggested that they agree to the health benefits of using LPG over biomass burning but the challenges of supply of LPG and changing the prevailing tradition of cooking on Chullah are making it difficult for them to make this shift.

Keywords: biomass burning, elemental carbon, liquefied petroluem gas, organic carbon

Procedia PDF Downloads 178
2424 Assessment of Growth Variation and Phytoextraction Potential of Four Salix Varieties Grown in Zn Contaminated Soil Amended with Lime and Wood Ash

Authors: Mir Md Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen

Abstract:

Soils contaminated with metals, e.g., copper (Cu), zinc (Zn) and nickel (Ni) are one of the main global environmental problems. Zn is an important element for plant growth, but excess levels may become a threat to plant survival. Soils polluted with metals may also pose risks and hazards to human health. Afforestation based on short rotation Salix crops may be a good solution for the reduction of metals toxicity levels in the soil and in ecosystem restoration of severely polluted sites. In a greenhouse experiment, plant growth and zinc (Zn) uptake by four Salix cultivars grown in Zn contaminated soils collected from a mining area in Finland were tested to assess their suitability for phytoextraction. The sequential extraction technique and inductively coupled plasma‒mass spectrometry (ICP–MS) were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The cultivars displayed resistance to heavily polluted soils throughout the whole experiment. After uptake, the total mean Zn concentrations ranged from 776 to 1823 mg kg⁻¹. The average uptake percentage of Zn across all cultivars and treatments ranged from 97 to 223%. Lime and wood ash addition showed a significant effect on plant dry biomass growth and metal uptake percentage of Zn in most of the cultivars. The results revealed that Salix cultivars have the potential to accumulate and take up significant amounts of Zn. Ecological restoration of polluted soils could be environmentally favorable in conjunction with economically profitable practices, such as forestry and bioenergy production. As such, the utilization of Salix for phytoextraction and bioenergy purposes is of considerable interest.

Keywords: lime, phytoextraction, Salix, wood ash, zinc

Procedia PDF Downloads 139
2423 Organic Rankine Cycles (ORC) for Mobile Applications: Economic Feasibility in Different Transportation Sectors

Authors: Roberto Pili, Alessandro Romagnoli, Hartmut Spliethoff, Christoph Wieland

Abstract:

Internal combustion engines (ICE) are today the most common energy system to drive vehicles and transportation systems. Numerous studies state that 50-60% of the fuel energy content is lost to the ambient as sensible heat. ORC offers a valuable alternative to recover such waste heat from ICE, leading to fuel energy savings and reduced emissions. In contrast, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. Consequently, a lower income from delivered freight or passenger tickets can be achieved. The economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume have not been analyzed in open literature yet. This work intends to define such a benchmark for ORC applications in the transportation sector and investigates the current situation on the market. The applied methodology refers to the freight market, but it can be extended to passenger transportation as well. The economic parameter X is defined as the ratio between the variation of the freight revenues and the variation of fuel costs when an ORC is installed as a bottoming cycle for an ICE with respect to a reference case without ORC. A good economic situation is obtained when the reduction in fuel costs is higher than the reduction of revenues for the delivered freight, i.e. X<1. Through this constraint, a maximum allowable change of transport capacity for a given relative reduction in fuel consumption is determined. The specific fuel consumption is influenced by the ORC in two ways. Firstly because the transportable freight is reduced and secondly because the total weight of the vehicle is increased. Note, that the generated electricity of the ORC influences the size of the ICE and the fuel consumption as well. Taking the above dependencies into account, the limiting condition X = 1 results in a second order equation for the relative change in transported cargo. The described procedure is carried out for a typical city bus, a truck of 24-40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and handysize-like vessel (25000 t). The maximum allowable mass and volume of the ORC are calculated in dependence of its efficiency in order to satisfy X < 1. Subsequently, these values are compared with weight and volume of commercial ORC products. For ships of any size, the situation appears already highly favorable. A different result is obtained for road and rail vehicles. For trains, the mass and the volume of common ORC products have to be reduced at least by 50%. For trucks and buses, the situation looks even worse. The findings of the present study show a theoretical and practical approach for the economic application of ORC in the transportation sector. In future works, the potential for volume and mass reduction of the ORC will be addressed, together with the integration of an economic assessment for the ORC.

Keywords: ORC, transportation, volume, weight

Procedia PDF Downloads 213
2422 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes

Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu

Abstract:

Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.

Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment

Procedia PDF Downloads 176
2421 Analysis of Extracellular Vesicles Interactomes of two Isoforms of Tau Protein via SHSY-5Y Cell Lines

Authors: Mohammad Aladwan

Abstract:

Alzheimer’s disease (AD) is a widespread dementing illness with a complex and poorly understood etiology. An important role in improving our understanding of the AD process is the modeling of disease-associated changes in tau protein phosphorylation, a protein known to mediate events essential to the onset and progression of AD. A main feature of AD is the abnormal phosphorylation of tau protein and the presence of neurofibrillary tangles. In order to evaluate the respective roles of the microtubule-binding region (MTBR) and alternatively spliced exons in the N-terminal projection domains in AD, we have constructed SHSY-5Y cell lines that stably overexpress four different species of tau protein (4R2N, 4R0N, N(E-2), N(E+2)). Since the toxicity and spreading of tau lesions in AD depends on the interactions of tau with other proteins, we have performed a proteomic analysis of exosome-fraction interactomes for cell lysates and media samples that were isolated from SHSY-5Y cell lines. Functional analysis of tau interactomes based on gene ontology (GO) terms was performed using the String 10.5 database program. The highest number of exosomes proteomes and tau associated proteins were found with 4R2N isoform (2771 and 159) in cell lysate and they have a high strength of connectivity (78%) between proteins, while N(E-2) isoform in the media proteomes has the highest number of proteins and tau associated protein (1829 and 205). Moreover, known AD markers were significantly enriched in secreted interactomes relative to lysate interactomes in the SHSY-5Y cells of tau isoforms lacking exons 2 and 3 in the N-terminal. The lack of exon 2 (E-2) from tau protein can be mediated by tau secretion and spreading to different cells. Enriched functions in the secreted E-2 interactome include signaling and developmental pathways that have been linked to a) tau misprocessing and lesion development and b) tau secretion and which, therefore, could play novel roles in AD pathogenesis.

Keywords: Alzheimer's disease, dementia, tau protein, neurodegenration disease

Procedia PDF Downloads 84
2420 3D Electrode Carrier and its Implications on Retinal Implants

Authors: Diego Luján Villarreal

Abstract:

Retinal prosthetic devices aim to repair some vision in visual impairment patients by stimulating electrically neural cells in the visual system. In this study, the 3D linear electrode carrier is presented. A simulation framework was developed by placing the 3D carrier 1 mm away from the fovea center at the highest-density cell. Cell stimulation is verified in COMSOL Multiphysics by developing a 3D computational model which includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. Current distribution resulting from low threshold amplitudes produces a small volume equivalent to the volume confined by individual cells at the highest-density cell using small-sized electrodes. Delicate retinal tissue is protected by excessive charge density

Keywords: retinal prosthetic devices, visual devices, retinal implants., visual prosthetic devices

Procedia PDF Downloads 90
2419 Using Complete Soil Particle Size Distributions for More Precise Predictions of Soil Physical and Hydraulic Properties

Authors: Habib Khodaverdiloo, Fatemeh Afrasiabi, Farrokh Asadzadeh, Martinus Th. Van Genuchten

Abstract:

The soil particle-size distribution (PSD) is known to affect a broad range of soil physical, mechanical and hydraulic properties. Complete descriptions of a PSD curve should provide more information about these properties as opposed to having only information about soil textural class or the soil sand, silt and clay (SSC) fractions. We compared the accuracy of 19 different models of the cumulative PSD in terms of fitting observed data from a large number of Iranian soils. Parameters of the six most promising models were correlated with measured values of the field saturated hydraulic conductivity (Kfs), the mean weight diameter of soil aggregates (MWD), bulk density (ρb), and porosity (∅). These same soil properties were correlated also with conventional PSD parameters (SSC fractions), selected geometric PSD parameters (notably the mean diameter dg and its standard deviation σg), and several other PSD parameters (D50 and D60). The objective was to find the best predictions of several soil physical quality indices and the soil hydraulic properties. Neither SSC nor dg, σg, D50 and D60 were found to have a significant correlation with both Kfs or logKfs, However, the parameters of several cumulative PSD models showed statistically significant correlation with Kfs and/or logKfs (|r| = 0.42 to 0.65; p ≤ 0.05). The correlation between MWD and the model parameters was generally also higher than either with SSC fraction and dg, or with D50 and D60. Porosity (∅) and the bulk density (ρb) also showed significant correlation with several PSD model parameters, with ρb additionally correlating significantly with various geometric (dg), mechanical (D50 and D60), and agronomic (clay and sand) representations of the PSD. The fitted parameters of selected PSD models furthermore showed statistically significant correlations with Kfs,, MWD and soil porosity, which may be viewed as soil quality indices. Results of this study are promising for developing more accurate pedotransfer functions.

Keywords: particle size distribution, soil texture, hydraulic conductivity, pedotransfer functions

Procedia PDF Downloads 262
2418 Potential Impacts of Warming Climate on Contributions of Runoff Components from Two Catchments of Upper Indus Basin, Karakoram, Pakistan

Authors: Syed Hammad Ali, Rijan Bhakta Kayastha, Ahuti Shrestha, Iram Bano

Abstract:

The hydrology of Upper Indus basin is not recognized well due to the intricacies in the climate and geography, and the scarcity of data above 5000 meters above sea level where most of the precipitation falls in the form of snow. The main objective of this study is to measure the contributions of different components of runoff in Upper Indus basin. To achieve this goal, the Modified positive degree-day model (MPDDM) was used to simulate the runoff and investigate its components in two catchments of Upper Indus basin, Hunza and Gilgit River basins. These two catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. The components of runoff like snow-ice melt and rainfall-base flow were identified by the model. The simulation results show that the MPDDM shows a good agreement between observed and modeled runoff of these two catchments and the effects of snow-ice are mainly reliant on the catchment characteristics and the glaciated area. For Gilgit River basin, the largest contributor to runoff is rain-base flow, whereas large contribution of snow-ice melt observed in Hunza River basin due to its large fraction of glaciated area. This research will not only contribute to the better understanding of the impacts of climate change on the hydrological response in the Upper Indus, but will also provide guidance for the development of hydropower potential, water resources management and offer a possible evaluation of future water quantity and availability in these catchments.

Keywords: future discharge projection, positive degree day, regional climate model, water resource management

Procedia PDF Downloads 337
2417 A Study on the Different Components of a Typical Back-Scattered Chipless RFID Tag Reflection

Authors: Fatemeh Babaeian, Nemai Chandra Karmakar

Abstract:

Chipless RFID system is a wireless system for tracking and identification which use passive tags for encoding data. The advantage of using chipless RFID tag is having a planar tag which is printable on different low-cost materials like paper and plastic. The printed tag can be attached to different items in the labelling level. Since the price of chipless RFID tag can be as low as a fraction of a cent, this technology has the potential to compete with the conventional optical barcode labels. However, due to the passive structure of the tag, data processing of the reflection signal is a crucial challenge. The captured reflected signal from a tag attached to an item consists of different components which are the reflection from the reader antenna, the reflection from the item, the tag structural mode RCS component and the antenna mode RCS of the tag. All these components are summed up in both time and frequency domains. The effect of reflection from the item and the structural mode RCS component can distort/saturate the frequency domain signal and cause difficulties in extracting the desired component which is the antenna mode RCS. Therefore, it is required to study the reflection of the tag in both time and frequency domains to have a better understanding of the nature of the captured chipless RFID signal. The other benefits of this study can be to find an optimised encoding technique in tag design level and to find the best processing algorithm the chipless RFID signal in decoding level. In this paper, the reflection from a typical backscattered chipless RFID tag with six resonances is analysed, and different components of the signal are separated in both time and frequency domains. Moreover, the time domain signal corresponding to each resonator of the tag is studied. The data for this processing was captured from simulation in CST Microwave Studio 2017. The outcome of this study is understanding different components of a measured signal in a chipless RFID system and a discovering a research gap which is a need to find an optimum detection algorithm for tag ID extraction.

Keywords: antenna mode RCS, chipless RFID tag, resonance, structural mode RCS

Procedia PDF Downloads 177
2416 Clinical Evaluation of Neutrophil to Lymphocytes Ratio and Platelets to Lymphocytes Ratio in Immune Thrombocytopenic Purpura

Authors: Aisha Arshad, Samina Naz Mukry, Tahir Shamsi

Abstract:

Background: Immune thrombocytopenia (ITP) is an autoimmune disorder. Besides platelets counts, immature platelets fraction (IPF) can be used as tool to predict megakaryocytic activity in ITP patients. The clinical biomarkers like Neutrophils to lymphocytes ratio (NLR) and platelet to lymphocytes ratio(PLR) predicts inflammation and can be used as prognostic markers.The present study was planned to assess the ratios in ITP and their utility in predicting prognosis after treatment. Methods: A total of 111 patients of ITP with same number of healthy individuals were included in this case control study during the period of January 2015 to December 2017.All the ITP patients were grouped according to guidelines of International working group of ITP. A 3cc blood was collected in EDTA tube and blood parameters were evaluated using Sysmex 1000 analyzer.The ratios were calculated by using absolute counts of Neutrophils,Lymphocytes and platelets.The significant (p=<0.05) difference between ITP patients and healthy control groups was determined by Kruskal wallis test, Dunn’s test and spearman’s correlation test was done using SPSS version 23. Results: The significantly raised total leucocytes counts (TLC) and IPF along with low platelets counts were observed in ITP patients as compared to healthy controls.In ITP groups,very low platelet count with median and IQR of 2(3.8)3x109/l with highest mean and IQR IPF 25.4(19.8)% was observed in newly diagnosed ITP group. The NLR was high with prognosis of disease as higher levels were observed in P-ITP. The PLR was significantly low in ND-ITP ,P-ITP, C-ITP, R-ITP and compared to controls with p=<0.001 as platelet were less in number in all ITP patients. Conclusion: The IPF can be used in evaluation of bone marrow response in ITP. The simple, reliable and calculated NLR and PLR ratios can be used in predicting prognosis and response to treatment in ITP and to some extend the severity of disease.

Keywords: neutrophils, platelets, lymphocytes, infection

Procedia PDF Downloads 80
2415 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E.A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for meat products. However, to the best of our knowledge, the incorporation of free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for meats is seldom reported. Therefore, this study aims at protection of the aqueous crude extract of hibiscus flowers utilizing spry drying encapsulation technique. Fourier transform infrared (FTIR), scanning electron microscope (SEM), and zetasizer results confirmed the successful formation of assembled capsules via strong interactions, spherical rough microparticles, and ~ 235 nm of particle size, respectively. Also, the obtained microcapsules enjoy high thermal stability, unlike the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to PVA. Application of the prepared films on the real meat samples displayed low bacterial growth with a slight increase in the pH over the storage time up to 10 days at 4 oC which further proved the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of prepared composite films pave the way towards combined active/smart food packaging applications. This would play a vital role in the food hygiene, including also quality control and assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 70
2414 Uniqueness of Fingerprint Biometrics to Human Dynasty: A Review

Authors: Siddharatha Sharma

Abstract:

With the advent of technology and machines, the role of biometrics in society is taking an important place for secured living. Security issues are the major concern in today’s world and continue to grow in intensity and complexity. Biometrics based recognition, which involves precise measurement of the characteristics of living beings, is not a new method. Fingerprints are being used for several years by law enforcement and forensic agencies to identify the culprits and apprehend them. Biometrics is based on four basic principles i.e. (i) uniqueness, (ii) accuracy, (iii) permanency and (iv) peculiarity. In today’s world fingerprints are the most popular and unique biometrics method claiming a social benefit in the government sponsored programs. A remarkable example of the same is UIDAI (Unique Identification Authority of India) in India. In case of fingerprint biometrics the matching accuracy is very high. It has been observed empirically that even the identical twins also do not have similar prints. With the passage of time there has been an immense progress in the techniques of sensing computational speed, operating environment and the storage capabilities and it has become more user convenient. Only a small fraction of the population may be unsuitable for automatic identification because of genetic factors, aging, environmental or occupational reasons for example workers who have cuts and bruises on their hands which keep fingerprints changing. Fingerprints are limited to human beings only because of the presence of volar skin with corrugated ridges which are unique to this species. Fingerprint biometrics has proved to be a high level authentication system for identification of the human beings. Though it has limitations, for example it may be inefficient and ineffective if ridges of finger(s) or palm are moist authentication becomes difficult. This paper would focus on uniqueness of fingerprints to the human beings in comparison to other living beings and review the advancement in emerging technologies and their limitations.

Keywords: fingerprinting, biometrics, human beings, authentication

Procedia PDF Downloads 311
2413 Application of Constructivist-Based (5E’s) Instructional Approach on Pupils’ Retention: A Case Study in Primary Mathematics in Enugu State

Authors: Ezeamagu M.U, Madu B.C

Abstract:

This study was designed to investigate the efficacy of 5Es constructivist-based instructional model on students’ retention in primary Mathematics. 5Es stands for Engagement, Exploration, Explanation, Elaboration and Evaluation. The study adopted the pre test post test non-equivalent control group quasi-experimental research design. The sample size for the study was one hundred and thirty four pupils (134), seventy six male (76) and fifty eight female (58) from two primary schools in Nsukka education zone. Two intact classes in each of the sampled schools comprising all the primary four pupils were used. Each of the schools was given the opportunity of being assigned randomly to either experimental or control group. The Experimental group was taught using 5Es model while the control group was taught using the conventional method. Two research questions were formulated to guide the study and three hypotheses were tested at p ≤ 0. 05. A Fraction Achievement Test (FAT) of ten (10) questions were used to obtain data on pupils’ retention. Research questions were answered using mean and standard deviation while hypotheses were tested using analysis of covariance (ANCOVA). The result revealed that the 5Es model was more effective than the conventional method of teaching in enhancing pupils’ performance and retention in mathematics, secondly there is no significant difference in the mean retention scores of male and female students taught using 5Es instructional model. Based on the findings, it was recommended among other things, that the 5Es instructional model should be adopted in the teaching of mathematics in primary level of the educational system. Seminar, workshops and conferences should be mounted by professional bodies, federal and state ministries of education on the use of 5Es model. This will enable the mathematics educator, serving teachers, students and all to benefit from the approach.

Keywords: constructivist, education, mathematics, primary, retention

Procedia PDF Downloads 433
2412 Effect Of Shading In Evaporatively Cooled Greenhouses In The Mediterranean Region

Authors: Nikolaos Katsoulas, Sofia Faliagka, Athanasios Sapounas

Abstract:

Greenhouse ventilation is an effective way to remove the extra heat from the greenhouse through air exchange between inside and outside when outside air temperature is lower. However, in the Mediterranean areas during summer, most of the day, the outside air temperature reaches values above 25 C; and natural ventilation can not remove the excess heat outside the greenhouse. Shade screens and whitewash are major existing measures used to reduce the greenhouse air temperature during summer by reducing the solar radiation entering the greenhouse. However, the greenhouse air temperature is reduced with a cost in radiation reduction. In addition, due to high air temperature values outside the greenhouse, generally, these systems are not sufficient for extracting the excess energy during sunny summer days and therefore, other cooling methods, such as forced ventilation combined with evaporative cooling, are needed. Evaporative cooling by means of pad and fan or fog systems is a common technique to reduce sensible heat load by increasing the latent heat fraction of dissipated energy. In most of the cases, the greenhouse growers, when all the above systems are available, apply both shading and evaporative cooling. If a movable screen is available, then the screen is usually activated when a certain radiation level is reached. It is not clear whether the shading screens should be used over the growth cycle or only during the most sensitive stages when the crops had a low leaf area and the canopy transpiration rate cannot significantly contribute to the greenhouse cooling. Furthermore, it is not clear which is the optimum radiation level that screen must be activated. This work aims to present the microclimate and cucumber crop physiological response and yield observed in two greenhouse compartments equipped with a pad and fan evaporative cooling system and a thermal/shading screen that is activated at different radiation levels: when the outside solar radiation reaches 700 or 900 W/m2. The greenhouse is located in Velestino, in Central Greece and the measurements are performed during the spring -summer period with the outside air temperature during summer reaching values up to 42C.

Keywords: microclimate, shading, screen, pad and fan, cooling

Procedia PDF Downloads 54
2411 Increased Reaction and Movement Times When Text Messaging during Simulated Driving

Authors: Adriana M. Duquette, Derek P. Bornath

Abstract:

Reaction Time (RT) and Movement Time (MT) are important components of everyday life that have an effect on the way in which we move about our environment. These measures become even more crucial when an event can be caused (or avoided) in a fraction of a second, such as the RT and MT required while driving. The purpose of this study was to develop a more simple method of testing RT and MT during simulated driving with or without text messaging, in a university-aged population (n = 170). In the control condition, a randomly-delayed red light stimulus flashed on a computer interface after the participant began pressing the ‘gas’ pedal on a foot switch mat. Simple RT was defined as the time between the presentation of the light stimulus and the initiation of lifting the foot from the switch mat ‘gas’ pedal; while MT was defined as the time after the initiation of lifting the foot, to the initiation of depressing the switch mat ‘brake’ pedal. In the texting condition, upon pressing the ‘gas’ pedal, a ‘text message’ appeared on the computer interface in a dialog box that the participant typed on their cell phone while waiting for the light stimulus to turn red. In both conditions, the sequence was repeated 10 times, and an average RT (seconds) and average MT (seconds) were recorded. Condition significantly (p = .000) impacted overall RTs, as the texting condition (0.47 s) took longer than the no-texting (control) condition (0.34 s). Longer MTs were also recorded during the texting condition (0.28 s) than in the control condition (0.23 s), p = .001. Overall increases in Response Time (RT + MT) of 189 ms during the texting condition would equate to an additional 4.2 meters (to react to the stimulus and begin braking) if the participant had been driving an automobile at 80 km per hour. In conclusion, increasing task complexity due to the dual-task demand of text messaging during simulated driving caused significant increases in RT (41%), MT (23%) and Response Time (34%), thus further strengthening the mounting evidence against text messaging while driving.

Keywords: simulated driving, text messaging, reaction time, movement time

Procedia PDF Downloads 511
2410 The Isolation and Performance Evaluation of Yeast (Saccharomyces cerevisiae) from Raffia Palm (Raphia hookeri) Wine Used at Different Concentrations for Proofing of Bread Dough

Authors: Elizabeth Chinyere Amadi

Abstract:

Yeast (sacchoromyces cerevisiae) was isolated from the fermenting sap of raffia palm (Raphia hookeri) wine. Different concerntrations of the yeast isolate were used to produce bread samples – B, C, D, E, F containing (2, 3, 4, 5, 6) g of yeast isolate respectively, other ingredients were kept constant. Sample A, containing 2g of commercial baker yeast served as control. The proof heights, weights, volumes and specific volume of the dough and bread samples were determined. The bread samples were also subjected to sensory evaluation using a 9–point hedonic scale. Results showed that proof height increased with increased concentration of the yeast isolate; that is direct proportion. Sample B with the least concentration of the yeast isolate had the least loaf height and volume of 2.80c m and 200 cm³ respectively but exhibited the highest loaf weight of 205.50g. However, Sample A, (commercial bakers’ yeast) had the highest loaf height and volume of 5.00 cm and 400 cm³ respectively. The sensory evaluation results showed sample D compared favorably with sample A in all the organoleptic attributes-(appearance, taste, crumb texture, crust colour and overall acceptability) tested for (P< 0.05). It was recommended that 4g compressed yeast isolate per 100g flour could be used to proof dough as a substitute for commercial bakers’ yeast and produce acceptable bread loaves.

Keywords: isolation of yeast, performance evaluation of yeast, Raffia palm wine, used at different concentrations, proofing of bread dough

Procedia PDF Downloads 300
2409 Right Ventricular Dynamics During Breast Cancer Chemotherapy in Low Cardiovascular Risk Patients

Authors: Nana Gorgiladze, Tamar Gaprindashvili, Mikheil Shavdia, Zurab Pagava

Abstract:

Introduction/Purpose Chemotherapy is a common treatment for breast cancer, but it can also cause damage to the heart and blood vessels. This damage, known as cancer therapy-related cardiovascular toxicity (CTR-CVT), can increase the risk of heart failure and death in breast cancer patients. The left ventricle is often affected by CTR-CVT, but the right ventricle (RV) may also be vulnerable to CTR-CVT and may show signs of dysfunction before the left ventricle. The study aims to investigate how the RV function changes during chemotherapy for breast cancer by using conventional echocardiographic and global longitudinal strain (GLS) techniques. By measuring the GLS strain of the RV, researchers tend to detect early signs of CTR-CVT and improve the management of breast cancer patients. Methods The study was conducted on 28 women with low cardiovascular risk who received anthracycline chemotherapy for breast cancer. Conventional 2D echocardiography (LVEF, RVS’, TAPSE) and speckle-tracking echocardiography (STE) measurements of the left and right ventricles (LVGLS, RVGLS) were used to assess cardiac function before and after chemotherapy. All patients had normal LVEF at the beginning of the study. Cardiotoxicity was defined as a new LVEF reduction of 10 percentage points to an LVEF of 40-49% and/or a new decline in GLS of 15% from baseline, as proposed by the most recent cardio-oncology guideline. ResultsThe research found that the LVGLS decreased from -21.2%2.1% to -18.6%2.6% (t-test = -4.116; df = 54, p=0.001). The change in value LV-GLS was 2.6%3.0%. The mean percentage change of the LVGLS was 11,6%13,3%; p=0.001. Similarly, the right ventricular global longitudinal strain (RVGLS) decreased from -25.2%2.9% to -21.4%4.4% (t-test = -3.82; df = 54, p=0.001). The RV-GLS value of change was 3.8%3.6%. Likewise, the percentage decrease of the RVGLS was 15,0%14,3%, p=0.001.However, the measurements of the right ventricular systolic function (RVS) and tricuspid annular plane systolic excursion (TAPSE) were insignificant, and the left ventricular ejection fraction ( LVEF) remained unchanged.

Keywords: cardiotoxicity, chemotherapy, GLS, right ventricle

Procedia PDF Downloads 51
2408 A New Computational Package for Using in CFD and Other Problems (Third Edition)

Authors: Mohammad Reza Akhavan Khaleghi

Abstract:

This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it.

Keywords: reduced finite element method, new computational package, new finite element formulation, new higher-order form, new isogeometric analysis

Procedia PDF Downloads 97