Search results for: permittivity measurement techniques
8011 Estimation of Coefficients of Ridge and Principal Components Regressions with Multicollinear Data
Authors: Rajeshwar Singh
Abstract:
The presence of multicollinearity is common in handling with several explanatory variables simultaneously due to exhibiting a linear relationship among them. A great problem arises in understanding the impact of explanatory variables on the dependent variable. Thus, the method of least squares estimation gives inexact estimates. In this case, it is advised to detect its presence first before proceeding further. Using the ridge regression degree of its occurrence is reduced but principal components regression gives good estimates in this situation. This paper discusses well-known techniques of the ridge and principal components regressions and applies to get the estimates of coefficients by both techniques. In addition to it, this paper also discusses the conflicting claim on the discovery of the method of ridge regression based on available documents.Keywords: conflicting claim on credit of discovery of ridge regression, multicollinearity, principal components and ridge regressions, variance inflation factor
Procedia PDF Downloads 4268010 Longitudinal Static and Dynamic Stability of a Typical Reentry Body in Subsonic Conditions Using Computational Fluid Dynamics
Authors: M. Jathaveda, Joben Leons, G. Vidya
Abstract:
Reentry from orbit is a critical phase in the entry trajectory. For a non-propulsive ballistic entry, static and dynamic stability play an important role in the trajectory, especially for the safe deployment of parachutes, typically at subsonic Mach numbers. Static stability of flight vehicles are being estimated through CFD techniques routinely. Advances in CFD software as well as computational facilities have enabled the estimation of the dynamic stability derivatives also through CFD techniques. Longitudinal static and dynamic stability of a typical reentry body for subsonic Mach number of 0.6 is predicted using commercial software CFD++ and presented here. Steady state simulations are carried out for α = 2° on an unstructured grid using SST k-ω model. Transient simulation using forced oscillation method is used to compute pitch damping derivatives.Keywords: stability, typical reentry body, subsonic, static and dynamic
Procedia PDF Downloads 1208009 About Some Results of the Determination of Alcohol in Moroccan Gasoline-Alcohol Mixtures
Authors: Mahacine Amrani
Abstract:
A simple and rapid method for the determination of alcohol in gasoline-alcohol mixtures using density measurements is described. The method can determine a minimum of 1% of alcohol by volume. The precision of the method is ± 3%.The method is more useful for field test in the quality assessment of alcohol blended fuels.Keywords: gasoline-alcohol, mixture, alcohol determination, density, measurement, Morocco
Procedia PDF Downloads 3268008 Appraisal of Road Transport Infrastructure and Commercial Activities in Ede, Osun State Nigeria
Authors: Rafiu Babatunde Ibrahim, Richard Oluseyi Taiwo, Abiodun Toheeb Akintunde
Abstract:
The relationship between road transport infrastructure and commercial activities in Nigeria has been a topical issue and identified as one of the crucial components for economic development in the country. This study examines road transport infrastructure and commercial activities along selected roads in Ede, Nigeria. The study assesses the characteristics of the selected roads, the condition of road infrastructure, the degree of road network connectivity, maintenance culture for the road infrastructure as well as commercial activities along identified roads in the study area. Stratified Sampling Techniques were used to partition the study area into core, Intermediate and Suburb Township zones. Roads were also classified into Major, Distributor and Access Roads. Field observation and measurement, as well as a questionnaire, were used to obtain primary data from 246 systematically sampled respondents along the roads selected, and they were analyzed using descriptive and inferential statistics. The study revealed that most of the roads were characterized by an incidence of potholes. A total of 448 potholes were observed, where Olowoibida Road accounted for (19.0%), Federal Polytechnic Road (17.4%), and Back to Land Road (16.3%). The majority of the selected roads have no street lights and are of open drainage systems. Also, the condition of road surfaces was observed to be deteriorating. Road network connectivity of the study area was found to be poorly connected with 11% using the alpha index and 40% of Gamma index. It was found that the tailoring business (39) is predominant on major roads and Distributor Roads, while petty trading (35) is dominant on the access road. Results of correlation analysis (r = 0.242) show that there is a low positive correlation between road infrastructure and commercial activities; the significant relationships have indeed explained how important it is in influencing commercial activities across the study area. The study concluded by emphasizing the need for the provision of more roads and proper maintenance of the existing ones. This will no doubt improve the commercial activities along the roads in the study area.Keywords: road transport, infrastructure, commercial activities, maintenance culture
Procedia PDF Downloads 428007 A Sui Generis Technique to Detect Pathogens in Post-Partum Breast Milk Using Image Processing Techniques
Authors: Yogesh Karunakar, Praveen Kandaswamy
Abstract:
Mother’s milk provides the most superior source of nutrition to a child. There is no other substitute to the mother’s milk. Postpartum secretions like breast milk can be analyzed on the go for testing the presence of any harmful pathogen before a mother can feed the child or donate the milk for the milk bank. Since breast feeding is one of the main causes for transmission of diseases to the newborn, it is mandatory to test the secretions. In this paper, we describe the detection of pathogens like E-coli, Human Immunodeficiency Virus (HIV), Hepatitis B (HBV), Hepatitis C (HCV), Cytomegalovirus (CMV), Zika and Ebola virus through an innovative method, in which we are developing a unique chip for testing the mother’s milk sample. The chip will contain an antibody specific to the target pathogen that will show a color change if there are enough pathogens present in the fluid that will be considered dangerous. A smart-phone camera will then be acquiring the image of the strip and using various image processing techniques we will detect the color development due to antigen antibody interaction within 5 minutes, thereby not adding to any delay, before the newborn is fed or prior to the collection of the milk for the milk bank. If the target pathogen comes positive through this method, then the health care provider can provide adequate treatment to bring down the number of pathogens. This will reduce the postpartum related mortality and morbidity which arises due to feeding infectious breast milk to own child.Keywords: postpartum, fluids, camera, HIV, HCV, CMV, Zika, Ebola, smart-phones, breast milk, pathogens, image processing techniques
Procedia PDF Downloads 2258006 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis
Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze
Abstract:
The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.Keywords: auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter
Procedia PDF Downloads 4318005 In-Plume H₂O, CO₂, H₂S and SO₂ in the Fumarolic Field of La Fossa Cone (Vulcano Island, Aeolian Archipelago)
Authors: Cinzia Federico, Gaetano Giudice, Salvatore Inguaggiato, Marco Liuzzo, Maria Pedone, Fabio Vita, Christoph Kern, Leonardo La Pica, Giovannella Pecoraino, Lorenzo Calderone, Vincenzo Francofonte
Abstract:
The periods of increased fumarolic activity at La Fossa volcano have been characterized, since early 80's, by changes in the gas chemistry and in the output rate of fumaroles. Excepting the direct measurements of the steam output from fumaroles performed from 1983 to 1995, the mass output of the single gas species has been recently measured, with various methods, only sporadically or for short periods. Since 2008, a scanning DOAS system is operating in the Palizzi area for the remote measurement of the in-plume SO₂ flux. On these grounds, the need of a cross-comparison of different methods for the in situ measurement of the output rate of different gas species is envisaged. In 2015, two field campaigns have been carried out, aimed at: 1. The mapping of the concentration of CO₂, H₂S and SO₂ in the fumarolic plume at 1 m from the surface, by using specific open-path diode tunable lasers (GasFinder Boreal Europe Ltd.) and an Active DOAS for SO₂, respectively; these measurements, coupled to simultaneous ultrasonic wind speed and meteorological data, have been elaborated to obtain the dispersion map and the output rate of single species in the overall fumarolic field; 2. The mapping of the concentrations of CO₂, H₂S, SO₂, H₂O in the fumarolic plume at 0.5 m from the soil, by using an integrated system, including IR spectrometers and specific electrochemical sensors; this has provided the concentration ratios of the analysed gas species and their distribution in the fumarolic field; 3. The in-fumarole sampling of vapour and measurement of the steam output, to validate the remote measurements. The dispersion map of CO₂, obtained from the tunable laser measurements, shows a maximum CO₂ concentration at 1m from the soil of 1000 ppmv along the rim, and 1800 ppmv in the inner slopes. As observed, the largest contribution derives from a wide fumarole of the inner-slope, despite its present outlet temperature of 230°C, almost 200°C lower than those measured at the rim fumaroles. Actually, fumaroles in the inner slopes are among those emitting the largest amount of magmatic vapour and, during the 1989-1991 crisis, reached the temperature of 690°C. The estimated CO₂ and H₂S fluxes are 400 t/d and 4.4 t/d, respectively. The coeval SO₂ flux, measured by the scanning DOAS system, is 9±1 t/d. The steam output, recomputed from CO₂ flux measurements, is about 2000 t/d. The various direct and remote methods (as described at points 1-3) have produced coherent results, which encourage to the use of daily and automatic DOAS SO₂ data, coupled with periodic in-plume measurements of different acidic gases, to obtain the total mass rates.Keywords: DOAS, fumaroles, plume, tunable laser
Procedia PDF Downloads 4008004 Measurement of Innovation Performance
Authors: M. Chobotová, Ž. Rylková
Abstract:
Time full of changes which is associated with globalization, tougher competition, changes in the structures of markets and economic downturn, that all force companies to think about their competitive advantages. These changes can bring the company a competitive advantage and that can help improve competitive position in the market. Policy of the European Union is focused on the fast growing innovative companies which quickly respond to market demands and consequently increase its competitiveness. To meet those objectives companies need the right conditions and support of their state.Keywords: innovation, performance, measurements metrics, indices
Procedia PDF Downloads 3788003 Evaluation of the Performance of Solar Stills as an Alternative for Brine Treatment Applying the Monte Carlo Ray Tracing Method
Authors: B. E. Tarazona-Romero, J. G. Ascanio-Villabona, O. Lengerke-Perez, A. D. Rincon-Quintero, C. L. Sandoval-Rodriguez
Abstract:
Desalination offers solutions for the shortage of water in the world, however, the process of eliminating salts generates a by-product known as brine, generally eliminated in the environment through techniques that mitigate its impact. Brine treatment techniques are vital to developing an environmentally sustainable desalination process. Consequently, this document evaluates three different geometric configurations of solar stills as an alternative for brine treatment to be integrated into a low-scale desalination process. The geometric scenarios to be studied were selected because they have characteristics that adapt to the concept of appropriate technology; low cost, intensive labor and material resources for local manufacturing, modularity, and simplicity in construction. Additionally, the conceptual design of the collectors was carried out, and the ray tracing methodology was applied through the open access software SolTrace and Tonatiuh. The simulation process used 600.00 rays and modified two input parameters; direct normal radiation (DNI) and reflectance. In summary, for the scenarios evaluated, the ladder-type distiller presented higher efficiency values compared to the pyramid-type and single-slope collectors. Finally, the efficiency of the collectors studied was directly related to their geometry, that is, large geometries allow them to receive a greater number of solar rays in various paths, affecting the efficiency of the device.Keywords: appropriate technology, brine treatment techniques, desalination, monte carlo ray tracing
Procedia PDF Downloads 758002 Numerical Modeling for Water Engineering and Obstacle Theory
Authors: Mounir Adal, Baalal Azeddine, Afifi Moulay Larbi
Abstract:
Numerical analysis is a branch of mathematics devoted to the development of iterative matrix calculation techniques. We are searching for operations optimization as objective to calculate and solve systems of equations of order n with time and energy saving for computers that are conducted to calculate and analyze big data by solving matrix equations. Furthermore, this scientific discipline is producing results with a margin of error of approximation called rates. Thus, the results obtained from the numerical analysis techniques that are held on computer software such as MATLAB or Simulink offers a preliminary diagnosis of the situation of the environment or space targets. By this we can offer technical procedures needed for engineering or scientific studies exploitable by engineers for water.Keywords: numerical analysis methods, obstacles solving, engineering, simulation, numerical modeling, iteration, computer, MATLAB, water, underground, velocity
Procedia PDF Downloads 4668001 Quantitative Comparisons of Different Approaches for Rotor Identification
Authors: Elizabeth M. Annoni, Elena G. Tolkacheva
Abstract:
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors
Procedia PDF Downloads 3258000 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 3737999 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection
Authors: S. Shankar Bharathi
Abstract:
Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision
Procedia PDF Downloads 4317998 Software Evolution Based Activity Diagrams
Authors: Zine-Eddine Bouras, Abdelouaheb Talai
Abstract:
During the last two decades, the software evolution community has intensively tackled the software merging issue whose main objective is to merge in a consistent way different versions of software in order to obtain a new version. Well-established approaches, mainly based on the dependence analysis techniques, have been used to bring suitable solutions. These approaches concern the source code or software architectures. However, these solutions are more expensive due to the complexity and size. In this paper, we overcome this problem by operating at a high level of abstraction. The objective of this paper is to investigate the software merging at the level of UML activity diagrams, which is a new interesting issue. Its purpose is to merge activity diagrams instead of source code. The proposed approach, based on dependence analysis techniques, is illustrated through an appropriate case study.Keywords: activity diagram, activity diagram slicing, dependency analysis, software merging
Procedia PDF Downloads 3327997 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design
Authors: Qing K. Zhu
Abstract:
Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise
Procedia PDF Downloads 2547996 Efficient Study of Substrate Integrated Waveguide Devices
Authors: J. Hajri, H. Hrizi, N. Sboui, H. Baudrand
Abstract:
This paper presents a study of SIW circuits (Substrate Integrated Waveguide) with a rigorous and fast original approach based on Iterative process (WCIP). The theoretical suggested study is validated by the simulation of two different examples of SIW circuits. The obtained results are in good agreement with those of measurement and with software HFSS.Keywords: convergence study, HFSS, modal decomposition, SIW circuits, WCIP method
Procedia PDF Downloads 5007995 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior
Authors: Mohamed dammak
Abstract:
Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis
Procedia PDF Downloads 867994 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 2297993 Non-Invasive Techniques for Management of Carious Primary Dentition Using Silver Diamine Fluoride and Moringa Extract as a Modification of the Hall Technique
Authors: Rasha F. Sharaf
Abstract:
Treatment of dental caries in young children is considered a great challenge for all dentists, especially with uncooperative children. Recently non-invasive techniques have been highlighted as they alleviate the need for local anesthesia and other painful procedures during management of carious teeth and, at the same time, increase the success rate of the treatment done. Silver Diamine Fluoride (SDF) is one of the most effective cariostatic materials that arrest the progression of carious lesions and aid in remineralizing the demineralized tooth structure. Both fluoride and silver ions proved to have an antibacterial action and aid in the precipitation of an insoluble layer that prevents further decay. At the same time, Moringa proved to have an effective antibacterial action against different types of bacteria, therefore, it can be used as a non-invasive technique for the management of caries in children. One of the important theories for the control of caries is by depriving the cariogenic bacteria from nutrients causing their starvation and death, which can be achieved by applying stainless steel crown on primary molars with carious lesions which are not involving the pulp, and this technique is known as Hall technique. The success rate of the Hall technique can be increased by arresting the carious lesion using either SDF or Moringa and gaining the benefit of their antibacterial action. Multiple clinical cases with 1 year follow up will be presented, comparing different treatment options, and using various materials and techniques for non-invasive and non-painful management of carious primary teeth.Keywords: SDF, hall technique, carious primary teeth, moringa extract
Procedia PDF Downloads 1007992 Study of Education Learning Techniques and Game Genres
Authors: Khadija Al Farei, Prakash Kumar, Vikas Rao Naidu
Abstract:
Games are being developed with different genres for different age groups, for many decades. In many places, educational games are playing a vital role for active classroom environment and better learning among students. Currently, the educational games have assumed an important place in children and teenagers lives. The role of educational games is important for improving the learning capability among the students especially of this generation, who really live among electronic gadgets. Hence, it is now important to make sure that in our educational system, we are updated with all such advancement in technologies. Already much research is going on in this area of edutainment. This research paper will review around ten different research papers to find the relation between the education learning techniques and games. The result of this review provides guidelines for enhanced teaching and learning solutions in education. In-house developed educational games proved to be more effective, compared to the one which is readily available in the market.Keywords: education, education game, educational technology, edutainment, game genres, gaming in education
Procedia PDF Downloads 4187991 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation
Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi
Abstract:
Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.Keywords: integral production, level set method, morphological operation, segmentation
Procedia PDF Downloads 3227990 Performance Evaluation of One and Two Dimensional Prime Codes for Optical Code Division Multiple Access Systems
Authors: Gurjit Kaur, Neena Gupta
Abstract:
In this paper, we have analyzed and compared the performance of various coding schemes. The basic ID prime sequence codes are unique in only dimension, i.e. time slots, whereas 2D coding techniques are not unique by their time slots but with their wavelengths also. In this research, we have evaluated and compared the performance of 1D and 2D coding techniques constructed using prime sequence coding pattern for Optical Code Division Multiple Access (OCDMA) system on a single platform. Analysis shows that 2D prime code supports lesser number of active users than 1D codes, but they are having large code family and are the most secure codes compared to other codes. The performance of all these codes is analyzed on basis of number of active users supported at a Bit Error Rate (BER) of 10-9.Keywords: CDMA, OCDMA, BER, OOC, PC, EPC, MPC, 2-D PC/PC, λc, λa
Procedia PDF Downloads 3387989 Systematic and Meta-Analysis of Navigation in Oral and Maxillofacial Trauma and Impact of Machine Learning and AI in Management
Authors: Shohreh Ghasemi
Abstract:
Introduction: Managing oral and maxillofacial trauma is a multifaceted challenge, as it can have life-threatening consequences and significant functional and aesthetic impact. Navigation techniques have been introduced to improve surgical precision to meet this challenge. A machine learning algorithm was also developed to support clinical decision-making regarding treating oral and maxillofacial trauma. Given these advances, this systematic meta-analysis aims to assess the efficacy of navigational techniques in treating oral and maxillofacial trauma and explore the impact of machine learning on their management. Methods: A detailed and comprehensive analysis of studies published between January 2010 and September 2021 was conducted through a systematic meta-analysis. This included performing a thorough search of Web of Science, Embase, and PubMed databases to identify studies evaluating the efficacy of navigational techniques and the impact of machine learning in managing oral and maxillofacial trauma. Studies that did not meet established entry criteria were excluded. In addition, the overall quality of studies included was evaluated using Cochrane risk of bias tool and the Newcastle-Ottawa scale. Results: Total of 12 studies, including 869 patients with oral and maxillofacial trauma, met the inclusion criteria. An analysis of studies revealed that navigation techniques effectively improve surgical accuracy and minimize the risk of complications. Additionally, machine learning algorithms have proven effective in predicting treatment outcomes and identifying patients at high risk for complications. Conclusion: The introduction of navigational technology has great potential to improve surgical precision in oral and maxillofacial trauma treatment. Furthermore, developing machine learning algorithms offers opportunities to improve clinical decision-making and patient outcomes. Still, further studies are necessary to corroborate these results and establish the optimal use of these technologies in managing oral and maxillofacial traumaKeywords: trauma, machine learning, navigation, maxillofacial, management
Procedia PDF Downloads 617988 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 1427987 Developments in Performance of Autistic Students in the Egyptian School System
Authors: Magy Atef Awad Attia
Abstract:
The objective of this study was to study the effect of social stories on social interaction of students with autism. The sample was at level 5 student with autism, Another University Demonstration School student, who was diagnosed by the Physician as High Functioning Autism since he was able to read, write, calculate and was studying in inclusive classroom. However, he still had disability in social interaction to participate in social activity group and communication. He could not learn how to develop friendship or create relationship. He had inappropriate behavior in social context. He did not understand complex social situations. In addition, he did seemed to not know time and place. He was not able to understand feeling of oneself as well as the others. Consequently, he could not express his emotion appropriately. He did not understand or express his non-verbal language for communicating with friends. He lacked of common interest or emotion with nearby persons. He greeted inappropriately or was not interested in greeting. In addition, he did not have eye contact. He used inadequate language etc. He was elected by Purposive Sampling. His parents were willing to allow them to participate in this study. The research instruments were the lesson plan of social stories, and the picture book of social stories. The instruments used for data collection, were the social interaction evaluation of autistic students. This research was Experimental Research as One Group Pre-test, Post-test Design. For the Pre-test, the experiment was conducted by social stories. Then, the Post-test was implemented. The statistic used for data analysis. The research results were shown by scale. The results revealed that the autistic students taught by social stories indicated better social reaction after being taught by social stories.Keywords: autism, autistic behavior, stability, harsh environments, techniques, thermal, properties, materials, applications, brittleness, fragility, disadvantages, bank, branches, profitability, setting prediction, effective target, measurement, evaluation, performance, commercial, business, sustainability, financial, system.
Procedia PDF Downloads 437986 Artificial Intelligence in Melanoma Prognosis: A Narrative Review
Authors: Shohreh Ghasemi
Abstract:
Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine
Procedia PDF Downloads 847985 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Parallel Job Shop Scheduling Problem (JSP) is a multi-objective and multi constrains NP- optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution, so we propose a hybrid Artificial Intelligence model (AI) with Discrete Breeding Swarm (DBS) added to traditional Artificial Intelligence to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.Keywords: parallel job shop scheduling problem, artificial intelligence, discrete breeding swarm, car sequencing and operator allocation, cost minimization
Procedia PDF Downloads 1947984 Study of Bima Tembe and Its Relation to Rimpu as a Cultural Women Clothes in Bima
Authors: Morinta Rosandini
Abstract:
Bima Tembe is an excellent sample of cultural artifact that many people regard it as: (1) manufactured by a traditional techniques, (2) contained with variety forms and great philosophical motifs, and (3) having valued functions related to women status in the society. This research examined elements of Bima Tembe and their relations and one of the usage of tembe, named Rimpus. The elements include: (1) the traditional techniques of making Bima Tembe, (2) the variety forms (3) and philosophical motifs of Bima Tembe. Rimpu, is a cultural women clothes in Bima, which use Bima Tembe as a main part. From this reseacrh found that the Bima Tembe made by weaving technique using a traditional loom, and has two types of Tembe; Tembe Istana and Tembe Rakyat, with various motif each type. The The usage of Rimpu is as a symbol of the obedience to God and the type of Rimpu indicate the women status in the society.Keywords: bima, tembe, rimpu, clothes
Procedia PDF Downloads 4237983 A Time since of Injection Model for Hepatitis C Amongst People Who Inject Drugs
Authors: Nader Al-Rashidi, David Greenhalgh
Abstract:
Mathematical modelling techniques are now being used by health organizations worldwide to help understand the likely impact that intervention strategies treatment options and combinations of these have on the prevalence and incidence of hepatitis C virus (HCV) in the people who inject drugs (PWID) population. In this poster, we develop a deterministic, compartmental mathematical model to approximate the spread of the HCV in a PWID population that has been divided into two groups by time since onset of injection. The model assumes that after injection needles adopt the most infectious state of their previous state or that of the PWID who last injected with them. Using analytical techniques, we find that the model behaviour is determined by the basic reproductive number R₀, where R₀ = 1 is a critical threshold separating two different outcomes. The disease-free equilibrium is globally stable if R₀ ≤ 1 and unstable if R₀ > 1. Additionally, we make some simulations where have confirmed that the model tends to this endemic equilibrium value with realistic parameter values giving an HCV prevalence.Keywords: hepatitis C, people who inject drugs, HCV, PWID
Procedia PDF Downloads 1507982 Metrology in Egyptian Architecture, Interrelation with Archaeology
Authors: Monica M. Marcos
Abstract:
In the framework of Archaeological Research, Heritage Conservation and Restoration, the object of study is metrology applied in composition of religious architecture in ancient Egypt, and usefulness in Archaology. The objective is the determination of the geometric and metrological relations in architectural models and the module used in the initial project of the buildings. The study and data collection of religious buildings, tombs and temples of the ancient Egypt, is completed with plans. The measurements systematization and buildings modulation makes possible to establish common compositional parameters, with a module determined by the measurement unit used. The measurement system corresponding to the main period of egyptian history, was the Egyptian royal cubit. The analysis of units measurements, used in architectural design, provides exact numbers on buildable spaces dimensions. It allows establishing proportional relationships between them, and finding a geometric composition module, on which the original project was based. This responds to a philosophical and functional concept of projected spaces. In the heritage rehabilitation and restoration field, knowledge of metrology helps in excavation, reconstruction and restoration of construction elements. The correct use of metrology contributes to the identification of possible work areas, helping to locate where the damaged or missing areas are. Also in restoration projects, metrology is useful for reordering and locating decontextualized parts of buildings. The conversion of measurements taken in the current International System to the ancient egyptian measurements, allows understand its conceptual purpose and its functionality, which makes easier to carry out archaeological intervention. In the work carried out in archaeological excavations, metrology is an essential tool for locating sites and establishing work zones.Keywords: egyptology, metrology, archaeology, measurements, Egyptian cubit
Procedia PDF Downloads 28