Search results for: data mining applications and discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30838

Search results for: data mining applications and discovery

29608 A Novel Machine Learning Approach to Aid Agrammatism in Non-fluent Aphasia

Authors: Rohan Bhasin

Abstract:

Agrammatism in non-fluent Aphasia Cases can be defined as a language disorder wherein a patient can only use content words ( nouns, verbs and adjectives ) for communication and their speech is devoid of functional word types like conjunctions and articles, generating speech of with extremely rudimentary grammar . Past approaches involve Speech Therapy of some order with conversation analysis used to analyse pre-therapy speech patterns and qualitative changes in conversational behaviour after therapy. We describe this approach as a novel method to generate functional words (prepositions, articles, ) around content words ( nouns, verbs and adjectives ) using a combination of Natural Language Processing and Deep Learning algorithms. The applications of this approach can be used to assist communication. The approach the paper investigates is : LSTMs or Seq2Seq: A sequence2sequence approach (seq2seq) or LSTM would take in a sequence of inputs and output sequence. This approach needs a significant amount of training data, with each training data containing pairs such as (content words, complete sentence). We generate such data by starting with complete sentences from a text source, removing functional words to get just the content words. However, this approach would require a lot of training data to get a coherent input. The assumptions of this approach is that the content words received in the inputs of both text models are to be preserved, i.e, won't alter after the functional grammar is slotted in. This is a potential limit to cases of severe Agrammatism where such order might not be inherently correct. The applications of this approach can be used to assist communication mild Agrammatism in non-fluent Aphasia Cases. Thus by generating these function words around the content words, we can provide meaningful sentence options to the patient for articulate conversations. Thus our project translates the use case of generating sentences from content-specific words into an assistive technology for non-Fluent Aphasia Patients.

Keywords: aphasia, expressive aphasia, assistive algorithms, neurology, machine learning, natural language processing, language disorder, behaviour disorder, sequence to sequence, LSTM

Procedia PDF Downloads 166
29607 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks

Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah

Abstract:

Ant colony based routing algorithms are known to grantee the packet delivery, but they su ffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.

Keywords: ad-hoc network, MANET, ant colony routing, position based routing

Procedia PDF Downloads 427
29606 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study

Authors: Ghaleb Y. Abbasi, Israa Abu Rumman

Abstract:

This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.

Keywords: ARIMA models, sales demand forecasting, time series, R code

Procedia PDF Downloads 387
29605 Analyzing Factors Impacting COVID-19 Vaccination Rates

Authors: Dongseok Cho, Mitchell Driedger, Sera Han, Noman Khan, Mohammed Elmorsy, Mohamad El-Hajj

Abstract:

Since the approval of the COVID-19 vaccine in late 2020, vaccination rates have varied around the globe. Access to a vaccine supply, mandated vaccination policy, and vaccine hesitancy contribute to these rates. This study used COVID-19 vaccination data from Our World in Data and the Multilateral Leaders Task Force on COVID-19 to create two COVID-19 vaccination indices. The first index is the Vaccine Utilization Index (VUI), which measures how effectively each country has utilized its vaccine supply to doubly vaccinate its population. The second index is the Vaccination Acceleration Index (VAI), which evaluates how efficiently each country vaccinated its population within its first 150 days. Pearson correlations were created between these indices and country indicators obtained from the World Bank. The results of these correlations identify countries with stronger health indicators, such as lower mortality rates, lower age dependency ratios, and higher rates of immunization to other diseases, displaying higher VUI and VAI scores than countries with lesser values. VAI scores are also positively correlated to Governance and Economic indicators, such as regulatory quality, control of corruption, and GDP per capita. As represented by the VUI, proper utilization of the COVID-19 vaccine supply by country is observed in countries that display excellence in health practices. A country’s motivation to accelerate its vaccination rates within the first 150 days of vaccinating, as represented by the VAI, was largely a product of the governing body’s effectiveness and economic status, as well as overall excellence in health practises.

Keywords: data mining, Pearson correlation, COVID-19, vaccination rates and hesitancy

Procedia PDF Downloads 115
29604 Standard Model-Like Higgs Decay into Displaced Heavy Neutrino Pairs in U(1)' Models

Authors: E. Accomando, L. Delle Rose, S. Moretti, E. Olaiya, C. Shepherd-Themistocleous

Abstract:

Heavy sterile neutrinos are almost ubiquitous in the class of Beyond Standard Model scenarios aimed at addressing the puzzle that emerged from the discovery of neutrino flavour oscillations, hence the need to explain their masses. In particular, they are necessary in a U(1)’ enlarged Standard Model (SM). We show that these heavy neutrinos can be rather long-lived producing distinctive displaced vertices and tracks. Indeed, depending on the actual decay length, they can decay inside a Large Hadron Collider (LHC) detector far from the main interaction point and can be identified in the inner tracking system or the muon chambers, emulated here through the Compact Muon Solenoid (CMS) detector parameters. Among the possible production modes of such heavy neutrino, we focus on their pair production mechanism in the SM Higgs decay, eventually yielding displaced lepton signatures following the heavy neutrino decays into weak gauge bosons. By employing well-established triggers available for the CMS detector and using the data collected by the end of the LHC Run 2, these signatures would prove to be accessible with negligibly small background. Finally, we highlight the importance that the exploitation of new triggers, specifically, displaced tri-lepton ones, could have for this displaced vertex search.

Keywords: beyond the standard model, displaced vertex, Higgs physics, neutrino physics

Procedia PDF Downloads 147
29603 X-Ray Fluorescence Molecular Imaging with Improved Sensitivity for Biomedical Applications

Authors: Guohua Cao, Xu Dong

Abstract:

X-ray Fluorescence Molecular Imaging (XFMI) holds great promise as a low-cost molecular imaging modality for biomedical applications with high chemical sensitivity. However, for in vivo biomedical applications, a key technical bottleneck is the relatively low chemical sensitivity of XFMI, especially at a reasonably low radiation dose. In laboratory x-ray source based XFMI, one of the main factors that limits the chemical sensitivity of XFMI is the scattered x-rays. We will present our latest findings on improving the chemical sensitivity of XFMI using excitation beam spectrum optimization. XFMI imaging experiments on two mouse-sized phantoms were conducted at three different excitation beam spectra. Our results show that the minimum detectable concentration (MDC) of iodine can be readily increased by five times via excitation spectrum optimization. Findings from this investigation could find use for in vivo pre-clinical small-animal XFMI in the future.

Keywords: molecular imaging, X-ray fluorescence, chemical sensitivity, X-ray scattering

Procedia PDF Downloads 191
29602 Iontophoretic Drug Transport: An Non-Invasive Transdermal Approach

Authors: Ashish Jain, Shivam Tayal

Abstract:

There has been great interest in the field of Iontophoresis since few years due to its great applications in the field of controlled transdermal drug delivery system. It is an technique which is used to enhance the transdermal permeation of ionized high molecular weight molecules across the skin membrane especially Peptides & Proteins by the application of direct current of 1-4 mA for 20-40 minutes whereas chemical must be placed on electrodes with same charge. Iontophoresis enhanced the delivery of drug into the skin via pores like hair follicles, sweat gland ducts etc. rather than through stratum corneum. It has wide applications in the field of experimental, Therapeutic, Diagnostic, Dentistry etc. Medical science is using it to treat Hyperhidrosis (Excessive sweating) in hands and feet and to treat other ailments like hypertension, Migraine etc. Nowadays commercial transdermal iontophoretic patches are available in the market to treat different ailments. Researchers are keen to research in this field due to its vast applications and advantages.

Keywords: iontophoresis, novel drug delivery, transdermal, permeation enhancer

Procedia PDF Downloads 257
29601 AI Applications in Accounting: Transforming Finance with Technology

Authors: Alireza Karimi

Abstract:

Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.

Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance

Procedia PDF Downloads 64
29600 Application of Acid Base Accounting to Predict Post-Mining Drainage Quality in Coalfields of the Main Karoo Basin and Selected Sub-Basins, South Africa

Authors: Lindani Ncube, Baojin Zhao, Ken Liu, Helen Johanna Van Niekerk

Abstract:

Acid Base Accounting (ABA) is a tool used to assess the total amount of acidity or alkalinity contained in a specific rock sample, and is based on the total S concentration and the carbonate content of a sample. A preliminary ABA test was conducted on 14 sandstone and 5 coal samples taken from coalfields representing the Main Karoo Basin (Highveld, Vryheid and Molteno/Indwe Coalfields) and the Sub-basins (Witbank and Waterberg Coalfields). The results indicate that sandstone and coal from the Main Karoo Basin have the potential of generating Acid Mine Drainage (AMD) as they contain sufficient pyrite to generate acid, with the final pH of samples relatively low upon complete oxidation of pyrite. Sandstone from collieries representing the Main Karoo Basin are characterised by elevated contents of reactive S%. All the studied samples were characterised by an Acid Potential (AP) that is less than the Neutralizing Potential (NP) except for two samples. The results further indicate that the sandstone from the Main Karoo Basin is prone to acid generation as compared to the sandstone from the Sub-basins. However, the coal has a relatively low potential of generating any acid. The application of ABA in this study contributes to an understanding of the complexities governing water-rock interactions. In general, the coalfields from the Main Karoo Basin have much higher potential to produce AMD during mining processes than the coalfields in the Sub-basins.

Keywords: Main Karoo Basin, sub-basin, coal, sandstone, acid base accounting (ABA)

Procedia PDF Downloads 434
29599 The Critical Velocity and Heat of Smoke Outflow in Z-shaped Passage Fires Under Weak Stack Effect

Authors: Zekun Li, Bart Merci, Miaocheng Weng, Fang Liu

Abstract:

The Z-shaped passage, widely used in metro entrance/exit passageways, inclined mining laneways, and other applications, features steep slopes and a combination of horizontal and inclined sections. These characteristics lead to notable differences in airflow patterns and temperature distributions compared to conventional confined passages. In fires occurring within Z-shaped passages under natural ventilation with a weak stack effect, the induced airflow may be insufficient to fully confined smoke downstream of the fire source. This can cause smoke back-layering upstream, with the possibility of smoke escaping from the lower entrance located upstream of the fire. Consequently, not all the heat from the fire source contributes to the stack effect. This study combines theoretical analysis and fire simulations to examine the influence of various heat release rates (HRR), passage structures, and fire source locations on the induced airflow velocity driven by the stack effect. An empirical equation is proposed to quantify the strength of the stack effect under different conditions. Additionally, predictive models have been developed to determine the critical induced airflow and to estimate the heat of smoke escaping from the lower entrance of the passage.

Keywords: stack effect, critical velocity, heat outflow, numerical simulation

Procedia PDF Downloads 12
29598 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.

Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management

Procedia PDF Downloads 493
29597 Evaluation of Commercial Back-analysis Package in Condition Assessment of Railways

Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman

Abstract:

Over the years,increased demands on railways, the emergence of high-speed trains and heavy axle loads, ageing, and deterioration of the existing tracks, is imposing costly maintenance actions on the railway sector. The need for developing a fast andcost-efficient non-destructive assessment method for the structural evaluation of railway tracksis therefore critically important. The layer modulus is the main parameter used in the structural design and evaluation of the railway track substructure (foundation). Among many recently developed NDTs, Falling Weight Deflectometer (FWD) test, widely used in pavement evaluation, has shown promising results for railway track substructure monitoring. The surface deflection data collected by FWD are used to estimate the modulus of substructure layers through the back-analysis technique. Although there are different commerciallyavailableback-analysis programs are used for pavement applications, there are onlya limited number of research-based techniques have been so far developed for railway track evaluation. In this paper, the suitability, accuracy, and reliability of the BAKFAAsoftware are investigated. The main rationale for selecting BAKFAA as it has a relatively straightforward user interfacethat is freely available and widely used in highway and airport pavement evaluation. As part of the study, a finite element (FE) model of a railway track section near Leominsterstation, Herefordshire, UK subjected to the FWD test, was developed and validated against available field data. Then, a virtual experimental database (including 218 sets of FWD testing data) was generated using theFE model and employed as the measured database for the BAKFAA software. This database was generated considering various layers’ moduli for each layer of track substructure over a predefined range. The BAKFAA predictions were compared against the cone penetration test (CPT) data (available from literature; conducted near to Leominster station same section as the FWD was performed). The results reveal that BAKFAA overestimatesthe layers’ moduli of each substructure layer. To adjust the BAKFA with the CPT data, this study introduces a correlation model to make the BAKFAA applicable in railway applications.

Keywords: back-analysis, bakfaa, railway track substructure, falling weight deflectometer (FWD), cone penetration test (CPT)

Procedia PDF Downloads 132
29596 Carbon Nanotubes and Novel Applications for Textile

Authors: Ezgi Ismar

Abstract:

Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products.

Keywords: carbon nanotubes, conductive textiles, nanotechnology, nanotextiles

Procedia PDF Downloads 385
29595 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: building energy prediction, data mining, demand response, electricity market

Procedia PDF Downloads 319
29594 Functionalized Nanoparticles for Biomedical Applications

Authors: Temesgen Geremew

Abstract:

Functionalized nanoparticles have emerged as a revolutionary class of materials with immense potential in various biomedical applications. These engineered nanoparticles possess unique properties tailored to interact with biological systems, offering unprecedented opportunities in drug delivery, imaging, diagnostics, and therapy. This research delves into the design, synthesis, and characterization of functionalized nanoparticles for targeted biomedical applications. The primary focus lies on developing nanoparticles with precisely controlled size, surface chemistry, and biocompatibility for specific medical purposes. The research will also explore the crucial interaction of these nanoparticles with biological systems, encompassing cellular uptake, biodistribution, and potential toxicity evaluation. The successful development of functionalized nanoparticles holds the promise to revolutionize various aspects of healthcare. This research aspires to contribute significantly to this advancement by providing valuable insights into the design and application of these versatile materials within the ever-evolving field of biomedicine.

Keywords: nanoparticles, biomedicals, cancer, biocompatibility

Procedia PDF Downloads 71
29593 Technological Applications in Automobile Manufacturing Sector - A Case Study Analysis

Authors: Raja Kannusamy

Abstract:

The research focuses on the applicable technologies in the automobile industry and their effects on the productivity and annual revenue of the industry. A study has been conducted on 6 major automobile manufacturing industries represented in this research as M1, M2, M3, M4, M5 and M6. The results indicate that M1, which is a pioneer in technological applications, remains the market leader, followed by M5 & M2 taking the second and third positions, respectively. M3, M6 and M4 are the followers and are placed next in positions. It has also been observed that M1 and M2 have entered into an agreement to share the basic structural technologies and they maintain long-term and trusted relationships with their suppliers through the Keiretsu system. With technological giants such as Apple, Microsoft, Uber and Google entering the automobile industry in recent years, an upward trend is expected in the futuristic market with self-driving cars to dominate the automobile sector. To keep up with the market trend, it is essential for automobile manufacturers to understand the importance of developing technological capabilities and skills to be competitive in the marketplace.

Keywords: automobile manufacturing industries, competitiveness, performance improvement, technological applications

Procedia PDF Downloads 179
29592 A Framework for Protecting Teenagers from Cyber Crimes and Cyberbullying

Authors: Sultan Alanazi, Adwan Alanazi

Abstract:

Social applications consist of powerful tools that allow people to connect and interact with each other. However, its negative use cannot be ignored. Cyberbullying is a new and serious Internet problem. Cyberbullying is one of the most common risks for teenagers to go online. More than half of young people report that they do not tell their parents when this will occur, which can have significant physiological consequences. Cyberbullying involves the deliberate use of digital media on the Internet to convey false or embarrassing information about others. Therefore, this article provides a way to detect cyber-bullying in social media applications for parents. The purpose of our work is to develop an architectural model for identifying and measuring the state of Cyberbullying faced by children on social media applications. For parents, this will be a good tool for monitoring their children without invading their privacy. Finally, some interesting open-ended questions were raised, suggesting promising ideas for starting new research in this new field.

Keywords: cyberbullying, cyber bullying, internet crimes, social media security, E-crimes

Procedia PDF Downloads 143
29591 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients

Procedia PDF Downloads 377
29590 The Crisis of Turkey's Downing the Russian Warplane within the Concept of Country Branding: The Examples of BBC World, and Al Jazeera English

Authors: Derya Gül Ünlü, Oguz Kuş

Abstract:

The branding of a country means that the country has its own position different from other countries in its region and thus it is perceived more specifically. It is made possible by the branding efforts of a country and the uniqueness of all the national structures, by presenting it in a specific way, by creating the desired image and attracting tourists and foreign investors. Establishing a national brand involves, in a sense, the process of managing the perceptions of the citizens of the other country about the target country, by structuring the image of the country permanently and holistically. By this means, countries are not easily affected by their crisis of international relations. Therefore, within the scope of the research that will be carried out from this point, it is aimed to show how the warplane downing crisis between Turkey and Russia is perceived on social media. The Russian warplane was downed by Turkey on November 24, 2015, on the grounds that Turkey violated the airspace on the Syrian border. Whereupon the relations between the two countries have been tensed, and Russia has called on its citizens not to go to Turkey and citizens in Turkey to return to their countries. Moreover, relations between two countries have been weakened, for example, tourism tours organized in Russia to Turkey and visa-free travel were canceled and all military dialogue was cut off. After the event, various news sites on social media published plenty of news related to topic and the readers made various comments about the event and Turkey. In this context, an investigation into the perception of Turkey's national brand before and after the warplane downing crisis has been conducted. through comments fetched from the reports on the BBC World, and from Al Jazeera English news sites on Facebook accounts, which takes place widely in the social media. In order to realize study, user comments were fetched from jet downing-related news which are published on Facebook fan-page of BBC World Service, and Al Jazeera English. Regarding this, all the news published between 24.10.2015-24.12.2015 and containing Turk and Turkey keyword in its title composed data set of our study. Afterwards, comments written to these news were analyzed via text mining technique. Furthermore, by sentiment analysis, it was intended to reveal reader’s emotions before and after the crisis.

Keywords: Al Jazeera English, BBC World, country branding, social media, text mining

Procedia PDF Downloads 227
29589 Embodying the Ecological Validity in Creating the Sustainable Public Policy: A Study in Strengthening the Green Economy in Indonesia

Authors: Gatot Dwi Hendro, Hayyan ul Haq

Abstract:

This work aims to explore the strategy in embodying the ecological validity in creating the sustainability of public policy, particularly in strengthening the green economy in Indonesia. This green economy plays an important role in supporting the national development in Indonesia, as it is a part of the national policy that posits the primary priority in Indonesian governance. The green economy refers to the national development covering strategic natural resources, such as mining, gold, oil, coal, forest, water, marine, and the other supporting infrastructure for products and distribution, such as fabrics, roads, bridges, and so forth. Thus, all activities in those national development should consider the sustainability. This sustainability requires the strong commitment of the national and regional government, as well as the local governments to put the ecology as the main requirement for issuing any policy, such as licence in mining production, and developing and building new production and supporting infrastructures for optimising the national resources. For that reason this work will focus on the strategy how to embody the ecological values and norms in the public policy. In detail, this work will offer the method, i.e. legal techniques, in visualising and embodying the norms and public policy that valid ecologically. This ecological validity is required in order to maintain and sustain our collective life.

Keywords: ecological validity, sustainable development, coherence, Indonesian Pancasila values, environment, marine

Procedia PDF Downloads 487
29588 Experimental Study on Granulated Steel Slag as an Alternative to River Sand

Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth

Abstract:

River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.

Keywords: steel slag, river sand, granulated slag, environmental

Procedia PDF Downloads 247
29587 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 60
29586 Syllogistic Reasoning with 108 Inference Rules While Case Quantities Change

Authors: Mikhail Zarechnev, Bora I. Kumova

Abstract:

A syllogism is a deductive inference scheme used to derive a conclusion from a set of premises. In a categorical syllogisms, there are only two premises and every premise and conclusion is given in form of a quantified relationship between two objects. The different order of objects in premises give classification known as figures. We have shown that the ordered combinations of 3 generalized quantifiers with certain figure provide in total of 108 syllogistic moods which can be considered as different inference rules. The classical syllogistic system allows to model human thought and reasoning with syllogistic structures always attracted the attention of cognitive scientists. Since automated reasoning is considered as part of learning subsystem of AI agents, syllogistic system can be applied for this approach. Another application of syllogistic system is related to inference mechanisms on the Semantic Web applications. In this paper we proposed the mathematical model and algorithm for syllogistic reasoning. Also the model of iterative syllogistic reasoning in case of continuous flows of incoming data based on case–based reasoning and possible applications of proposed system were discussed.

Keywords: categorical syllogism, case-based reasoning, cognitive architecture, inference on the semantic web, syllogistic reasoning

Procedia PDF Downloads 414
29585 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability

Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks

Abstract:

Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.

Keywords: open-cut, mining, erosion, rainfall simulator

Procedia PDF Downloads 105
29584 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach

Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma

Abstract:

Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.

Keywords: clustering, cluster-head, mini-group, stability period

Procedia PDF Downloads 359
29583 Depiction of a Circulated Double Psi-Shaped Microstrip Antenna for Ku-Band Satellite Applications

Authors: M. Naimur Rahman, Mohammad Tariqul Islam, Mandeep Singh Jit Singh, Norbahiah Misran

Abstract:

This paper presents the architecture and exploration of a compact, circulated double Psi-shaped microstrip patch antenna for Ku-band satellite applications. The antenna is composed of the double Psi-shaped patch in opposite focus which is circulated with a ring. The antenna size is 24 mm × 18 mm and the prototype is imprinted on Rogers RT/duroid 5880 materials with the depth of 1.57 mm. The substrate has a relative permittivity of 2.2 and the dielectric constant of 0.0009. The excitation is supplied through a 50Ω microstrip line. The performance of the presented antenna has been simulated and verified with the High-Frequency Structural Simulator (HFSS). The results depict that the antenna covers the frequency spectrum 14.6 - 17.4 GHz (Ku-band) with 10 dB return loss. The antenna has a 4.40 dBi maximum gain with stable radiation patterns throughout the operating band which makes the proposed antenna compatible for the satellite application in Ku-band.

Keywords: Ku-band antenna, microstrip antenna, psi-shaped antenna, satellite applications

Procedia PDF Downloads 314
29582 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams

Authors: Shael Brown, Reza Farivar

Abstract:

Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.

Keywords: machine learning, persistence diagrams, R, statistical inference

Procedia PDF Downloads 88
29581 Doubled Haploid Production in Wheat Using Imperata cylindrica Mediated Chromosome Elimination Technique

Authors: Madhu Patial, Dharam Pal, Jagdish Kumar, H. K. Chaudhary

Abstract:

Doubled haploid breeding serves as a useful technique in wheat improvement by providing instant and complete homozygosity. Of the various techniques employed for haploid production chromosome elimination has a large scale practical application in wheat improvement. Barclay (1975) initiated the technique in wheat by crossing wheat variety Chinese spring with Hordeum bulbosum, but due to presence of the dominant crossability inhibitor genes Kr7 and Kr2 in many wheat varieties, the technique was however genotypic specific. The discovery of wheat X maize system of haploid production being genotype non-specific is quite successful but still maize needs to be grown in greenhouse to coincide flowering with wheat crop. Recently, wheat X Imperate cylindrica has been identified as a new chromosome mediated DH approach for efficient haploid induction. An experiment to use this technique in wheat was set up by crossing six F1s and two three way F1s with Imperata cylindrica. The data was recorded for the three component traits of haploid induction viz., seed formation, embryo formation and regeneration frequency. Variation among wheat F1s was observed and higher frequency for all the traits were recorded in cross HD 2997/2*FL-8/DONSK-POLL and KLE/BER/2*FL-8/DONSK-POLL.

Keywords: wheat, haploid, imperata cylindrica, chromosome elimination technique

Procedia PDF Downloads 426
29580 Study on Wireless Transmission for Reconnaissance UAV with Wireless Sensor Network and Cylindrical Array of Microstrip Antennas

Authors: Chien-Chun Hung, Chun-Fong Wu

Abstract:

It is important for a commander to have real-time information to aware situations and to make decision in the battlefield. Results of modern technique developments have brought in this kind of information for military purposes. Unmanned aerial vehicle (UAV) is one of the means to gather intelligence owing to its widespread applications. It is still not clear whether or not the mini UAV with short-range wireless transmission system is used as a reconnaissance system in Taiwanese. In this paper, previous experience on the research of the sort of aerial vehicles has been applied with a data-relay system using the ZigBee modulus. The mini UAV developed is expected to be able to collect certain data in some appropriate theaters. The omni-directional antenna with high gain is also integrated into mini UAV to fit the size-reducing trend of airborne sensors. Two advantages are so far obvious. First, mini UAV can fly higher than usual to avoid being attacked from ground fires. Second, the data will be almost gathered during all maneuvering attitudes.

Keywords: mini UAV, reconnaissance, wireless transmission, ZigBee modulus

Procedia PDF Downloads 196
29579 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm

Authors: Ping Bo, Meng Yunshan

Abstract:

Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.

Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter

Procedia PDF Downloads 326