Search results for: lake contour extraction
1180 Underwater Remotely Operated Vehicle (ROV) Exploration
Authors: M. S. Sukumar
Abstract:
Our objective is to develop a full-fledged system for exploring and studying nature of fossils and to extend this to underwater archaeology and mineral mapping. This includes aerial surveying, imaging techniques, artefact extraction and spectrum analysing techniques. These techniques help in regular monitoring of fossils and also the sensing system. The ROV was designed to complete several tasks which simulate collecting data and samples. Given the time constraints, the ROV was engineered for efficiency and speed in performing tasks. Its other major design consideration was modularity, allowing the team to distribute the building process, to easily test systems as they were completed and troubleshoot and replace systems as necessary. Our design itself had several challenges of on-board waterproofed sensor mounting, waterproofing of motors, ROV stability criteria, camera mounting and hydrophone sound acquisition.Keywords: remotely operated vehicle (ROV) dragonair, underwater archaeology, full-fledged system, aerial imaging and detection
Procedia PDF Downloads 2361179 Measurement of Coal Fineness, Air Fuel Ratio, and Fuel Weight Distribution in a Vertical Spindle Mill’s Pulverized Fuel Pipes at Classifier Vane 40%
Authors: Jayasiler Kunasagaram
Abstract:
In power generation, coal fineness is crucial to maintain flame stability, ensure combustion efficiency, and lower emissions to the environment. In order for the pulverized coal to react effectively in the boiler furnace, the size of coal particles needs to be at least 70% finer than 74 μm. This paper presents the experiment results of coal fineness, air fuel ratio and fuel weight distribution in pulverized fuel pipes at classifier vane 40%. The aim of this experiment is to extract the pulverized coal is kinetically and investigate the data accordingly. Dirty air velocity, coal sample extraction, and coal sieving experiments were performed to measure coal fineness. The experiment results show that required coal fineness can be achieved at 40 % classifier vane. However, this does not surpass the desired value by a great margin.Keywords: coal power, emissions, isokinetic sampling, power generation
Procedia PDF Downloads 6081178 Formulation and Invivo Evaluation of Salmeterol Xinafoate Loaded MDI for Asthma Using Response Surface Methodology
Authors: Paresh Patel, Priya Patel, Vaidehi Sorathiya, Navin Sheth
Abstract:
The aim of present work was to fabricate Salmeterol Xinafoate (SX) metered dose inhaler (MDI) for asthma and to evaluate the SX loaded solid lipid nanoparticles (SLNs) for pulmonary delivery. Solid lipid nanoparticles can be used to deliver particles to the lungs via MDI. A modified solvent emulsification diffusion technique was used to prepare Salmeterol Xinafoate loaded solid lipid nanoparticles by using compritol 888 ATO as lipid, tween 80 as surfactant, D-mannitol as cryoprotecting agent and L-leucine was used to improve aerosolization behaviour. Box-Behnken design was applied with 17 runs. 3-D surface response plots and contour plots were drawn and optimized formulation was selected based on minimum particle size and maximum % EE. % yield, in vitro diffusion study, scanning electron microscopy, X-ray diffraction, DSC, FTIR also characterized. Particle size, zeta potential analyzed by Zetatrac particle size analyzer and aerodynamic properties was carried out by cascade impactor. Pre convulsion time was examined for control group, treatment group and compare with marketed group. MDI was evaluated for leakage test, flammability test, spray test and content per puff. By experimental design, particle size and % EE found to be in range between 119-337 nm and 62.04-76.77% by solvent emulsification diffusion technique. Morphologically, particles have spherical shape and uniform distribution. DSC & FTIR study showed that no interaction between drug and excipients. Zeta potential shows good stability of SLNs. % respirable fraction found to be 52.78% indicating reach to the deep part of lung such as alveoli. Animal study showed that fabricated MDI protect the lungs against histamine induced bronchospasm in guinea pigs. MDI showed sphericity of particle in spray pattern, 96.34% content per puff and non-flammable. SLNs prepared by Solvent emulsification diffusion technique provide desirable size for deposition into the alveoli. This delivery platform opens up a wide range of treatment application of pulmonary disease like asthma via solid lipid nanoparticles.Keywords: salmeterol xinafoate, solid lipid nanoparticles, box-behnken design, solvent emulsification diffusion technique, pulmonary delivery
Procedia PDF Downloads 4511177 Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme
Authors: Yung-Chih Kuo, I-Hsin Wang
Abstract:
Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management.Keywords: catanionic solid lipid nanoparticle, etoposide, glioblastoma multiforme, lactoferrin, wheat germ agglutinin
Procedia PDF Downloads 2371176 Catalytic and Non-Catalytic Pyrolysis of Walnut Shell Waste to Biofuel: Characterisation of Catalytic Biochar and Biooil
Authors: Saimatun Nisa
Abstract:
Walnut is an important export product from the Union Territory of Jammy and Kashmir. After extraction of the kernel, the walnut shell forms a solid waste that needs to be managed. Pyrolysis is one interesting option for the utilization of this walnut waste. In this study microwave pyrolysis reactor is used to convert the walnut shell biomass into its value-added products. Catalytic and non-catalytic conversion of walnut shell waste to oil, gas and char was evaluated using a Co-based catalyst. The catalyst was characterized using XPS and SEM analysis. Pyrolysis temperature, reaction time, particle size and sweeping gas (N₂) flow rate were set in the ranges of 400–600 °C, 40 min, <0.6mm to < 4.75mm and 300 ml min−1, respectively. The heating rate was fixed at 40 °C min−1. Maximum gas yield was obtained at 600 °C, 40 min, particle size range 1.18-2.36, 0.5 molar catalytic as 45.2%. The liquid product catalytic and non-catalytic was characterized by GC–MS analyses. In addition, the solid product was analyzed by means of FTIR & SEM.Keywords: walnut shell, biooil, biochar, microwave pyrolysis
Procedia PDF Downloads 521175 Biotechnology Approach: A Tool of Enhancement of Sticky Mucilage of Pulicaria Incisa (Medicinal Plant) for Wounds Treatment
Authors: Djamila Chabane, Asma Rouane, Karim Arab
Abstract:
Depending of the chemical substances responsible for the pharmacological effects, a future therapeutic drug might be produced by extraction from whole plants or by callus initiated from some parts. The optimized callus culture protocols now offer the possibility to use cell culture techniques for vegetative propagation and open minds for further studies on secondary metabolites and drug establishment. In Algerian traditional medicine, Pulicaria incisa (Asteraceae) is used in the treatment of daily troubles (stomachache, headhache., cold, sore throat and rheumatic arthralgia). Field findings revealed that many healers use some fresh parts (leaves, flowers) of this plant to treat skin wounds. This study aims to evaluate the healing efficiency of artisanal cream prepared from sticky mucilage isolated from calluses on dermal wounds of animal models. Callus cultures were initiated from reproductive explants (young inflorescences) excised from adult plants and transferred to a MS basal medium supplemented with growth regulators and maintained under dark for for months. Many calluses types were obtained with various color and aspect (friable, compact). Several subcultures of calli were performed to enhance the mucilage accumulation. After extraction, the mucilage extracts were tested on animal models as follows. The wound healing potential was studied by causing dermal wounds (1 cm diameter) at the dorsolumbar part of Rattus norvegicus; different samples of the cream were applied after hair removal on three rats each, including two controls (one treated by Vaseline and one without any treatment), two experimental groups (experimental group 1, treated with a reference ointment "Madecassol® and experimental group 2 treated by callus mucilage cream for a period of seventeen days. The evolution of the healing activity was estimated by calculating the percentage reduction of the area wounds treated by all compounds tested compared to the controls by using AutoCAD software. The percentage of healing effect of the cream prepared from callus mucilage was (99.79%) compared to that of Madecassol® (99.76%). For the treatment time, the significant healing activity was observed after 17 days compared to that of the reference pharmaceutical products without any wound infection. The healing effect of Madecassol® is more effective because it stimulates and regulates the production of collagen, a fibrous matrix essential for wound healing. Mucilage extracts also showed a high capacity to heal the skin without any infection. According to this pharmacological activity, we suggest to use calluses produced by in vitro culture to producing new compounds for the skin care and treatment.Keywords: calluses, Pulicaria incisa, mucilage, Wounds
Procedia PDF Downloads 1291174 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication
Authors: Rui Mao, Heming Ji, Xiaoyu Wang
Abstract:
Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM
Procedia PDF Downloads 1551173 In Vitro Antifungal Activity of Essential Oil Artemisia Absinthium
Authors: Bouchenak Fatima, Lmegharbi Abdelbaki, Houssem Degaichia, Benrebiha Fatima
Abstract:
The essential oil composition of the leaf of Artemisia absinthium from region of Cherchell (The south of Algeria) was investigated by GC, GC-MS. 27 constituents were identified correspond to 84, 63% of the total oil. The major components are Thujone (60, 82%), Chamazulènel (16, 62%), ρ-cymène (4, 29%) and 2-carène (4.25%). The antimicrobial activity of oil was tested in vitro by two methods (agar diffusion and microdilution) on three plant pathogenic fungi. This oil has been tested for antimicrobial activity against three pathogenic fungi (Botrytis cinerea, Fusarium culmorum and Helminthosporium Sp.).The study of activity was evaluated by two methods: Method of diffusion in gelose and the minimum inhibitory concentration MIC. This oil exhibited an interesting antimicrobial activity. A preliminary study showed that this oil presented high toxicity against this fungus. These results, although preliminary show a good antifungal activity, to limit and inhibit stop the development of those pathogen agent.Keywords: artemisia absinthian, extraction process, chemical study, antifungal activity
Procedia PDF Downloads 4841172 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis
Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar
Abstract:
Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR
Procedia PDF Downloads 861171 Effect of Different Parameters of Converging-Diverging Vortex Finders on Cyclone Separator Performance
Abstract:
The present study is done to explore design modifications of the vortex finder, as it has a significant effect on the cyclone separator performance. It is evident that modifications of the vortex finder improve the performance of the cyclone separator significantly. The study conducted strives to improve the overall performance of cyclone separators by utilizing a converging-diverging (CD) vortex finder instead of the traditional uniform diameter vortex finders. The velocity and pressure fields inside a Stairmand cyclone separator with body diameter 0.29m and vortex finder diameter 0.1305m are calculated. The commercial software, Ansys Fluent v14.0 is used to simulate the flow field in a uniform diameter cyclone and six cyclones modified with CD vortex finders. Reynolds stress model is used to simulate the effects of turbulence on the fluid and particulate phases, discrete phase model is used to calculate the particle trajectories. The performance of the modified vortex finders is compared with the traditional vortex finder. The effects of the lengths of the converging and diverging sections, the throat diameter and the end diameters of the convergent divergent section are also studied to achieve enhanced performance. The pressure and velocity fields inside the vortex finder are presented by means of contour plots and velocity vectors and changes in the flow pattern due to variation of the geometrical variables are also analysed. Results indicate that a convergent-divergent vortex finder is capable of decreasing the pressure drop than that achieved through a uniform diameter vortex finder. It is also observed that the end diameters of the CD vortex finder, the throat diameter and the length of the diverging part of the vortex finder have a significant impact on the cyclone separator performance. Increase in the lower diameter of the vortex finder by 66% results in 11.5% decrease in the dimensionless pressure drop (Euler number) with 5.8% decrease in separation efficiency. Whereas 50% decrease in the throat diameter gives 5.9% increase in the Euler number with 10.2% increase in the separation efficiency and increasing the length of the diverging part gives 10.28% increase in the Euler number with 5.74% increase in the separation efficiency. Increasing the upper diameter of the CD vortex finder is seen to produce an adverse effect on the performance as it increases the pressure drop significantly and decreases the separation efficiency. Increase in length of the converging is not seen to affect the performance significantly. From the present study, it is concluded that convergent-divergent vortex finders can be used in place of uniform diameter vortex finders to achieve a better cyclone separator performance.Keywords: convergent-divergent vortex finder, cyclone separator, discrete phase modeling, Reynolds stress model
Procedia PDF Downloads 1721170 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data
Authors: Elyta Widyaningrum
Abstract:
The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.Keywords: automation, GIS environment, LiDAR processing, map quality
Procedia PDF Downloads 3681169 Incremental Learning of Independent Topic Analysis
Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda
Abstract:
In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.Keywords: text mining, topic extraction, independent, incremental, independent component analysis
Procedia PDF Downloads 3091168 Biodiesel Production and Heavy Metal Removal by Aspergillus fumigatus sp.
Authors: Ahmed M. Haddad, Hadeel S. El-Shaal, Gadallah M. Abu-Elreesh
Abstract:
Some of filamentous fungi can be used for biodiesel production as they are able to accumulate high amounts of intracellular lipids when grown at stress conditions. Aspergillus fumigatus sp. was isolated from Nile delta soil in Egypt. The fungus was primarily screened for its capacity to accumulate lipids using Nile red staining assay. The fungus could accumulate more than 20% of its biomass as lipids when grown at optimized minimal medium. After lipid extraction, we could use fungal cell debris to remove some heavy metals from contaminated waste water. The fungal cell debris could remove Cd, Cr, and Zn with absorption efficiency of 73%, 83.43%, and 69.39% respectively. In conclusion, the Aspergillus fumigatus isolate may be considered as a promising biodiesel producer, and its biomass waste can be further used for bioremediation of wastewater contaminated with heavy metals.Keywords: biodiesel, bioremediation, fungi, heavy metals, lipids, oleaginous
Procedia PDF Downloads 2261167 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 421166 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions
Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin
Abstract:
In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography
Procedia PDF Downloads 2691165 A Supervised Face Parts Labeling Framework
Authors: Khalil Khan, Ikram Syed, Muhammad Ehsan Mazhar, Iran Uddin, Nasir Ahmad
Abstract:
Face parts labeling is the process of assigning class labels to each face part. A face parts labeling method (FPL) which divides a given image into its constitutes parts is proposed in this paper. A database FaceD consisting of 564 images is labeled with hand and make publically available. A supervised learning model is built through extraction of features from the training data. The testing phase is performed with two semantic segmentation methods, i.e., pixel and super-pixel based segmentation. In pixel-based segmentation class label is provided to each pixel individually. In super-pixel based method class label is assigned to super-pixel only – as a result, the same class label is given to all pixels inside a super-pixel. Pixel labeling accuracy reported with pixel and super-pixel based methods is 97.68 % and 93.45% respectively.Keywords: face labeling, semantic segmentation, classification, face segmentation
Procedia PDF Downloads 2551164 Hiveopolis - Honey Harvester System
Authors: Erol Bayraktarov, Asya Ilgun, Thomas Schickl, Alexandre Campo, Nicolis Stamatios
Abstract:
Traditional means of harvesting honey are often stressful for honeybees. Each time honey is collected a portion of the colony can die. In consequence, the colonies’ resilience to environmental stressors will decrease and this ultimately contributes to the global problem of honeybee colony losses. As part of the project HIVEOPOLIS, we design and build a different kind of beehive, incorporating technology to reduce negative impacts of beekeeping procedures, including honey harvesting. A first step in maintaining more sustainable honey harvesting practices is to design honey storage frames that can automate the honey collection procedures. This way, beekeepers save time, money, and labor by not having to open the hive and remove frames, and the honeybees' nest stays undisturbed.This system shows promising features, e.g., high reliability which could be a key advantage compared to current honey harvesting technologies.Our original concept of fractional honey harvesting has been to encourage the removal of honey only from "safe" locations and at levels that would leave the bees enough high-nutritional-value honey. In this abstract, we describe the current state of our honey harvester, its technology and areas to improve. The honey harvester works by separating the honeycomb cells away from the comb foundation; the movement and the elastic nature of honey supports this functionality. The honey sticks to the foundation, because of the surface tension forces amplified by the geometry. In the future, by monitoring the weight and therefore the capped honey cells on our honey harvester frames, we will be able to remove honey as soon as the weight measuring system reports that the comb is ready for harvesting. Higher viscosity honey or crystalized honey cause challenges in temperate locations when a smooth flow of honey is required. We use resistive heaters to soften the propolis and wax to unglue the moving parts during extraction. These heaters can also melt the honey slightly to the needed flow state. Precise control of these heaters allows us to operate the device for several purposes. We use ‘Nitinol’ springs that are activated by heat as an actuation method. Unlike conventional stepper or servo motors, which we also evaluated throughout development, the springs and heaters take up less space and reduce the overall system complexity. Honeybee acceptance was unknown until we actually inserted a device inside a hive. We not only observed bees walking on the artificial comb but also building wax, filling gaps with propolis and storing honey. This also shows that bees don’t mind living in spaces and hives built from 3D printed materials. We do not have data yet to prove that the plastic materials do not affect the chemical composition of the honey. We succeeded in automatically extracting stored honey from the device, demonstrating a useful extraction flow and overall effective operation this way.Keywords: honey harvesting, honeybee, hiveopolis, nitinol
Procedia PDF Downloads 1081163 The Design, Control and Dynamic Performance of an Interior Permanent Magnet Synchronous Generator for Wind Power System
Authors: Olusegun Solomon
Abstract:
This paper describes the concept for the design and maximum power point tracking control for an interior permanent magnet synchronous generator wind turbine system. Two design concepts are compared to outline the effect of magnet design on the performance of the interior permanent magnet synchronous generator. An approximate model that includes the effect of core losses has been developed for the machine to simulate the dynamic performance of the wind energy system. An algorithm for Maximum Power Point Tracking control is included to describe the process for maximum power extraction.Keywords: permanent magnet synchronous generator, wind power system, wind turbine
Procedia PDF Downloads 2211162 Energy Strategy and Economic Growth of Russia
Authors: Young Sik Kim, Tae Kwon Ha
Abstract:
This article considers the problems of economic growth and Russian energy strategy. Also in this paper, the issues related to the economic growth prospects of Russian were discussed. Russian energy strategy without standing Russia`s stature in global energy markets, at the current production and extraction rates, will not be able to sustain its own production as well as fulfil its energy strategy. Indeed, Russia’s energy sector suffers from a chronic lack of investments which are necessary to modernize its energy supply system. In recent years, especially since the international financial crisis, Russia-EU energy cooperation has made substantive progress. Recently the break-through progress has been made, resulting mainly from long-term contributing factors between the countries and recent international economic and political situation changes. Analytical material presented in the article is intended for a more detailed or substantive analysis related to foreign economic relations of the countries and Russia as well.Keywords: Russia, energy strategy, economic growth, cooperation
Procedia PDF Downloads 3141161 Access to Natural Resources in the Cameroonian Part of the Logone Basin: A Driver and Mitigation Tool to Ethnical Conflicts
Authors: Bonguen Onouck Rolande Carole, Ndongo Barthelemy
Abstract:
The climate change effects on the Lake Chad, coupled with population growth, have pushed large masses of people of various origins towards the lower part of the lower Logonewatershed in search of the benefits of environmental services, causing pressure on the environment and its resources. Economic services are therefore threatened, and the decrease in resources contributes to the deterioration of the social wellbeing resulting to conflicts among/between local communities, immigrants, displaced people, and foreigners. This paper is an information contribution on ethnical conflicts drivers in the area and the provided local management mechanisms such can help mitigate present or future conflicts in similar areas. It also prints out the necessity to alleviate water access deficit and encourage good practices for the population wellbeing. In order to meet the objective, in 2018, through the interface of the World Bank-Cameroon project-PULCI, data were collected on the field directly by discussing with the population and visiting infrastructures, indirectly by a questionnaire survey. Two administrative divisions were chosen (Logoneet Chari, Mayo-Danay) in which targeted localities were Zina, Mazera, Lahai, Andirni near the Waza Park and Yagoua, Tekele, Pouss, respectively. Due to some sociocultural and religious reasons, some information were acquired through the traditional chiefs. A desk study analysis based on resources access and availability conflicts history, and management mechanism was done. As results, roots drivers of ethnical conflicts are struggles over natural resources access, and the possibility of conflicts increases as the scarcity and vulnerabilities persist, creating more sociocultural gaps and tensions. The mitigation mechanisms though fruitful, are limited. There is poor documentation on the topic, the resources management policies of this basin are unsuitable and ineffective for some. Therefore, the restoration of environmental and ecosystems, the mitigation of climate change effects, and food insecurity are the challenges that must be met to alleviate conflicts in these localities.Keywords: ethnic, communities, conflicts, mitigation mechanisms, natural resources, logone basin
Procedia PDF Downloads 1111160 Novel Algorithm for Restoration of Retina Images
Authors: P. Subbuthai, S. Muruganand
Abstract:
Diabetic Retinopathy is one of the complicated diseases and it is caused by the changes in the blood vessels of the retina. Extraction of retina image through Fundus camera sometimes produced poor contrast and noises. Because of this noise, detection of blood vessels in the retina is very complicated. So preprocessing is needed, in this paper, a novel algorithm is implemented to remove the noisy pixel in the retina image. The proposed algorithm is Extended Median Filter and it is applied to the green channel of the retina because green channel vessels are brighter than the background. Proposed extended median filter is compared with the existing standard median filter by performance metrics such as PSNR, MSE and RMSE. Experimental results show that the proposed Extended Median Filter algorithm gives a better result than the existing standard median filter in terms of noise suppression and detail preservation.Keywords: fundus retina image, diabetic retinopathy, median filter, microaneurysms, exudates
Procedia PDF Downloads 3421159 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 471158 Effect of Acetic Acid Fermentation on Bioactive Components and Anti-Xanthine Oxidase Activities in Vinegar Brewed from Monascus-Fermented Soybeans
Authors: Kyung-Soon Choi, Ji-Young Hwang, Young-Hee Pyo
Abstract:
Vinegars have been used as an alternative remedy for treating gout, but the scientific basis remains to be elucidated. In this study, acetic acid fermentation was applied for the first time to Monascus-fermented soybeans to examine its effect on the bioactive components together with the xanthine oxidase inhibitory (XOI) activity of the soy vinegar. The content of total phenols (0.47~0.97 mg gallic acid equivalents/mL) and flavonoids (0.18~0.39 mg quercetin equivallents/mL) were spectrophotometrically determined, and the content of organic acid (10.22~59.76 mg/mL) and isoflavones (6.79~7.46 mg/mL) were determined using HPLC-UV. The analytical method for ubiquinones (0.079~0.276 μg/mL) employed saponification before solvent extraction and quantification using LC-MS. Soy vinegar also showed significant XOI (95.3%) after 20 days of acetic acid fermentation at 30 °C. The results suggest that soy vinegar has potential as a novel medicinal food.Keywords: acetic acid fermentation, bioactive component, soy vinegar, xanthine oxidase inhibitory activity
Procedia PDF Downloads 3831157 Characterization of N+C, Ti+N and Ti+C Ion Implantation into Ti6Al4V Alloy
Authors: Xingguo Feng, Hui Zhou, Kaifeng Zhang, Zhao Jiang, Hanjun Hu, Jun Zheng, Hong Hao
Abstract:
TiN and TiC films have been prepared on Ti6Al4V alloy substrates by plasma-based ion implantation. The effect of N+C and Ti+N hybrid ion implantation at 50 kV, and Ti+C hybrid ion implantation at 20 kV, 35 kV and 50 kV extraction voltages on mechanical properties at a dose of 2×10¹⁷ ions / cm² was studied. The chemical states and microstructures of the implanted samples were investigated using X-ray photoelectron (XPS), and X-ray diffraction (XRD), together with the mechanical and tribological properties of the samples were characterized using nano-indentation and ball-on-disk tribometer. It was found that the modified layer by Ti+C implanted at 50 kV was composed of mainly TiC and Ti-O bond and the layer of Ti+N implanted at 50 kV was observed to be TiN and Ti-O bond. Hardness tests have shown that the hardness values for N+C, Ti+N, and Ti+C hybrid ion implantation samples were much higher than the un-implanted ones. The results of wear tests showed that both Ti+C and Ti+N ion implanted samples had much better wear resistance compared un-implanted sample. The wear rate of Ti+C implanted at 50 kV sample was 6.7×10⁻⁵mm³ / N.m, which was decreased over one order than unimplanted samples.Keywords: plasma ion implantation, x-ray photoelectron (XPS), hardness, wear
Procedia PDF Downloads 4101156 Evaluation and Selection of SaaS Product Based on User Preferences
Authors: Boussoualim Nacira, Aklouf Youcef
Abstract:
Software as a Service (SaaS) is a software delivery paradigm in which the product is not installed on-premise, but it is available on Internet and Web. The customers do not pay to possess the software itself but rather to use it. This concept of pay per use is very attractive. Hence, we see increasing number of organizations adopting SaaS. However, each customer is unique, which leads to a very large variation in the requirements off the software. As several suppliers propose SaaS products, the choice of this latter becomes a major issue. When multiple criteria are involved in decision making, we talk about a problem of «Multi-Criteria Decision-Making» (MCDM). Therefore, this paper presents a method to help customers to choose a better SaaS product satisfying most of their conditions and alternatives. Also, we know that a good method of adaptive selection should be based on the correct definition of the different parameters of choice. This is why we started by extraction and analysis the various parameters involved in the process of the selection of a SaaS application.Keywords: cloud computing, business operation, Multi-Criteria Decision-Making (MCDM), Software as a Service (SaaS)
Procedia PDF Downloads 4831155 Epileptic Seizure Prediction Focusing on Relative Change in Consecutive Segments of EEG Signal
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.Keywords: EEG, epilepsy, phase correlation, seizure
Procedia PDF Downloads 3081154 Recovery of Zn from Different Çinkur Leach Residues by Acidic Leaching
Authors: Mehmet Ali Topçu, Aydın Ruşen
Abstract:
Çinkur is the only plant in Turkey that produces zinc from primary ore containing zinc carbonate from its establishment until 1997. After this year, zinc concentrate coming from Iran was used in this plant. Therefore, there are two different leach residues namely Turkish leach residue (TLR) and Iranian leach residue (ILR), in Çinkur stock piles. This paper describes zinc recovery by sulphuric acid (H2SO4) treatment for each leach residue and includes comparison of blended of TLR and ILR. Before leach experiments; chemical, mineralogical and thermal analysis of three different leach residues was carried out by using atomic absorption spectrometry (AAS), X-Ray diffraction (XRD) and differential thermal analysis (DTA), respectively. Leaching experiments were conducted at optimum conditions; 100 oC, 150 g/L H2SO4 and 2 hours. In the experiments, stirring rate was kept constant at 600 r/min which ensures complete mixing in leaching solution. Results show that zinc recovery for Iranian LR was higher than Turkish LR due to having different chemical composition from each other.Keywords: hydrometallurgy, leaching, metal extraction, metal recovery
Procedia PDF Downloads 3541153 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security
Authors: D. Pugazhenthi, B. Sree Vidya
Abstract:
Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification
Procedia PDF Downloads 2591152 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion
Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro
Abstract:
Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.Keywords: basketball, deep learning, feature extraction, single-camera, tracking
Procedia PDF Downloads 1381151 Optimization of the Jatropha curcas Supply Chain as a Criteria for the Implementation of Future Collection Points in Rural Areas of Manabi-Ecuador
Authors: Boris G. German, Edward Jiménez, Sebastián Espinoza, Andrés G. Chico, Ricardo A. Narváez
Abstract:
The unique flora and fauna of The Galapagos Islands has leveraged a tourism-driven growth in the islands. Nonetheless, such development is energy-intensive and requires thousands of gallons of diesel each year for thermoelectric electricity generation. The needed transport of fossil fuels from the continent has generated oil spillages and affectations to the fragile ecosystem of the islands. The Zero Fossil Fuels initiative for The Galapagos proposed by the Ecuadorian government as an alternative to reduce the use of fossil fuels in the islands, considers the replacement of diesel in thermoelectric generators, by Jatropha curcas vegetable oil. However, the Jatropha oil supply cannot entirely cover yet the demand for electricity generation in Galapagos. Within this context, the present work aims to provide an optimization model that can be used as a selection criterion for approving new Jatropha Curcas collection points in rural areas of Manabi-Ecuador. For this purpose, existing Jatropha collection points in Manabi were grouped under three regions: north (7 collection points), center (4 collection points) and south (9 collection points). Field work was carried out in every region in order to characterize the collection points, to establish local Jatropha supply and to determine transportation costs. Data collection was complemented using GIS software and an objective function was defined in order to determine the profit associated to Jatropha oil production. The market price of both Jatropha oil and residual cake, were considered for the total revenue; whereas Jatropha price, transportation and oil extraction costs were considered for the total cost. The tonnes of Jatropha fruit and seed, transported from collection points to the extraction plant, were considered as variables. The maximum and minimum amount of the collected Jatropha from each region constrained the optimization problem. The supply chain was optimized using linear programming in order to maximize the profits. Finally, a sensitivity analysis was performed in order to find a profit-based criterion for the acceptance of future collection points in Manabi. The maximum profit reached a value of $ 4,616.93 per year, which represented a total Jatropha collection of 62.3 tonnes Jatropha per year. The northern region of Manabi had the biggest collection share (69%), followed by the southern region (17%). The criteria for accepting new Jatropha collection points in the rural areas of Manabi can be defined by the current maximum profit of the zone and by the variation in the profit when collection points are removed one at a time. The definition of new feasible collection points plays a key role in the supply chain associated to Jatropha oil production. Therefore, a mathematical model that assists decision makers in establishing new collection points while assuring profitability, contributes to guarantee a continued Jatropha oil supply for Galapagos and a sustained economic growth in the rural areas of Ecuador.Keywords: collection points, Jatropha curcas, linear programming, supply chain
Procedia PDF Downloads 433