Search results for: interval training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4711

Search results for: interval training

3481 Perceptual Organization within Temporal Displacement

Authors: Michele Sinico

Abstract:

The psychological present has an actual extension. When a sequence of instantaneous stimuli falls in this short interval of time, observers perceive a compresence of events in succession and the temporal order depends on the qualitative relationships between the perceptual properties of the events. Two experiments were carried out to study the influence of perceptual grouping, with and without temporal displacement, on the duration of auditory sequences. The psychophysical method of adjustment was adopted. The first experiment investigated the effect of temporal displacement of a white noise on sequence duration. The second experiment investigated the effect of temporal displacement, along the pitch dimension, on temporal shortening of sequence. The results suggest that the temporal order of sounds, in the case of temporal displacement, is organized along the pitch dimension.

Keywords: time perception, perceptual present, temporal displacement, Gestalt laws of perceptual organization

Procedia PDF Downloads 251
3480 Practical Skill Education for Doctors in Training: Economical and Efficient Methods for Students to Receive Hands-on Experience

Authors: Nathaniel Deboever, Malcolm Breeze, Adrian Sheen

Abstract:

Basic surgical and suturing techniques are a fundamental requirement for all doctors. In order to gain confidence and competence, doctors in training need to obtain sufficient teaching and just as importantly: practice. Young doctors with an apt level of expertise on these simple surgical skills, which are often used in the Emergency Department, can help alleviate some pressure during a busy evening. Unfortunately, learning these skills can be quite difficult during medical school or even during junior doctor years. The aim of this project was to adequately train medical students attending University of Sydney’s Nepean Clinical School through a series of workshops highlighting practical skills, with hopes to further extend this program to junior doctors in the hospital. The sessions instructed basic skills via tutorials, demonstrations, and lastly, the sessions cemented these proficiencies with practical sessions. During such an endeavor, it is fundamental to employ models that appropriately resemble what students will encounter in the clinical setting. The sustainability of workshops is similarly important to the continuity of such a program. To address both these challenges, the authors have developed models including suturing platforms, knot tying, and vessel ligation stations, as well as a shave and punch biopsy models and ophthalmologic foreign body device. The unique aspect of this work is that we utilized hands-on teaching sessions, to address a gap in doctors-in-training and junior doctor curriculum. Presented to you through this poster are our approaches to creating models that do not employ animal products and therefore do not necessitate particular facilities or discarding requirements. Covering numerous skills that would be beneficial to all young doctors, these models are easily replicable and affordable. This exciting work allows for countless sessions at low cost, providing enough practice for students to perform these skills confidently as it has been shown through attendee questionnaires.

Keywords: medical education, surgical models, surgical simulation, surgical skills education

Procedia PDF Downloads 157
3479 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training

Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li

Abstract:

Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.

Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning

Procedia PDF Downloads 261
3478 The Effects of Electrical Muscle Stimulation (EMS) towards Male Skeletal Muscle Mass

Authors: Mohd Faridz Ahmad, Amirul Hakim Hasbullah

Abstract:

Electrical Muscle Stimulation (EMS) has been introduced to the world in the 19th and 20th centuries and has globally gained increasing attention on its usefulness. EMS is known as the application of electrical current transcutaneous to muscles through electrodes to induce involuntary contractions that can lead to the increment of muscle mass and strength. This study can be used as an alternative to help people especially those living a sedentary lifestyle to improve their muscle activity without having to go through a heavy workout session. Therefore, this study intended to investigate the effectiveness of EMS training in 5 weeks interventions towards male body composition. It was a quasi-experimental design, held at the Impulse Studio Bangsar, which examined the effects of EMS training towards skeletal muscle mass among the subjects. Fifteen subjects (n = 15) were selected to assist in this study. The demographic data showed that, the average age of the subjects was 43.07 years old ± 9.90, height (173.4 cm ± 9.09) and weight was (85.79 kg ± 18.07). Results showed that there was a significant difference on the skeletal muscle mass (p = 0.01 < 0.05), upper body (p = 0.01 < 0.05) and lower body (p = 0.00 < 0.05). Therefore, the null hypothesis has been rejected in this study. As a conclusion, the application of EMS towards body composition can increase the muscle size and strength. This method has been proven to be able to improve athlete strength and thus, may be implemented in the sports science area of knowledge.

Keywords: body composition, EMS, skeletal muscle mass, strength

Procedia PDF Downloads 490
3477 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images

Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei

Abstract:

Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.

Keywords: miner self-rescue, object detection, underground mine, YOLO

Procedia PDF Downloads 83
3476 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 93
3475 Automatic Tagging and Accuracy in Assamese Text Data

Authors: Chayanika Hazarika Bordoloi

Abstract:

This paper is an attempt to work on a highly inflectional language called Assamese. This is also one of the national languages of India and very little has been achieved in terms of computational research. Building a language processing tool for a natural language is not very smooth as the standard and language representation change at various levels. This paper presents inflectional suffixes of Assamese verbs and how the statistical tools, along with linguistic features, can improve the tagging accuracy. Conditional random fields (CRF tool) was used to automatically tag and train the text data; however, accuracy was improved after linguistic featured were fed into the training data. Assamese is a highly inflectional language; hence, it is challenging to standardizing its morphology. Inflectional suffixes are used as a feature of the text data. In order to analyze the inflections of Assamese word forms, a list of suffixes is prepared. This list comprises suffixes, comprising of all possible suffixes that various categories can take is prepared. Assamese words can be classified into inflected classes (noun, pronoun, adjective and verb) and un-inflected classes (adverb and particle). The corpus used for this morphological analysis has huge tokens. The corpus is a mixed corpus and it has given satisfactory accuracy. The accuracy rate of the tagger has gradually improved with the modified training data.

Keywords: CRF, morphology, tagging, tagset

Procedia PDF Downloads 194
3474 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation

Authors: Peiming Li

Abstract:

This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.

Keywords: federated learning system, block chain, decentralized oracles, hidden markov model

Procedia PDF Downloads 63
3473 Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline

Authors: B. Y. Danjuma, A. Archibong-Eso, Aliyu M. Aliyu, H. Yeung

Abstract:

In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work.

Keywords: gamma densitometer, flow pattern, pressure gradient, slug frequency

Procedia PDF Downloads 412
3472 Response to Name Training in Autism Spectrum Disorder (ASD): A New Intervention Model

Authors: E. Verduci, I. Aguglia, A. Filocamo, I. Macrì, R. Scala, A. Vinci

Abstract:

One of the first indicator of autism spectrum disorder (ASD) is a decreasing tendency or failure to respond to name (RTN) call. Despite RTN is important for social and language developmentand it’s a common target for early interventions for children with ASD, research on specific treatments is insufficient and does not consider the importance of the discrimination between the own name and other names. The purpose of the current study was to replicate an assessment and treatment model proposed by Conine et al. (2020) to teach children with ASD to respond to their own name and to not respond to other names (RTO). The model includes three different phases (baseline/screening, treatment, and generalization), and itgradually introduces the different treatment components, starting with the most naturalistic ones (such as social interaction) and adding more intrusive components (such as tangible reinforcements, prompt and fading procedures) if necessary. The participants of this study were three children with ASD diagnosis: D. (5 years old) with a low frequency of RTN, M. (7 years old) with a RTN unstable and no ability of discrimination between his name and other names, S. (3 years old) with a strong RTN but a constant response to other names. Moreover, the treatment for D. and M. consisted of social and tangible reinforcements (treatment T1), for S. the purpose of the treatment was to teach the discrimination between his name and the others. For all participants, results suggest the efficacy of the model to acquire the ability to selectively respond to the own name and the generalization of the behavior with other people and settings.

Keywords: response to name, autism spectrum disorder, progressive training, ABA

Procedia PDF Downloads 84
3471 Role of Imaging in Alzheimer's Disease Trials: Impact on Trial Planning, Patient Recruitment and Retention

Authors: Kohkan Shamsi

Abstract:

Background: MRI and PET are now extensively utilized in Alzheimer's disease (AD) trials for patient eligibility, efficacy assessment, and safety evaluations but including imaging in AD trials impacts site selection process, patient recruitment, and patient retention. Methods: PET/MRI are performed at baseline and at multiple follow-up timepoints. This requires prospective site imaging qualification, evaluation of phantom data, training and continuous monitoring of machines for acquisition of standardized and consistent data. This also requires prospective patient/caregiver training as patients must go to multiple facilities for imaging examinations. We will share our experience form one of the largest AD programs. Lesson learned: Many neurological diseases have a similar presentation as AD or could confound the assessment of drug therapy. The inclusion of wrong patients has ethical and legal issues, and data could be excluded from the analysis. Centralized eligibility evaluation read process will be discussed. Amyloid related imaging abnormalities (ARIA) were observed in amyloid-β trials. FDA recommended regular monitoring of ARIA. Our experience in ARIA evaluations in large phase III study at > 350 sites will be presented. Efficacy evaluation: MRI is utilized to evaluate various volumes of the brain. FDG PET or amyloid PET agents has been used in AD trials. We will share our experience about site and central independent reads. Imaging logistic issues that need to be handled in the planning phase will also be discussed as it can impact patient compliance thereby increasing missing data and affecting study results. Conclusion: imaging must be prospectively planned to include standardizing imaging methodologies, site selection process and selecting assessment criteria. Training should be transparently conducted and documented. Prospective patient/caregiver awareness of imaging requirement is essential for patient compliance and reduction in missing imaging data.

Keywords: Alzheimer's disease, ARIA, MRI, PET, patient recruitment, retention

Procedia PDF Downloads 115
3470 Impact of the Time Interval in the Numerical Solution of Incompressible Flows

Authors: M. Salmanzadeh

Abstract:

In paper, we will deal with incompressible Couette flow, which represents an exact analytical solution of the Navier-Stokes equations. Couette flow is perhaps the simplest of all viscous flows, while at the same time retaining much of the same physical characteristics of a more complicated boundary-layer flow. The numerical technique that we will employ for the solution of the Couette flow is the Crank-Nicolson implicit method. Parabolic partial differential equations lend themselves to a marching solution; in addition, the use of an implicit technique allows a much larger marching step size than would be the case for an explicit solution. Hence, in the present paper we will have the opportunity to explore some aspects of CFD different from those discussed in the other papers.

Keywords: incompressible couette flow, numerical method, partial differential equation, Crank-Nicolson implicit

Procedia PDF Downloads 536
3469 Evaluation of Regional Anaesthesia Practice in Plastic Surgery: A Retrospective Cross-Sectional Study

Authors: Samar Mousa, Ryan Kerstein, Mohanad Adam

Abstract:

Regional anaesthesia has been associated with favourable outcomes in patients undergoing a wide range of surgeries. Beneficial effects have been demonstrated in terms of postoperative respiratory and cardiovascular endpoints, 7-day survival, time to ambulation and hospital discharge, and postoperative analgesia. Our project aimed at assessing the regional anaesthesia practice in the plastic surgery department of Buckinghamshire trust and finding out ways to improve the service in collaboration with the anaesthesia team. It is a retrospective study associated with a questionnaire filled out by plastic surgeons and anaesthetists to get the full picture behind the numbers. The study period was between 1/3/2022 and 23/5/2022 (12 weeks). The operative notes of all patients who had an operation under plastic surgery, whether emergency or elective, were reviewed. The criteria of suitable candidates for the regional block were put by the consultant anaesthetists as follows: age above 16, single surgical site (arm, forearm, leg, foot), no drug allergy, no pre-existing neuropathy, no bleeding disorders, not on ant-coagulation, no infection to the site of the block. For 12 weeks, 1061 operations were performed by plastic surgeons. Local cases were excluded leaving 319 cases. Of the 319, 102 patients were suitable candidates for regional block after applying the previously mentioned criteria. However, only seven patients had their operations under the regional block, and the rest had general anaesthesia that could have been easily avoided. An online questionnaire was filled out by both plastic surgeons and anaesthetists of different training levels to find out the reasons behind the obvious preference for general over regional anaesthesia, even if this was against the patients’ interest. The questionnaire included the following points: training level, time taken to give GA or RA, factors that influence the decision, percentage of RA candidates that had GA, reasons behind this percentage, recommendations. Forty-four clinicians filled out the questionnaire, among which were 23 plastic surgeons and 21 anaesthetists. As regards the training level, there were 21 consultants, 4 associate specialists, 9 registrars, and 10 senior house officers. The actual percentage of patients who were good candidates for RA but had GA instead is 93%. The replies estimated this percentage as between 10-30%. 29% of the respondents thought that this percentage is because of surgeons’ preference to have GA rather than RA for their operations without medical support for the decision. 37% of the replies thought that anaesthetists prefer giving GA even if the patient is a suitable candidate for RA. 22.6% of the replies thought that patients refused to have RA, and 11.3% had other causes. The recommendations were in 5 main accesses, which are protocols and pathways for regional blocks, more training opportunities for anaesthetists on regional blocks, providing a separate block room in the hospital, better communication between surgeons and anaesthetists, patient education about the benefits of regional blocks.

Keywords: regional anaesthesia, regional block, plastic surgery, general anaesthesia

Procedia PDF Downloads 84
3468 A Multicenter Assessment on Psychological Well-Being Status among Medical Residents in the United Arab Emirates

Authors: Mahera Abdulrahman

Abstract:

Objective: Healthcare transformation from traditional to modern in the country recently prompted the need to address career choices, accreditation perception and satisfaction among medical residents. However, a concerted nationwide study to understand and address burnout in the medical residency program has not been conducted in the UAE and the region. Methods: A nationwide, multicenter, cross-sectional study was designed to evaluate professional burnout and depression among medical residents in order to address the gap. Results: Our results indicate that 75.5% (216/286) of UAE medical residents had moderate to high emotional exhaustion, 84% (249/298) had high depersonalization, and 74% (216/291) had a low sense of personal accomplishment. In aggregate, 70% (212/302) of medical residents were considered to be experiencing at least one symptom of burnout based on a high emotional exhaustion score or a high depersonalization score. Depression ranging from 6-22%, depending on the specialty was also striking given the fact the Arab culture lays high emphasis on family bonding. Interestingly 83% (40/48) of medical residents who had high scores for depression also reported burnout. Conclusion: Our data indicate that burnout and depression among medical residents is epidemic. There is an immediate need to address burnout through effective interventions at both the individual and institutional levels. It is imperative to reconfigure the approach to medical training for the well-being of the next generation of physicians in the Arab world.

Keywords: mental health, Gulf, Arab, residency training, burnout, depression

Procedia PDF Downloads 294
3467 Effects of Whole Body Vibration on Movement Variability Performing a Resistance Exercise with Different Ballasts and Rhythms

Authors: Sílvia tuyà Viñas, Bruno Fernández-Valdés, Carla Pérez-Chirinos, Monica Morral-Yepes, Lucas del Campo Montoliu, Gerard Moras Feliu

Abstract:

Some researchers stated that whole body vibration (WBV) generates postural destabilization, although there is no extensive research. Therefore, the aim of this study was to analyze movement variability when performing a half-squat with a different type of ballasts and rhythms with (V) and without (NV) WBV in male athletes using entropy. Twelve experienced in strength training males (age: 21.24  2.35 years, height: 176.83  5.80 cm, body mass: 70.63  8.58 kg) performed a half-squat with weighted vest (WV), dumbbells (D), and a bar with the weights suspended with elastic bands (B), in V and NV at 40 bpm and 60 bpm. Subjects performed one set of twelve repetitions of each situation, composed by the combination of the three factors. The movement variability was analyzed by calculating the Sample Entropy (SampEn) of the total acceleration signal recorded at the waist. In V, significant differences were found between D and WV (p<0.001; ES: 2.87 at 40 bpm; p<0.001; ES: 3.17 at 60 bpm) and between the B and WV at both rhythms (p<0.001; ES: 3.12 at 40 bpm; p<0.001; ES: 2.93 at 60 bpm) and a higher SampEn was obtained at 40 bpm with all ballasts (p<0.001; ES of WV: 1.22; ES of D: 4.49; ES of B: 4.03). No significant differences were found in NV. WBV is a disturbing and destabilizing stimulus. Strength and conditioning coaches should choose the combination of ballast and rhythm of execution according to the level and objectives of each athlete.

Keywords: accelerometry, destabilization, entropy, movement variability, resistance training

Procedia PDF Downloads 179
3466 The Long – Term Effects of a Prevention Program on the Number of Critical Incidents and Sick Leave Days: A Decade Perspective

Authors: Valerie Isaak

Abstract:

Background: This study explores the effectiveness of refresher training sessions of an intervention program at reducing the employees’ risk of injury due to patient violence in a forensic psychiatric hospital. Methods: The original safety intervention program that consisted of a 3 days’ workshop was conducted in the maximum-security ward of a psychiatric hospital in Israel. Ever since the original intervention, annual refreshers were conducted, highlighting one of the safety elements covered in the original intervention. The study examines the effect of the intervention program along with the refreshers over a period of 10 years in four wards. Results: Analysis of the data demonstrates that beyond the initial reduction following the original intervention, refreshers seem to have an additional positive long-term effect, reducing both the number of violent incidents and the number of actual employee injuries in a forensic psychiatric hospital. Conclusions: We conclude that such an intervention program followed by refresher training would promote employees’ wellbeing. A healthy work environment is part of management’s commitment to improving employee wellbeing at the workplace.

Keywords: wellbeing, violence at work, intervention program refreshers, public sector mental healthcare

Procedia PDF Downloads 137
3465 Exploring the Relationship Between Helicobacter Pylori Infection and the Incidence of Bronchogenic Carcinoma

Authors: Jose R. Garcia, Lexi Frankel, Amalia Ardeljan, Sergio Medina, Ali Yasback, Omar Rashid

Abstract:

Background: Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that affects nearly half of the population worldwide and humans serve as the principal reservoir. Infection rates usually follow an inverse relationship with hygiene practices and are higher in developing countries than developed countries. Incidence varies significantly by geographic area, race, ethnicity, age, and socioeconomic status. H. pylori is primarily associated with conditions of the gastrointestinal tract such as atrophic gastritis and duodenal peptic ulcers. Infection is also associated with an increased risk of carcinogenesis as there is evidence to show that H. pylori infection may lead to gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. It is suggested that H. pylori infection may be considered as a systemic condition, leading to various novel associations with several different neoplasms such as colorectal cancer, pancreatic cancer, and lung cancer, although further research is needed. Emerging evidence suggests that H. pylori infection may offer protective effects against Mycobacterium tuberculosis as a result of non-specific induction of interferon- γ (IFN- γ). Similar methods of enhanced immunity may affect the development of bronchogenic carcinoma due to the antiproliferative, pro-apoptotic and cytostatic functions of IFN- γ. The purpose of this study was to evaluate the correlation between Helicobacter pylori infection and the incidence of bronchogenic carcinoma. Methods: The data was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate the patients infected versus patients not infected with H. pylori using ICD-10 and ICD-9 codes. Access to the database was granted by the Holy Cross Health, Fort Lauderdale for the purpose of academic research. Standard statistical methods were used. Results:-Between January 2010 and December 2019, the query was analyzed and resulted in 163,224 in both the infected and control group, respectively. The two groups were matched by age range and CCI score. The incidence of bronchogenic carcinoma was 1.853% with 3,024 patients in the H. pylori group compared to 4.785% with 7,810 patients in the control group. The difference was statistically significant (p < 2.22x10-16) with an odds ratio of 0.367 (0.353 - 0.383) with a confidence interval of 95%. The two groups were matched by treatment and incidence of cancer, which resulted in a total of 101,739 patients analyzed after this match. The incidence of bronchogenic carcinoma was 1.929% with 1,962 patients in the H. pylori and treatment group compared to 4.618% with 4,698 patients in the control group with treatment. The difference was statistically significant (p < 2.22x10-16) with an odds ratio of 0.403 (0.383 - 0.425) with a confidence interval of 95%.

Keywords: bronchogenic carcinoma, helicobacter pylori, lung cancer, pathogen-associated molecular patterns

Procedia PDF Downloads 183
3464 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator

Authors: Victoria L. Chester, Usha Kuruganti

Abstract:

The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.

Keywords: EMG, forestry, human factors, wrist biomechanics

Procedia PDF Downloads 146
3463 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio

Abstract:

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.

Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars

Procedia PDF Downloads 139
3462 Differential Analysis: Crew Resource Management and Profiles on the Balanced Inventory of Desirable Responding

Authors: Charalambos C. Cleanthous, Ryan Sain, Tabitha Black, Stephen Vera, Suzanne Milton

Abstract:

A concern when administering questionnaires is whether the participant is providing information that is accurate. The results may be invalid because the person is trying to present oneself in an unrealistic positive manner referred to as ‘faking good’, or in an unrealistic negative manner known as ‘faking bad’. The Balanced Inventory of Desirable Responding (BIDR) was used to assess commercial pilots’ responses on the two subscales of the BIDR: impression management (IM) and self-deceptive enhancement (SDE) that result in high or low scores. Thus, the BIDR produces four valid profiles: IM low and SDE low, IM high and SDE low, IM low and SDE high, and IM high and SDE high. The various profiles were used to compare the respondents’ answers to crew resource management (CRM) items developed from the USA Federal Aviation Administration’s (FAA) guidelines for CRM composition and training. Of particular interest were the results on the IM subscale. The comparisons between those scoring high (lying or faking) versus those low on the IM suggest that there were significant differences regarding their views of the various dimensions of CRM. One of the more disconcerting conclusions is that the high IM scores suggest that the pilots were trying to impress rather than honestly answer the questions regarding their CRM training and practice.

Keywords: USA commercial pilots, crew resource management, faking, social desirability

Procedia PDF Downloads 256
3461 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions

Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu

Abstract:

Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.

Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge

Procedia PDF Downloads 482
3460 Comprehensive Expert and Social Assessment of the Urban Environment of Almaty in the Process of Training Master's and Doctoral Students on Architecture and Urban Planning

Authors: Alexey Abilov

Abstract:

The article highlights the experience of training master's and doctoral students at Satbayev University by preparing their course works for disciplines "Principles of Sustainable Architecture", "Energy Efficiency in Urban planning", "Urban planning analysis, "Social foundations of Architecture". The purpose of these works is the acquisition by students of practical skills necessary in their future professional activities, which are achieved through comprehensive assessment of individual sections of the Almaty urban environment. The methodology of student’s researches carried out under the guidance of the author of this publication is based on an expert assessment of the territory through its full-scale survey, analysis of project documents and statistical data, as well as on a social assessment of the territory based on the results of a questionnaire survey of residents. A comprehensive qualitative and quantitative assessment of the selected sites according to the criteria of the quality of the living environment also allows to formulate specific recommendations for designers who carry out a pre-project analysis of the city territory in the process of preparing draft master plans and detailed planning projects.

Keywords: urban environment, expert/social assessment of the territory, questionnaire survey, comprehensive approach

Procedia PDF Downloads 73
3459 Optimal Number of Reconfigurable Robots in a Transport System

Authors: Mari Chaikovskaia, Jean-Philippe Gayon, Alain Quilliot

Abstract:

We consider a fleet of elementary robots that can be connected in different ways to transport loads of different types. For instance, a single robot can transport a small load, and the association of two robots can either transport a large load or two small loads. We seek to determine the optimal number of robots to transport a set of loads in a given time interval, with or without reconfiguration. We show that the problem with reconfiguration is strongly NP-hard by a reduction to the bin-packing problem. Then, we study a special case with unit capacities and derive simple formulas for the minimum number of robots, up to 3 types of loads. For this special case, we compare the minimum number of robots with or without reconfiguration and show that the gain is limited in absolute value but may be significant for small fleets.

Keywords: fleet sizing, reconfigurability, robots, transportation

Procedia PDF Downloads 86
3458 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography

Authors: Moung Young Lee, Chul Gyu Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.

Keywords: back-projection, image comparison, non-uniform FFT, photoacoustic tomography

Procedia PDF Downloads 434
3457 Microstructural and Transport Properties of La0.7Sr0.3CoO3 Thin Films Obtained by Metal-Organic Deposition

Authors: K. Daoudi, Z. Othmen, S. El Helali, M.Oueslati, M. Oumezzine

Abstract:

La0.7Sr0.3CoO3 thin films have been epitaxially grown on LaAlO3 and SrTiO3 (001) single-crystal substrates by metal organic deposition process. The structural and micro structural properties of the obtained films have been investigated by means of high resolution X-ray diffraction, Raman spectroscopy and transmission microscopy observations on cross-sections techniques. We noted a close dependence of the crystallinity on the used substrate and the film thickness. By increasing the annealing temperature to 1000ºC and the film thickness to 100 nm, the electrical resistivity was decreased by several orders of magnitude. The film resistivity reaches approximately 3~4 x10-4 Ω.cm in a wide interval of temperature 77-320 K, making this material a promising candidate for a variety of applications.

Keywords: cobaltite, thin films, epitaxial growth, MOD, TEM

Procedia PDF Downloads 333
3456 Study for a Non-Invasive Method of Respiratory Resistance Measurement among Patients with Airways Obstructions

Authors: Aicha Laouani, Pascale Calabrese, Sonia Rouatbi, Saad Saguem

Abstract:

Distances between signals (S d) and between asters (A d) calculated from respiratory inductive plethysmography signals has been used in order to evaluation airways resistances (Raw) during reversibility test among 28 subject with airways obstructions. Correlations studies between these distances and Raw measured by body plethysmography (BP) showed that these RIP variables could be potentially used in airway resistance assessment in patients with airway obstruction. Significant correlation was found between ΔAd and airway resistance changes (ΔRaw) (r= 0.407, p=0.03) and not between ΔSd and ΔRaw. This assumption was supported by the high correlations found when relating the average of ΔS and of ΔA calculated on successive intervals of ΔRaw, with the ΔRaw averages calculated for each interval (r= 0.892, p= 0.006 and r= 0.857, p=0.006 respectively).

Keywords: airways obstruction, distances, respiratory inductive plethysmography, reversibility test

Procedia PDF Downloads 454
3455 Moodle-Based E-Learning Course Development for Medical Interpreters

Authors: Naoko Ono, Junko Kato

Abstract:

According to the Ministry of Justice, 9,044,000 foreigners visited Japan in 2010. The number of foreign residents in Japan was over 2,134,000 at the end of 2010. Further, medical tourism has emerged as a new area of business. Against this background, language barriers put the health of foreigners in Japan at risk, because they have difficulty in accessing health care and communicating with medical professionals. Medical interpreting training is urgently needed in response to language problems resulting from the rapid increase in the number of foreign workers in Japan over recent decades. Especially, there is a growing need in medical settings in Japan to speak international languages for communication, with Tokyo selected as the host city of the 2020 Summer Olympics. Due to the limited number of practical activities on medical interpreting, it is difficult for learners to acquire the interpreting skills. In order to eliminate the shortcoming, a web-based English-Japanese medical interpreting training system was developed. We conducted a literature review to identify learning contents, core competencies for medical interpreters by using Pubmed, PsycINFO, Cochrane Library, and Google Scholar. Selected papers were investigated to find core competencies in medical interpreting. Eleven papers were selected through literature review indicating core competencies for medical interpreters. Core competencies in medical interpreting abstracted from the literature review, showed consistency in previous research whilst the content of the programs varied in domestic and international training programs for medical interpreters. Results of the systematic review indicated five core competencies: (a) maintaining accuracy and completeness; (b) medical terminology and understanding the human body; (c) behaving ethically and making ethical decisions; (d) nonverbal communication skills; and (e) cross-cultural communication skills. We developed an e-leaning program for training medical interpreters. A Web-based Medical Interpreter Training Program which cover these competencies was developed. The program included the following : online word list (Quizlet), allowing student to study online and on their smartphones; self-study tool (Quizlet) for help with dictation and spelling; word quiz (Quizlet); test-generating system (Quizlet); Interactive body game (BBC);Online resource for understanding code of ethics in medical interpreting; Webinar about non-verbal communication; and Webinar about incompetent vs. competent cultural care. The design of a virtual environment allows the execution of complementary experimental exercises for learners of medical interpreting and introduction to theoretical background of medical interpreting. Since this system adopts a self-learning style, it might improve the time and lack of teaching material restrictions of the classroom method. In addition, as a teaching aid, virtual medical interpreting is a powerful resource for the understanding how actual medical interpreting can be carried out. The developed e-learning system allows remote access, enabling students to perform experiments at their own place, without being physically in the actual laboratory. The web-based virtual environment empowers students by granting them access to laboratories during their free time. A practical example will be presented in order to show capabilities of the system. The developed web-based training program for medical interpreters could bridge the gap between medical professionals and patients with limited English proficiency.

Keywords: e-learning, language education, moodle, medical interpreting

Procedia PDF Downloads 366
3454 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 352
3453 Maximum-likelihood Inference of Multi-Finger Movements Using Neural Activities

Authors: Kyung-Jin You, Kiwon Rhee, Marc H. Schieber, Nitish V. Thakor, Hyun-Chool Shin

Abstract:

It remains unknown whether M1 neurons encode multi-finger movements independently or as a certain neural network of single finger movements although multi-finger movements are physically a combination of single finger movements. We present an evidence of correlation between single and multi-finger movements and also attempt a challenging task of semi-blind decoding of neural data with minimum training of the neural decoder. Data were collected from 115 task-related neurons in M1 of a trained rhesus monkey performing flexion and extension of each finger and the wrist (12 single and 6 two-finger-movements). By exploiting correlation of temporal firing pattern between movements, we found that correlation coefficient for physically related movements pairs is greater than others; neurons tuned to single finger movements increased their firing rate when multi-finger commands were instructed. According to this knowledge, neural semi-blind decoding is done by choosing the greatest and the second greatest likelihood for canonical candidates. We achieved a decoding accuracy about 60% for multiple finger movement without corresponding training data set. this results suggest that only with the neural activities on single finger movements can be exploited to control dexterous multi-fingered neuroprosthetics.

Keywords: finger movement, neural activity, blind decoding, M1

Procedia PDF Downloads 321
3452 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps

Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá

Abstract:

Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.

Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning

Procedia PDF Downloads 361