Search results for: stock density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4154

Search results for: stock density

2924 Coarse-Grained Computational Fluid Dynamics-Discrete Element Method Modelling of the Multiphase Flow in Hydrocyclones

Authors: Li Ji, Kaiwei Chu, Shibo Kuang, Aibing Yu

Abstract:

Hydrocyclones are widely used to classify particles by size in industries such as mineral processing and chemical processing. The particles to be handled usually have a broad range of size distributions and sometimes density distributions, which has to be properly considered, causing challenges in the modelling of hydrocyclone. The combined approach of Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) offers convenience to model particle size/density distribution. However, its direct application to hydrocyclones is computationally prohibitive because there are billions of particles involved. In this work, a CFD-DEM model with the concept of the coarse-grained (CG) model is developed to model the solid-fluid flow in a hydrocyclone. The DEM is used to model the motion of discrete particles by applying Newton’s laws of motion. Here, a particle assembly containing a certain number of particles with same properties is treated as one CG particle. The CFD is used to model the liquid flow by numerically solving the local-averaged Navier-Stokes equations facilitated with the Volume of Fluid (VOF) model to capture air-core. The results are analyzed in terms of fluid and solid flow structures, and particle-fluid, particle-particle and particle-wall interaction forces. Furthermore, the calculated separation performance is compared with the measurements. The results obtained from the present study indicate that this approach can offer an alternative way to examine the flow and performance of hydrocyclones

Keywords: computational fluid dynamics, discrete element method, hydrocyclone, multiphase flow

Procedia PDF Downloads 392
2923 Antihyperglycaemic and Antihyperlipidemic Activities of Pleiogynium timorense Seeds and Identification of Bioactive Compounds

Authors: Ataa A. Said, Elsayed A. Abuotabl, Gehan F. Abdel Raoof, Khaled Y. Mohamed

Abstract:

The aim of this study is to evaluate antihyperglycaemic and antihyperlipidemic activities of Pleiogynium timorense (DC.) Leenh (Anacardiaceae) seeds as well as to isolate and identify the bioactive compounds. Antihyperglycaemic effect was evaluated by measuring the effect of two dose levels (150 and 300 mg/kg) of 70% methanol extract of Pleiogynium timorense seeds on blood glucose level when administered 45 minutes before glucose loading. In addition, the effect of the plant extract on the lipid profile was determined by measuring serum total lipids (TL), total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). Furthermore, the bioactive compounds were isolated and identified by chromatographic and spectrometric methods.The results showed that the methanolic extract of the seeds significantly reduced the levels of blood glucose,(TL), (TC), (TG) and (LDL-C) but no significant effect on (HDL-C) comparing with control group. Furthermore, four phenolic compound were isolated which were identified as; catechin, gallic acid, para methoxy benzaldehyde and pyrogallol which were isolated for the first time from the plant. In addition sulphur -containing compound (sulpholane) was isolated for the first time from the plant and from the family. To our knowledge, this is the first study about antihyperglycaemicand antihyperlipidemic activities of the seeds of Pleiogyniumtimorense and its bioactive compounds. So, the methanolic extract of the seeds of Pleiogynium timorense could be a step towards the development of new antihyperglycaemic and antihyperlipidemic drugs.

Keywords: antihyperglycaemic, bioactive compounds, phenolic, Pleiogynium timorense, seeds

Procedia PDF Downloads 205
2922 Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics

Authors: C. S. Saini

Abstract:

The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126 %, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90 %, rehydration ratio 544 % and moisture retention 11.90 % with 75 % desirability.

Keywords: black gram, corn flour, extrusion, physical characteristics

Procedia PDF Downloads 461
2921 Financial Assets Return, Economic Factors and Investor's Behavioral Indicators Relationships Modeling: A Bayesian Networks Approach

Authors: Nada Souissi, Mourad Mroua

Abstract:

The main purpose of this study is to examine the interaction between financial asset volatility, economic factors and investor's behavioral indicators related to both the company's and the markets stocks for the period from January 2000 to January2020. Using multiple linear regression and Bayesian Networks modeling, results show a positive and negative relationship between investor's psychology index, economic factors and predicted stock market return. We reveal that the application of the Bayesian Discrete Network contributes to identify the different cause and effect relationships between all economic, financial variables and psychology index.

Keywords: Financial asset return predictability, Economic factors, Investor's psychology index, Bayesian approach, Probabilistic networks, Parametric learning

Procedia PDF Downloads 124
2920 The Impact of Environmental Social and Governance (ESG) on Corporate Financial Performance (CFP): Evidence from New Zealand Companies

Authors: Muhammad Akhtaruzzaman

Abstract:

The impact of corporate environmental social and governance (ESG) on financial performance is often difficult to quantify despite the ESG related theories predict that ESG performance improves financial performance of a company. This research examines the link between corporate ESG performance and the financial performance of the NZX (New Zealand Stock Exchange) listed companies. For this purpose, this research utilizes mixed methods approaches to examine and understand this link. While quantitative results found no robust evidence of such a link, however, the qualitative analysis of content data suggests a strong cooccurrence exists between ESG performance and financial performance. The findings of this research have important implications for policymakers to support higher ESG-performing companies and for management practitioners to develop ESG-related strategies.

Keywords: ESG, financial performance, New Zealand firms, thematic analysis, mixed methods

Procedia PDF Downloads 44
2919 Assessment of Marine Diversity on Rocky Shores of Triporti, Vlore, Albania

Authors: Ina Nasto, Denada Sota, Kerol Sacaj, Brunilda Veshaj, Hajdar Kicaj

Abstract:

Rocky shores are often used as models to describe the dynamics of biodiversity around the world, making them one of the most studied marine habitats and their communities. The variability in the number of species and the abundance of hard-bottom benthic animal communities on the coast of Triporti, north of the Bay of Vlora, Albania is described in relation to environmental variables using multivariate analysis. The purpose of this study is to monitor the species composition, quantitative characteristics, and seasonal variations of the benthic macroinvertebrate populations of the shallow rocky shores of the Triportit-Vlora area, as well as the assessment of the ecological condition of these populations. The rocky coast of Triport, with a length of 7 km, was divided into three sampling stations, with three transects each of 50m. The monitoring of benthic macroinvertebrates in these areas was carried out in two seasons, spring and summer (June and August 2021). In each station and sampling season, estimates of the total and average density for each species, the presence constant, and the assessment of biodiversity were calculated using the Shannon–Wiener and the Simpson index. The species composition, the quantitative characteristics of the populations, and the indicators mentioned above were analyzed in a comparative way, both between the seasons within one station and between the three stations with each other. Statistical processing of the data was carried out to analyze the changes between the seasons and between the sampling stations for the species composition, population density, as well as correlation between them. A total of 105 benthic macroinvertebrate taxa were found, dominated by Molluscs, Annelids, and Arthropods. The small density of species and the low degree of stability of the macrozoobenthic community are indicators of the poor ecological condition and environmental impact in the studied areas. Algal cover, the diversity of coastal microhabitats, and the degree of coastal exposure to waves play an important role in the characteristics of macrozoobenthos populations in the studied areas. Also, the rocky shores are of special interest because, in the infralittoral of these areas, there are dense kelp forests with Gongolaria barbata, Ericaria crinita as well as fragmented areas with Posidonia oceanica that reach the coast, priority habitats of special conservation importance in the Mediterranean.

Keywords: Macrozoobenthic communities, Shannon–Wiener, Triporti, Vlore, rocky shore

Procedia PDF Downloads 81
2918 Ultrasonic Investigation as Tool for Study of Molecular Interaction of 2-Hydroxy Substituted Pyrimidine Derivative at Different Concentrations

Authors: Shradha S. Binani, P. S. Bodke, R. V. Joat

Abstract:

Recent decades have witnessed an exponential growth in the field of acoustical parameters and ultrasound on solid, liquid and gases. Ultrasonic propagation parameters yield valuable information regarding the behavior of liquid systems because intra and intermolecular association, dipolar interaction, complex formation and related structural changes affecting the compressibility of the system which in turn produces variations in the ultrasonic velocity. The acoustic and thermo dynamical parameters obtained in ultrasonic study show that ion-solvation is accompanied by the destruction or enhancement of the solvent structure. In the present paper the ultrasonic velocity (v), density (ρ), viscosity(η) have been measured for the pharmacological important compound 2-hydroxy substituted phenyl pyrimidine derivative (2-hydroxy-4-(4’-methoxy phenyl)-6-(2’-hydroxy-4’-methyl-5’-chlorophenyl)pyrimidine) in ethanol as a solvent by using different concentration at constant room temperature. These experimental data have been used to estimate physical parameter like adiabatic compressibility, intermolecular free length, relaxation time, free volume, specific acoustic impedance, relative association, Wada’s constant, Rao’s constant etc. The above parameters provide information in understanding the structural and molecular interaction between solute-solvent in the drug solution with respect to change in concentration.

Keywords: acoustical parameters, ultrasonic velocity, density, viscosity, 2-hydroxy substituted phenyl pyrimidine derivative

Procedia PDF Downloads 451
2917 Hepatoprotective Effects of Parsley, Basil, and Chicory Aqueous Extracts against Dexamethasone-Induced in Experimental Rats

Authors: Hanan A. Soliman, Mohamed A. El-Desouky, Walaa G. Hozayen, Rasha R. Ahmed, Amal K . Khaliefa

Abstract:

Aim: The objective of this study is to investigate the hypoglycemic, hypolipidemic, and hepatoprotective effects of the aqueous extract of parsley, basil, and chicory whole plant in normal and dexamethasone (Dex) rats. Materials and Methods: 50 female albino rats were used in this study and divided into 5 groups (for each 10). Group (1) fed basal diet and maintained as negative control group. Group (2) received Dex in a dose of (0.1 mg/kg b. wt.). Groups 3, 4, and 5 were treated with Dex along with three different plant extracts of parsley, basil, and chicory (2 g/kg b. wt.), (400 mg/kg b. wt.), and (100 mg/kg b. wt.), respectively. Results: All these groups were treated given three times per week for 8 consecutive weeks. Dex-induced alterations in the levels of serum glucose, triglyceride, cholesterol, low-density lipoprotein-cholesterol levels and cardiovascular indices and serum alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase activities, liver thiobarbituric acid (TBARS) levels increased, while high-density lipoprotein-cholesterol, total protein, albumin, and liver glutathione (GSH) levels decreased. On the other hand, plant extracts succeeded to modulate these observed abnormalities resulting from Dex as indicated by the reduction of glucose, cholesterol, TBARS, and the pronounced improvement of the investigated biochemical and antioxidant parameters. Conclusions: It was concluded that probably, due to its antioxidant property, parsley, basil, and chicory extracts have hepatoprotective effects in Dex-induced in rats.

Keywords: antioxidants, dexamethasone, hyperglycemia, hyperlipidemia

Procedia PDF Downloads 228
2916 The Invisible Asset Influence on Corporate Performance: A Case Study

Authors: Hassan Medaghri Alaoui

Abstract:

The accounting and financial reporting system in use today is over 500 years old and has failed to capture the new knowledge and innovation economy in which intangible assets are becoming increasingly valuable. Yet, there has been a growing acknowledgment among the research community as to the relevance of intellectual capital as a major enhancer of an organization’s well-being. Much of the research provides great support for how the IC is instrumental in determining financial and stock performances. As far as we know, this article is one of the earliest exploratory attempts to examine the intellectual capital impact on the corporate performance of the IT sector in Morocco. The purpose of this study is to verify empirically the influence of intellectual capital on firm performance. We have undertaken, over a fifteen-year period, a longitudinal (2005–2019) case study of a prominent payment-solutions company based in a developing economy with global operations.

Keywords: intellectual capital, IT sector, measuring intellectual capital, modified value added intellectual capital coefficient, Morocco

Procedia PDF Downloads 101
2915 Dietary Factors Contributing to Osteoporosis among Postmenopausal Women in Riyadh Armed Forces Hospital

Authors: Rabab Makki

Abstract:

Bone mineral density and bone metabolism are affected by various factors such as genetic, endocrine, mechanical and nutritional. Our understanding of nutritional influences on bone health is limited because most studies have focused on calcium. This study investigated the dietary factors which are likely t contribute to Osteoporosis in Saudi post-menopausal women, and correlated it with BMD. This is a case controlled study involved 36 postmenopausal Saudi females selected from the Orthopedics and osteoporosis outpatient clinics, and 25 postmenopausal Saudi females as controls from the primary clinic of Military Hospital in Riyadh. The women were diagnosed as osteoporotic based on the BMD measurement at any site (left femur neck, right femur neck, left total hip or right total hip or spine). Both the controls and the Osteoporotics were over 50 years of age and BMI between 31-34 kg/m2 had 2nd degree obesity, and were not free from other problems such as diabetes, hypertension, etc. Subjects (osteoporotics and controls) were interviewed to called data on demographic characterstics, medical history, dietary intake anthropometry (height and weight) bone mineral density. Blood samples were collected from subjects (Osteoporotics and controls). Analysis of serum calcium, vitamin D, phosphate were done at the main laboratory at Military Hospital Riyadh, by the laboratory technician while BMD was determined at the department of Nuclear Medicine by an expert technician and results were interpreted by radiologist.Data on frequency of consumption of animal food (meat, eggs, poultry and fish) and diary foods (milk, yogurt, cheese) of osteoporotic was less than control. In spite of the low intake there was no association with BMD.In general, the vegetables and fruits were consumed less by the osteoporotics than control. The only fruit which had shown a significant positive correlation is banana with right and left hip BMD total probably due to high potassium and minerals content which likely to prevent bone resorption. Mataziz vegetables combination of wheat showed a significant positive correlation with the same site (total right and left hip). Both osteoporotics abd controls were consuming table sugar. (But the sweet intake showed a significant negative correlation with left neck femur BMD, suggesting sucrose increase urinary calcium loss. Both osteoporotic and controls were consuming Arabic coffee. A negative significant correlation between intake of Arabic coffee and BMD of right neck femur of osteoporosis patient was observed. It could be suggested that increased intake of fruits and vegetables, might promote bone density while high intake of coffee and sugars might affect bone density, no significant correlation was observed between BMD at any site and diary product. We can say the major risk factors are inadequate nutrition. Further studies are needed among Saudi population to confirm these results.

Keywords: osteoporosi, Saudia Arabia, Riyadh Armed Forces, postmenopausal women

Procedia PDF Downloads 390
2914 Ab Initio Calculations of Structure and Elastic Properties of BexZn1−xO Alloys

Authors: S. Lakel, F. Elhamra, M. Ibrir, K. Almi

Abstract:

There is a growing interest in Zn1-xBexO (ZBO)/ZnO hetero structures and quantum wells since the band gap energy of Zn1-xBexO solid solutions can be turned over a very large range (3.37–10.6 eV) as a function of the Be composition. ZBO/ZnO has been utilized in ultraviolet light emission diodes and lasers, and may find applications as active elements of various other electronic and optoelectronic devices. Band gap engineering by Be substitution enables the facile preparation of barrier layers and quantum wells in device structures. In addition, ZnO and its ternary alloys, as piezoelectric semiconductors, have been used for high-frequency surface acoustic wave devices in wireless communication systems due to their high acoustic velocities and large electromechanical coupling. However, many important parameters such as elastic constants, bulk modulus, Young’s modulus and band-gap bowing. First-principles calculations of the structural, electrical and elastic properties of Zn1-xBexO as a function of the Be concentration x have been performed within density functional theory using norm-conserving pseudopotentials and local density approximation (LDA) for the exchange and correlation energy. The alloys’ lattice constants may deviate from the Vegard law. As Be concentration increases, the elastic constants, the bulk modulus and Young’s modulus of the alloys increase, the band gap increases with increasing Be concentration and Zn1-xBexO alloys have direct band. Our calculated results are in good agreement with experimental data and other theoretical calculations.

Keywords: DFT calculation, norm-conserving pseudopotentials, ZnBeO alloys, ZnO

Procedia PDF Downloads 504
2913 First-Principles Calculations of Hydrogen Adsorbed in Multi-Layer Graphene

Authors: Mohammad Shafiul Alam, Mineo Saito

Abstract:

Graphene-based materials have attracted much attention because they are candidates for post silicon materials. Since controlling of impurities is necessary to achieve nano device, we study hydrogen impurity in multi-layer graphene. We perform local spin Density approximation (LSDA) in which the plane wave basis set and pseudopotential are used. Previously hydrogen monomer and dimer in graphene is well theoretically studied. However, hydrogen on multilayer graphene is still not clear. By using first-principles electronic structure calculations based on the LSDA within the density functional theory method, we studied hydrogen monomers and dimers in two-layer graphene. We found that the monomers are spin-polarized and have magnetic moment 1 µB. We also found that most stable dimer is much more stable than monomer. In the most stable structures of the dimers in two-layer graphene, the two hydrogen atoms are bonded to the host carbon atoms which are nearest-neighbors. In this case two hydrogen atoms are located on the opposite sides. Whereas, when the two hydrogen atoms are bonded to the same sublattice of the host materials, magnetic moments of 2 µB appear in two-layer graphene. We found that when the two hydrogen atoms are bonded to third-nearest-neighbor carbon atoms, the electronic structure is nonmagnetic. We also studied hydrogen monomers and dimers in three-layer graphene. The result is same as that of two-layer graphene. These results are very important in the field of carbon nanomaterials as it is experimentally difficult to show the magnetic state of those materials.

Keywords: first-principles calculations, LSDA, multi-layer gra-phene, nanomaterials

Procedia PDF Downloads 319
2912 Fabrication Characteristics and Mechanical Behaviour of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique

Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya

Abstract:

This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (a solid waste byproduct of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4, and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement estimated percentage porosity, tensile testing, micro hardness measurement, and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was, however, superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.

Keywords: fly ash, hybrid composite, mechanical behaviour, stir-cast

Procedia PDF Downloads 323
2911 Population Structure Analysis of Pakistani Indigenous Cattle Population by Using High Density SNP Array

Authors: Hamid Mustafa, Huson J. Heather, Kim Eiusoo, McClure Matt, Khalid Javed, Talat Nasser Pasha, Afzal Ali1, Adeela Ajmal, Tad Sonstegard

Abstract:

Genetic differences associated with speciation, breed formation or local adaptation can help to preserve and effective utilization of animals in selection programs. Analyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. In this study, we used a high-density panel of SNP markers to examine population structure and diversity among ten Pakistani indigenous cattle breeds. In total, 25 individuals from three cattle populations, including Achi (n=08), Bhagnari (n=04) and Cholistani (n=13) were genotyped for 777, 962 single nucleotide polymorphism (SNP) markers. Population structure was examined using the linkage model in the program STRUCTURE. After characterizing SNP polymorphism in the different populations, we performed a detailed analysis of genetic structure at both the individual and population levels. The whole-genome SNP panel identified several levels of population substructure in the set of examined cattle breeds. We further searched for spatial patterns of genetic diversity among these breeds under the recently developed spatial principal component analysis framework. Overall, such high throughput genotyping data confirmed a clear partitioning of the cattle genetic diversity into distinct breeds. The resulting complex historical origins associated with both natural and artificial selection have led to the differentiation of numerous different cattle breeds displaying a broad phenotypic variety over a short period of time.

Keywords: Pakistan, cattle, genetic diversity, population structure

Procedia PDF Downloads 599
2910 Evaluation of the Effect of Magnetic Field on Fibroblast Attachment in Contact with PHB/Iron Oxide Nanocomposite

Authors: Shokooh Moghadam, Mohammad Taghi Khorasani, Sajjad Seifi Mofarah, M. Daliri

Abstract:

Through the recent two decades, the use of magnetic-property materials with the aim of target cell’s separation and eventually cancer treatment has incredibly increased. Numerous factors can alter the efficacy of this method on curing. In this project, the effect of magnetic field on adhesion of PDL and L929 cells on nanocomposite of iron oxide/PHB with different density of iron oxides (1%, 2.5%, 5%) has been studied. The nanocamposite mentioned includes a polymeric film of poly hydroxyl butyrate and γ-Fe2O3 particles with the average size of 25 nanometer dispersed in it and during this process, poly vinyl alcohol with 98% hydrolyzed and 78000 molecular weight was used as an emulsion to achieve uniform distribution. In order to get the homogenous film, the solution of PHB and iron oxide nanoparticles were put in a dry freezer and in liquid nitrogen, which resulted in a uniform porous scaffold and for removing porosities a 100◦C press was used. After the synthesis of a desirable nanocomposite film, many different tests were performed, First, the particles size and their distribution in the film were evaluated by transmission electron microscopy (TEM) and even FTIR analysis and DMTA test were run in order to observe and accredit the chemical connections and mechanical properties of nanocomposites respectively. By comparing the graphs of case and control samples, it was established that adding nano particles caused an increase in crystallization temperature and the more density of γ-Fe2O3 lead to more Tg (glass temperature). Furthermore, its dispersion range and dumping property of samples were raised up. Moreover, the toxicity, morphologic changes and adhesion of fibroblast and cancer cells were evaluated by a variety of tests. All samples were grown in different density and in contact with cells for 24 and 48 hours within the magnetic fields of 2×10^-3 Tesla. After 48 hours, the samples were photographed with an optic and SEM and no sign of toxicity was traced. The number of cancer cells in the case of sample group was fairly more than the control group. However, there are many gaps and unclear aspects to use magnetic field and their effects in cancer and all diseases treatments yet to be discovered, not to neglect that there have been prominent step on this way in these recent years and we hope this project can be at least a minimum movement in this issue.

Keywords: nanocomposite, cell attachment, magnetic field, cytotoxicity

Procedia PDF Downloads 243
2909 Erosion Wear of Cast Al-Si Alloys

Authors: Pooja Verma, Rajnesh Tyagi, Sunil Mohan

Abstract:

Al-Si alloys are widely used in various components such as liner-less engine blocks, piston, compressor bodies and pumps for automobile sector and aerospace industries due to their excellent combination of properties like low thermal expansion coefficient, low density, excellent wear resistance, high corrosion resistance, excellent cast ability, and high hardness. The low density and high hardness of primary Si phase results in significant reduction in density and improvement in wear resistance of hypereutectic Al-Si alloys. Keeping in view of the industrial importance of the alloys, hypereutectic Al-Si alloys containing 14, 16, 18 and 20 wt. % of Si were prepared in a resistance furnace using adequate amount of deoxidizer and degasser and their erosion behavior was evaluated by conducting tests at impingement angles of 30°, 60°, and 90° with an erodent discharge rate of 7.5 Hz, pressure 1 bar using erosion test rig. Microstructures of the cast alloys were examined using Optical microscopy (OM) and scanning electron microscopy (SEM) and the presence of Si particles was confirmed by x-ray diffractometer (XRD). The mechanical properties and hardness were measured using uniaxial tension tests at a strain rate of 10-3/s and Vickers hardness tester. Microstructures of the alloys and X-ray examination revealed the presence of primary and eutectic Si particles in the shape of cuboids or polyhedral and finer needles. Yield strength (YS), ultimate tensile strength (UTS), and uniform elongation of the hypereutectic Al-Si alloys were observed to increase with increasing content of Si. The optimal strength and ductility was observed for Al-20 wt. % Si alloy which is significantly higher than the Al-14 wt. % Si alloy. The increased hardness and the strength of the alloys with increasing amount of Si has been attributed presence of Si in the solid solution which creates strain, and this strain interacts with dislocations resulting in solid-solution strengthening. The interactions between distributed primary Si particles and dislocations also provide Orowan strengthening leading to increased strength. The steady state erosion rate was found to decrease with increasing angle of impact as well as Si content for all the alloys except at 900 where it was observed to increase with the increase in the Si content. The minimum erosion rate is observed in Al-20 wt. % Si alloy at 300 and 600 impingement angles because of its higher hardness in comparison to other alloys. However, at 90° impingement angle the wear rate for Al-20 wt. % Si alloy is found to be the minimum due to deformation, subsequent cracking and chipping off material.

Keywords: Al-Si alloy, erosion wear, cast alloys, dislocation, strengthening

Procedia PDF Downloads 51
2908 An Improvement Study for Mattress Manufacturing Line with a Simulation Model

Authors: Murat Sarı, Emin Gundogar, Mumtaz Ipek

Abstract:

Nowadays, in a furniture sector, competition of market share (portion) and production variety and changeability enforce the firm to reengineer operations on manufacturing line to increase the productivity. In this study, spring mattress manufacturing line of the furniture manufacturing firm is analyzed analytically. It’s intended to search and find the bottlenecks of production to balance the semi-finished material flow. There are four base points required to investigate in bottleneck elimination process. These are bottlenecks of Method, Material, Machine and Man (work force) resources, respectively. Mentioned bottlenecks are investigated and varied scenarios are created for recruitment of manufacturing system. Probable near optimal alternatives are determined by system models built in Arena simulation software.

Keywords: bottleneck search, buffer stock, furniture sector, simulation

Procedia PDF Downloads 345
2907 Blood Lipid Profile and Liver Lipid Peroxidation in Normal Rat Fed with Different Concentrations of Acacia senegal and Acacia seyal

Authors: Eqbal M. A. Dauqan, A. Aminah

Abstract:

The aim of the present study was to evaluate the blood lipid profile and liver lipid peroxidation in normal rat fed with different concentrations of Acacia senegal and Acacia seyal. Thirty six Sprague Dawley male rats each weighing between 180-200g were randomly divided into two groups. Each group contains eighteen rats and were divided into three groups of 6 rats per group. The rats were fed ad libitum with commercial rat’s feed and tap water containing different concentrations of Acacia senegal and Acacia seyal (3% and 6%) for 4 weeks. The results at 4 weeks showed that there was no significant difference (p≤0.05) in the total cholesterol (TC) and triglycerides (TG) between the control group and treated groups while the results for the high density lipoprotein (HDL-C) showed a significant decrease (P≥0.05) at the 3% and 6% of gum arabic treated groups compared to control group. There was a significant increase (P≥0.05) in low density lipoprotein (LDL-C) with 3% and 6% of gum Arabic (GA) groups compared to the control group. The study indicated that there was no significant (p≤0.05) effect on TC and TG but there was significant effect (P≥0.05) on HDL-C and LDL-C in blood lipid profile of normal rat. The results showed that after 4 weeks of treatment the malondialdehyde (MDA) value in rat fed with 6% of A. seyal group was significantly higher (P≥0.05) than control or other treated groups of A. seyal and A. senegal studied. Thus, the two species of gum arabic did not have beneficial effect on blood lipid profile and lipid peroxidation.

Keywords: Acacia senegal, acacia seyal, lipid profile, lipid peroxidation, malondialdehyde (MDA)

Procedia PDF Downloads 240
2906 The Effect of Organic Matter Maturation and Porosity Evolution on Methane Storage Potential in Shale-Gas Reservoirs

Authors: T. Topór, A. Derkowski, P. Ziemiański

Abstract:

Formation of organic matter (OM)-hosted nanopores upon thermal maturation are one of the key factor controlling methane storage potential in unconventional shale-gas reservoirs. In this study, the subcritical CO₂ and N₂ gas adsorption measurements combined with scanning electron microscopy and supercritical methane adsorption have been used to characterize pore system and methane storage potential in black shales from the Baltic Basin (Poland). The samples were collected from a virtually equivalent Llandovery strata across the basin and represent a complete digenetic sequence, from thermally immature to overmature. The results demonstrate that the thermal maturation is a dominant mechanism controlling the formation of OM micro- and mesopores in the Baltic Basin shales. The formation of micro- and mesopores occurs in the oil window (vitrinite reflectance; leavedVR; ~0.5-0.9%) as a result of oil expulsion from kerogenleft OM highly porous. The generated hydrocarbons then turn into solid bitumen causing pore blocking and substantial decrease in micro- and mesopore volume in late-mature shales (VR ~0.9-1.2%). Both micro- and mesopores are regenerated in a middle of the catagenesis range (VR 1.4-1.9%) due to secondary cracking of OM and gas formation. The micropore volume in investigated shales is almost exclusively controlled by the OM content. The contribution of clay minerals to micropore volume is insignificant and masked by a strong contribution from OM. Methane adsorption capacity in the Baltic Basin shales is predominantly controlled by microporous OM with pores < 1.5 nm. The mesopore volume (2-50 nm) and mesopore surface area have no effect on methane sorption behavior. The adsorbed methane density equivalent, calculated as absolute methane adsorption divided by micropore volume, reviled a decrease of the methane loading potential in micropores with increasing maturity. The highest methane loading potential in micropores is observed for OM before metagenesis (VR < 2%), where the adsorbed methane density equivalent is greater than the density of liquid methane. This implies that, in addition to physical adsorption, absorption of methane in OM may occur before metagenesis. After OM content reduction using NaOCl solution methane adoption capacity substantially decreases, suggesting significantly greater adsorption potential for OM microstructure than for the clay minerals matrix.

Keywords: maturation, methane sorption, organic matter, porosity, shales

Procedia PDF Downloads 225
2905 Facile Wick and Oil Flame Synthesis of High-Quality Hydrophilic Carbon Nano Onions for Flexible Binder-Free Supercapacitor

Authors: Debananda Mohapatra, Subramanya Badrayyana, Smrutiranjan Parida

Abstract:

Carbon nano-onions (CNOs) are the spherical graphitic nanostructures composed of concentric shells of graphitic carbon can be hypothesized as the intermediate state between fullerenes and graphite. These are very important members in fullerene family also known as the multi-shelled fullerenes can be envisioned as promising supercapacitor electrode with high energy & power density as they provide easy access to ions at electrode-electrolyte interface due to their curvature. There is still very sparse report concerning on CNOs as electrode despite having an excellent electrodechemical performance record due to their unavailability and lack of convenient methods for their high yield preparation and purification. Keeping all these current pressing issues in mind, we present a facile scalable and straightforward flame synthesis method of pure and highly dispersible CNOs without contaminated by any other forms of carbon; hence, a post processing purification procedure is not necessary. To the best of our knowledge, this is the very first time; we developed an extremely simple, light weight, novel inexpensive, flexible free standing pristine CNOs electrode without using any binder element. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by ‘dipping and drying’ process providing outstanding stretchability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102 F/g, energy density 3.5 Wh/kg and power density 1224 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge –discharge cycles. Furthermore, this unique method not only affords binder free - freestanding electrode but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium-ion batteries.

Keywords: binder-free, flame synthesis, flexible, carbon nano onion

Procedia PDF Downloads 181
2904 Influence of Sodium Lauryl Ether Sulfate and Curing Temperature on Behaviors of Lightweight Kaolinite-Based Geopolymer

Authors: W. Sornlar, S. Supothina, A. Wannagon

Abstract:

Lightweight geopolymer can be prepared by using some foaming agents, such as metal powders or hydrogen peroxide; however, it is difficult to control the generated cell size due to the high reactivity of the system. This study aims to investigate the influence of Sodium Lauryl Ether Sulfate (SLES) foam addition and curing temperature on the physical, mechanical, thermal, and microstructure behaviors of the lightweight kaolinite-based geopolymer. To provide porous structure, the geopolymer paste was mixed with 0-15 wt% of SLES foam before casting into the mold. Testing and characterizations were carried out after 28 days. The results showed that SLES foam generated the regular and spherical macropores, which were well distributed in the geopolymer samples. The total porosity increased as SLES foam increased, similarly as the apparent porosity and water absorption. On the other hand, the bulk density and mechanical strength decreased as SLES foam increased. Curing temperature was studied simultaneously due to it strongly affects the mechanical strength of geopolymer. In this study, rising of curing temperature from 27 to 50°C (at 75% relative humidity) improved the compressive strength of samples but deteriorated after curing at 60°C. Among them, the composition of 15 wt% SLES foam (NF15) presented the highest porosity (70.51-72.89%), the lowest density (0.68-0.73 g/cm³), and very low thermal conductivity (0.172-0.197 W/mK). It had the proper compressive strength of 4.21-4.74 MPa that can be applied for the thermal insulation.

Keywords: lightweight, kaolinite-based geopolymer, curing temperature, foaming agent, thermal conductivity

Procedia PDF Downloads 171
2903 Study of Complex (CO) 3Ti (PHND) and CpV (PHND) (PHND = Phénanthridine)

Authors: Akila Tayeb-Benmachiche, Saber-Mustapha Zendaoui, Salah-Eddine Bouaoud, Bachir Zouchoune

Abstract:

The variation of the metal coordination site in π-coordinated polycyclic aromatic hydrocarbons (PAH) corresponds to the haptotropic rearrangement or haptotropic migration in which the metal fragment MLn is considered as the moveable moiety that is shifted between two rings of polycyclic or heteropolycyclic ligands. These structural characteristics and dynamical properties give to this category of transition metal complexes a considerable interest. We have investigated the coordination and the haptotropic shifts of (CO)3Ti and CpV moieties over the phenanthridine aromatic system and according to the metal atom nature. The optimization of (CO)3Ti(PHND) and CpV(PHND), using the Amsterdam Density Functional (ADF) program, without a symmetrical restriction of geometry gives an η6 coordination mode of the C6 and C5N rings, which in turn give rise to a six low-lying deficient 16-MVE of each (CO)3Ti(PHND) and CpV(PHND) structure (three singlet and three triplet state structures for Ti complexes and three triplet and three quintet state structures for V complexes). Thus, the η6–η6 haptotropic migration of the metal fragment MLn from the terminal C6 ring to the central C5N ring has been achieved by a loss of energy. However, its η6–η6 haptotropic migration from central C5N ring to the terminal C6 rings has been accomplished by a gain of energy. These results show the capability of the phenanthridine ligand to adapt itself to the electronic demand of the metal in agreement with the nature of the metal–ligand bonding and demonstrate that this theoretical study can also be applied to large fused π-systems.

Keywords: electronic structure, bonding analysis, density functional theory, coordination chemistry haptotropic migration

Procedia PDF Downloads 285
2902 The Effect of the 2015 Revision to the Corporate Governance Code on Japanese Listed Firms

Authors: Tomotaka Yanagida

Abstract:

The Corporate Governance Code, revised in 2015, requires firms listed within the first and second sections of Japan’s Tokyo stock exchange to select two or more independent outside directors (the Corporate Governance Code4-8). Therefore, Japanese listed firms must do this or explain the reason why they are not able to do so. This study investigates how the Corporate Governance Code affects Japanese listed firms. We find that the Corporate Governance Code increases the ratio of outside directors by nearly 8.8% for a sample of Japanese firms comprising nearly 4,200 firm-year observations from 2014 to 2015 using a difference-in-differences approach. This implies that they felt it would have been difficult to explain why it was not appropriate to have an outside director at the annual shareholders' meeting. Moreover, this suggests that they appoint outside directors as defined by the Corporate Governance Code, but maintain board size. This situation shows that compliance in Japan may simply be 'window dressing,' that is, more form than substance.

Keywords: board structure, comply or explain, corporate governance code, soft law

Procedia PDF Downloads 156
2901 A Social-Environmental Way for Production of Building Materials with Solid Residues

Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque

Abstract:

Water treatment residues (WTR) are produced during water treatment and have recently been seen as a reusable material. The aim of this research was to perform characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, in Goiania, Brazil, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feed stock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: residue, sustainable, water treatment plants, WTR

Procedia PDF Downloads 527
2900 Dual-Phase High Entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅) BxCy Ceramics Produced by Spark Plasma Sintering

Authors: Ana-Carolina Feltrin, Daniel Hedman, Farid Akhtar

Abstract:

High entropy ceramic (HEC) materials are characterized by their compositional disorder due to different metallic element atoms occupying the cation position and non-metal elements occupying the anion position. Several studies have focused on the processing and characterization of high entropy carbides and high entropy borides, as these HECs present interesting mechanical and chemical properties. A few studies have been published on HECs containing two non-metallic elements in the composition. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BxCy ceramics with different amounts of x and y, (0.25 HfC + 0.25 ZrC + 0.25 VC + 0.25 TiB₂), (0.25 HfC + 0.25 ZrC + 0.25 VB2 + 0.25 TiB₂) and (0.25 HfC + 0.25 ZrB2 + 0.25 VB2 + 0.25 TiB₂) were sintered from boride and carbide precursor powders using SPS at 2000°C with holding time of 10 min, uniaxial pressure of 50 MPa and under Ar atmosphere. The sintered specimens formed two HEC phases: a Zr-Hf rich FCC phase and a Ti-V HCP phase, and both phases contained all the metallic elements from 5-50 at%. Phase quantification analysis of XRD data revealed that the molar amount of hexagonal phase increased with increased mole fraction of borides in the starting powders, whereas cubic FCC phase increased with increased carbide in the starting powders. SPS consolidated (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BC0.5 and (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B1.5C0.25 had respectively 94.74% and 88.56% relative density. (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B0.5C0.75 presented the highest relative density of 95.99%, with Vickers hardness of 26.58±1.2 GPa for the borides phase and 18.29±0.8 GPa for the carbides phase, which exceeded the reported hardness values reported in the literature for high entropy ceramics. The SPS sintered specimens containing lower boron and higher carbon presented superior properties even though the metallic composition in each phase was similar to other compositions investigated. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅H₀.₂₅)BxCy ceramics were successfully fabricated in a boride-carbide solid solution and the amount of boron and carbon was shown to influence the phase fraction, hardness of phases, and density of the consolidated HECs. The microstructure and phase formation was highly dependent on the amount of non-metallic elements in the composition and not only the molar ratio between metals when producing high entropy ceramics with more than one anion in the sublattice. These findings show the importance of further studies about the optimization of the ratio between C and B for further improvements in the properties of dual-phase high entropy ceramics.

Keywords: high-entropy ceramics, borides, carbides, dual-phase

Procedia PDF Downloads 157
2899 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes

Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli

Abstract:

The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.

Keywords: biocomposite, char, olive pomace, pyrolysis

Procedia PDF Downloads 237
2898 Normalized Difference Vegetation Index and Normalize Difference Chlorophyll Changes with Different Irrigation Levels on Sillage Corn

Authors: Cenk Aksit, Suleyman Kodal, Yusuf Ersoy Yildirim

Abstract:

Normalized Difference Vegetation Index (NDVI) is a widely used index in the world that provides reference information, such as the health status of the plant, and the density of the vegetation in a certain area, by making use of the electromagnetic radiation reflected from the plant surface. On the other hand, the chlorophyll index provides reference information about the chlorophyll density in the plant by making use of electromagnetic reflections at certain wavelengths. Chlorophyll concentration is higher in healthy plants and decreases as plant health decreases. This study, it was aimed to determine the changes in Normalize Difference Vegetation Index (NDVI) and Normalize Difference Chlorophyll (NDCI) of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels. In 5 days irrigation interval, the daily potential plant water consumption values were collected, and the calculated amount was applied to the full irrigation and 3 irrigation water levels as irrigation water. The changes in NDVI and NDCI of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels were determined. NDVI values have changed according to the amount of irrigation water applied, and the highest NDVI value has been reached in the subject where the most water is applied. Likewise, it was observed that the chlorophyll value decreased in direct proportion to the amount of irrigation water as the plant approached the harvest.

Keywords: NDVI, NDCI, sub-surface drip irrigation, silage corn, deficit irrigation

Procedia PDF Downloads 75
2897 Effect of Different Parameters on the Swelling Behaviour of Thermo-Responsive Elastomers in a Nematogenic Solvent

Authors: Nouria Bouchikhi, Soufiane Bedjaoui, C. Tewfik Bouchaour, Lamia Alachaher Bedjaoui, Ulrich Maschke

Abstract:

Swelling properties and phase diagrams of binary systems composed of liquid crystalline networks and a low molecular mass liquid crystal (LMWLC) have been investigated. The networks were prepared by ultraviolet (UV) irradiation of reactive mixtures including a monomer, a cross-linking agent and a photo-initiator. These networks were prepared using two cross-linking agents: 1,6 hexanedioldiacrylate (HDDA) and a mesogenic acrylic acid 6-(4’-(6-acryloyloxy-hexyloxy) biphenyl-4-yl oxy) hexyl ester (AHBH). The obtained dry networks were characterized by differential scanning calorimetry, and immersed in an excess of a LMWLC solvent 4-cyano-4’-pentylbiphenyl (5CB), forming polymer gels. A detailed study by polarized optical microscopy allowed to determine the swelling degree of the gels and to follow the phase behavior of the solvent inside the polymer matrix in a wide range of temperature. It has been found that the gels undergo a sharp decrease of their swelling degree in response to an infinitesimal change of temperature. This finding adds new and interesting aspects on the actuators applications. We have subsequently explored the effect of different parameters on volume phase transition of these liquid crystalline materials. Such as the cross-linking density (CD), a nature of cross-linking agent and the photo initiator concentration.

Keywords: cross-linking density, liquid crystalline elastomers, phase diagrams, swelling

Procedia PDF Downloads 311
2896 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase

Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia

Abstract:

Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.

Keywords: bismuth-based superconductor, critical current density, phase formation, Sr(BO₂)₂ doping

Procedia PDF Downloads 222
2895 Using Plant Oils in Total Mixed Ration on Voluntary Feed Intake and Blood Metabolize of Crossbred Thai Native X American Brahman Cattle

Authors: Wantanee Polviset, N. Prakobsaeng, N. Wetchakama, C. Yuangklang

Abstract:

The aim of this study was to evaluate the effect of soybean oil, palm oil and sunflower oil supplementations in total mixed ration on voluntary feed intake, dry matter (DM) digestibility and blood metabolize in crossbred Thai native x American Brahman Cattle. Three Thai native x American Brahman cattle, one-year-old with liveweight of 116±22.59 kg, were randomly assigned according to a 3 x 3 latin square design. Each period of feeding lasted for 21 days to receive three dietary treatments were soybean oil, palm oil and sunflower oil supplementation at 5%. During the experimental periods, all cattle were fed a diet with total mixed ration containing roughage to concentrate ratio of 40:60 and rice straw was used as a roughage source. Based on the present study, the results revealed that voluntary feed intake (kgDM/head/day) and %BW DM intake were not affected (P>0.05), whereas percentage of dry matter digestibility was greater with the soybean oil supplementation (P<0.01). It was also found that blood glucose, blood urea nitrogen, cholesterol, triglyceride, high density lipoprotein and low density lipoprotein in plasma were similar among treatments. Based on this study, supplementing 5% soybean oil in total mixed ration (TMR) diets was suitable in beef cattle without any effect dry matter digestibility and blood metabolites.

Keywords: plant oils, feed intake, blood metabolize, crossbred Thai native x Brahman cattle

Procedia PDF Downloads 307