Search results for: contention resolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1475

Search results for: contention resolution

245 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes

Authors: Alan Luo, Hunter N. B. Moseley

Abstract:

Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.

Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography

Procedia PDF Downloads 100
244 Design-Based Elements to Sustain Participant Activity in Massive Open Online Courses: A Case Study

Authors: C. Zimmermann, E. Lackner, M. Ebner

Abstract:

Massive Open Online Courses (MOOCs) are increasingly popular learning hubs that are boasting considerable participant numbers, innovative technical features, and a multitude of instructional resources. Still, there is a high level of evidence showing that almost all MOOCs suffer from a declining frequency of participant activity and fairly low completion rates. In this paper, we would like to share the lessons learned in implementing several design patterns that have been suggested in order to foster participant activity. Our conclusions are based on experiences with the ‘Dr. Internet’ MOOC, which was created as an xMOOC to raise awareness for a more critical approach to online health information: participants had to diagnose medical case studies. There is a growing body of recommendations (based on Learning Analytics results from earlier xMOOCs) as to how the decline in participant activity can be alleviated. One promising focus in this regard is instructional design patterns, since they have a tremendous influence on the learner’s motivation, which in turn is a crucial trigger of learning processes. Since Medieval Age storytelling, micro-learning units and specific comprehensible, narrative structures were chosen to animate the audience to follow narration. Hence, MOOC participants are not likely to abandon a course or information channel when their curiosity is kept at a continuously high level. Critical aspects that warrant consideration in this regard include shorter course duration, a narrative structure with suspense peaks (according to the ‘storytelling’ approach), and a course schedule that is diversified and stimulating, yet easy to follow. All of these criteria have been observed within the design of the Dr. Internet MOOC: 1) the standard eight week course duration was shortened down to six weeks, 2) all six case studies had a special quiz format and a corresponding resolution video which was made available in the subsequent week, 3) two out of six case studies were split up in serial video sequences to be presented over the span of two weeks, and 4) the videos were generally scheduled in a less predictable sequence. However, the statistical results from the first run of the MOOC do not indicate any strong influences on the retention rate, so we conclude with some suggestions as to why this might be and what aspects need further consideration.

Keywords: case study, Dr. internet, experience, MOOCs, design patterns

Procedia PDF Downloads 234
243 Modelling Fluidization by Data-Based Recurrence Computational Fluid Dynamics

Authors: Varun Dongre, Stefan Pirker, Stefan Heinrich

Abstract:

Over the last decades, the numerical modelling of fluidized bed processes has become feasible even for industrial processes. Commonly, continuous two-fluid models are applied to describe large-scale fluidization. In order to allow for coarse grids novel two-fluid models account for unresolved sub-grid heterogeneities. However, computational efforts remain high – in the order of several hours of compute-time for a few seconds of real-time – thus preventing the representation of long-term phenomena such as heating or particle conversion processes. In order to overcome this limitation, data-based recurrence computational fluid dynamics (rCFD) has been put forward in recent years. rCFD can be regarded as a data-based method that relies on the numerical predictions of a conventional short-term simulation. This data is stored in a database and then used by rCFD to efficiently time-extrapolate the flow behavior in high spatial resolution. This study will compare the numerical predictions of rCFD simulations with those of corresponding full CFD reference simulations for lab-scale and pilot-scale fluidized beds. In assessing the predictive capabilities of rCFD simulations, we focus on solid mixing and secondary gas holdup. We observed that predictions made by rCFD simulations are highly sensitive to numerical parameters such as diffusivity associated with face swaps. We achieved a computational speed-up of four orders of magnitude (10,000 time faster than classical TFM simulation) eventually allowing for real-time simulations of fluidized beds. In the next step, we apply the checkerboarding technique by introducing gas tracers subjected to convection and diffusion. We then analyze the concentration profiles by observing mixing, transport of gas tracers, insights about the convective and diffusive pattern of the gas tracers, and further towards heat and mass transfer methods. Finally, we run rCFD simulations and calibrate them with numerical and physical parameters compared with convectional Two-fluid model (full CFD) simulation. As a result, this study gives a clear indication of the applicability, predictive capabilities, and existing limitations of rCFD in the realm of fluidization modelling.

Keywords: multiphase flow, recurrence CFD, two-fluid model, industrial processes

Procedia PDF Downloads 48
242 Measuring Fluctuating Asymmetry in Human Faces Using High-Density 3D Surface Scans

Authors: O. Ekrami, P. Claes, S. Van Dongen

Abstract:

Fluctuating asymmetry (FA) has been studied for many years as an indicator of developmental stability or ‘genetic quality’ based on the assumption that perfect symmetry is ideally the expected outcome for a bilateral organism. Further studies have also investigated the possible link between FA and attractiveness or levels of masculinity or femininity. These hypotheses have been mostly examined using 2D images, and the structure of interest is usually presented using a limited number of landmarks. Such methods have the downside of simplifying and reducing the dimensionality of the structure, which will in return increase the error of the analysis. In an attempt to reach more conclusive and accurate results, in this study we have used high-resolution 3D scans of human faces and have developed an algorithm to measure and localize FA, taking a spatially-dense approach. A symmetric spatially dense anthropometric mask with paired vertices is non-rigidly mapped on target faces using an Iterative Closest Point (ICP) registration algorithm. A set of 19 manually indicated landmarks were used to examine the precision of our mapping step. The protocol’s accuracy in measurement and localizing FA is assessed using simulated faces with known amounts of asymmetry added to them. The results of validation of our approach show that the algorithm is perfectly capable of locating and measuring FA in 3D simulated faces. With the use of such algorithm, the additional captured information on asymmetry can be used to improve the studies of FA as an indicator of fitness or attractiveness. This algorithm can especially be of great benefit in studies of high number of subjects due to its automated and time-efficient nature. Additionally, taking a spatially dense approach provides us with information about the locality of FA, which is impossible to obtain using conventional methods. It also enables us to analyze the asymmetry of a morphological structures in a multivariate manner; This can be achieved by using methods such as Principal Components Analysis (PCA) or Factor Analysis, which can be a step towards understanding the underlying processes of asymmetry. This method can also be used in combination with genome wide association studies to help unravel the genetic bases of FA. To conclude, we introduced an algorithm to study and analyze asymmetry in human faces, with the possibility of extending the application to other morphological structures, in an automated, accurate and multi-variate framework.

Keywords: developmental stability, fluctuating asymmetry, morphometrics, 3D image processing

Procedia PDF Downloads 118
241 A Radiofrequency Based Navigation Method for Cooperative Robotic Communities in Surface Exploration Missions

Authors: Francisco J. García-de-Quirós, Gianmarco Radice

Abstract:

When considering small robots working in a cooperative community for Moon surface exploration, navigation and inter-nodes communication aspects become a critical issue for the mission success. For this approach to succeed, it is necessary however to deploy the required infrastructure for the robotic community to achieve efficient self-localization as well as relative positioning and communications between nodes. In this paper, an exploration mission concept in which two cooperative robotic systems co-exist is presented. This paradigm hinges on a community of reference agents that provide support in terms of communication and navigation to a second agent community tasked with exploration goals. The work focuses on the role of the agent community in charge of the overall support and, more specifically, will focus on the positioning and navigation methods implemented in RF microwave bands, which are combined with the communication services. An analysis of the different methods for range and position calculation are presented, as well as the main limiting factors for precision and resolution, such as phase and frequency noise in RF reference carriers and drift mechanisms such as thermal drift and random walk. The effects of carrier frequency instability due to phase noise are categorized in different contributing bands, and the impact of these spectrum regions are considered both in terms of the absolute position and the relative speed. A mission scenario is finally proposed, and key metrics in terms of mass and power consumption for the required payload hardware are also assessed. For this purpose, an application case involving an RF communication network in UHF Band is described, in coexistence with a communications network used for the single agents to communicate within the both the exploring agents as well as the community and with the mission support agents. The proposed approach implements a substantial improvement in planetary navigation since it provides self-localization capabilities for robotic agents characterized by very low mass, volume and power budgets, thus enabling precise navigation capabilities to agents of reduced dimensions. Furthermore, a common and shared localization radiofrequency infrastructure enables new interaction mechanisms such as spatial arrangement of agents over the area of interest for distributed sensing.

Keywords: cooperative robotics, localization, robot navigation, surface exploration

Procedia PDF Downloads 265
240 Integrated Geophysical Approach for Subsurface Delineation in Srinagar, Uttarakhand, India

Authors: Pradeep Kumar Singh Chauhan, Gayatri Devi, Zamir Ahmad, Komal Chauhan, Abha Mittal

Abstract:

The application of geophysical methods to study the subsurface profile for site investigation is becoming popular globally. These methods are non-destructive and provide the image of subsurface at shallow depths. Seismic refraction method is one of the most common and efficient method being used for civil engineering site investigations particularly for knowing the seismic velocity of the subsurface layers. Resistivity imaging technique is a geo-electrical method used to image the subsurface, water bearing zone, bedrock and layer thickness. Integrated approach combining seismic refraction and 2-D resistivity imaging will provide a better and reliable picture of the subsurface. These are economical and less time-consuming field survey which provide high resolution image of the subsurface. Geophysical surveys carried out in this study include seismic refraction and 2D resistivity imaging method for delineation of sub-surface strata in different parts of Srinagar, Garhwal Himalaya, India. The aim of this survey was to map the shallow subsurface in terms of geological and geophysical properties mainly P-wave velocity, resistivity, layer thickness, and lithology of the area. Both sides of the river, Alaknanda which flows through the centre of the city, have been covered by taking two profiles on each side using both methods. Seismic and electrical surveys were carried out at the same locations to complement the results of each other. The seismic refraction survey was carried out using ABEM TeraLoc 24 channel Seismograph and 2D resistivity imaging was performed using ABEM Terrameter LS equipment. The results show three distinct layers on both sides of the river up to the depth of 20 m. The subsurface is divided into three distinct layers namely, alluvium extending up to, 3 m depth, conglomerate zone lying between the depth of 3 m to 15 m, and compacted pebbles and cobbles beyond 15 m. P-wave velocity in top layer is found in the range of 400 – 600 m/s, in second layer it varies from 700 – 1100 m/s and in the third layer it is 1500 – 3300 m/s. The resistivity results also show similar pattern and were in good agreement with seismic refraction results. The results obtained in this study were validated with an available exposed river scar at one site. The study established the efficacy of geophysical methods for subsurface investigations.

Keywords: 2D resistivity imaging, P-wave velocity, seismic refraction survey, subsurface

Procedia PDF Downloads 230
239 Infestation in Omani Date Palm Orchards by Dubas Bug Is Related to Tree Density

Authors: Lalit Kumar, Rashid Al Shidi

Abstract:

Phoenix dactylifera (date palm) is a major crop in many middle-eastern countries, including Oman. The Dubas bug Ommatissus lybicus is the main pest that affects date palm crops. However not all plantations are infested. It is still uncertain why some plantations get infested while others are not. This research investigated whether tree density and the system of planting (random versus systematic) had any relationship with infestation and levels of infestation. Remote Sensing and Geographic Information Systems were used to determine the density of trees (number of trees per unit area) while infestation levels were determined by manual counting of insects on 40 leaflets from two fronds on each tree, with a total of 20-60 trees in each village. The infestation was recorded as the average number of insects per leaflet. For tree density estimation, WorldView-3 scenes, with eight bands and 2m spatial resolution, were used. The Local maxima method, which depends on locating of the pixel of highest brightness inside a certain exploration window, was used to identify the trees in the image and delineating individual trees. This information was then used to determine whether the plantation was random or systematic. The ordinary least square regression (OLS) was used to test the global correlation between tree density and infestation level and the Geographic Weight Regression (GWR) was used to find the local spatial relationship. The accuracy of detecting trees varied from 83–99% in agricultural lands with systematic planting patterns to 50–70% in natural forest areas. Results revealed that the density of the trees in most of the villages was higher than the recommended planting number (120–125 trees/hectare). For infestation correlations, the GWR model showed a good positive significant relationship between infestation and tree density in the spring season with R² = 0.60 and medium positive significant relationship in the autumn season, with R² = 0.30. In contrast, the OLS model results showed a weaker positive significant relationship in the spring season with R² = 0.02, p < 0.05 and insignificant relationship in the autumn season with R² = 0.01, p > 0.05. The results showed a positive correlation between infestation and tree density, which suggests the infestation severity increased as the density of date palm trees increased. The correlation result showed that the density alone was responsible for about 60% of the increase in the infestation. This information can be used by the relevant authorities to better control infestations as well as to manage their pesticide spraying programs.

Keywords: dubas bug, date palm, tree density, infestation levels

Procedia PDF Downloads 159
238 Analysis of Lift Force in Hydrodynamic Transport of a Finite Sized Particle in Inertial Microfluidics with a Rectangular Microchannel

Authors: Xinghui Wu, Chun Yang

Abstract:

Inertial microfluidics is a competitive fluidic method with applications in separation of particles, cells and bacteria. In contrast to traditional microfluidic devices with low Reynolds number, inertial microfluidics works in the intermediate Re number range which brings about several intriguing inertial effects on particle separation/focusing to meet the throughput requirement in the real-world. Geometric modifications to make channels become irregular shapes can leverage fluid inertia to create complex secondary flow for adjusting the particle equilibrium positions and thus enhance the separation resolution and throughput. Although inertial microfluidics has been extensively studied by experiments, our current understanding of its mechanisms is poor, making it extremely difficult to build rational-design guidelines for the particle focusing locations, especially for irregularly shaped microfluidic channels. Inertial particle microfluidics in irregularly shaped channels were investigated in our group. There are several fundamental issues that require us to address. One of them is about the balance between the inertial lift forces and the secondary drag forces. Also, it is critical to quantitatively describe the dependence of the life forces on particle-particle interactions in irregularly shaped channels, such as a rectangular one. To provide physical insights into the inertial microfluidics in channels of irregular shapes, in this work the immersed boundary-lattice Boltzmann method (IB-LBM) was introduced and validated to explore the transport characteristics and the underlying mechanisms of an inertial focusing single particle in a rectangular microchannel. The transport dynamics of a finitesized particle were investigated over wide ranges of Reynolds number (20 < Re < 500) and particle size. The results show that the inner equilibrium positions are more difficult to occur in the rectangular channel, which can be explained by the secondary flow caused by the presence of a finite-sized particle. Furthermore, force decoupling analysis was utilized to study the effect of each type of lift force on the inertia migration, and a theoretical model for the lateral lift force of a finite-sized particle in the rectangular channel was established. Such theoretical model can be used to provide theoretical guidance for the design and operation of inertial microfluidics.

Keywords: inertial microfluidics, particle focuse, life force, IB-LBM

Procedia PDF Downloads 45
237 Comparing Two Unmanned Aerial Systems in Determining Elevation at the Field Scale

Authors: Brock Buckingham, Zhe Lin, Wenxuan Guo

Abstract:

Accurate elevation data is critical in deriving topographic attributes for the precision management of crop inputs, especially water and nutrients. Traditional ground-based elevation data acquisition is time consuming, labor intensive, and often inconvenient at the field scale. Various unmanned aerial systems (UAS) provide the capability of generating digital elevation data from high-resolution images. The objective of this study was to compare the performance of two UAS with different global positioning system (GPS) receivers in determining elevation at the field scale. A DJI Phantom 4 Pro and a DJI Phantom 4 RTK(real-time kinematic) were applied to acquire images at three heights, including 40m, 80m, and 120m above ground. Forty ground control panels were placed in the field, and their geographic coordinates were determined using an RTK GPS survey unit. For each image acquisition using a UAS at a particular height, two elevation datasets were generated using the Pix4D stitching software: a calibrated dataset using the surveyed coordinates of the ground control panels and an uncalibrated dataset without using the surveyed coordinates of the ground control panels. Elevation values for each panel derived from the elevation model of each dataset were compared to the corresponding coordinates of the ground control panels. The coefficient of the determination (R²) and the root mean squared error (RMSE) were used as evaluation metrics to assess the performance of each image acquisition scenario. RMSE values for the uncalibrated elevation dataset were 26.613 m, 31.141 m, and 25.135 m for images acquired at 120 m, 80 m, and 40 m, respectively, using the Phantom 4 Pro UAS. With calibration for the same UAS, the accuracies were significantly improved with RMSE values of 0.161 m, 0.165, and 0.030 m, respectively. The best results showed an RMSE of 0.032 m and an R² of 0.998 for calibrated dataset generated using the Phantom 4 RTK UAS at 40m height. The accuracy of elevation determination decreased as the flight height increased for both UAS, with RMSE values greater than 0.160 m for the datasets acquired at 80 m and 160 m. The results of this study show that calibration with ground control panels improves the accuracy of elevation determination, especially for the UAS with a regular GPS receiver. The Phantom 4 Pro provides accurate elevation data with substantial surveyed ground control panels for the 40 m dataset. The Phantom 4 Pro RTK UAS provides accurate elevation at 40 m without calibration for practical precision agriculture applications. This study provides valuable information on selecting appropriate UAS and flight heights in determining elevation for precision agriculture applications.

Keywords: unmanned aerial system, elevation, precision agriculture, real-time kinematic (RTK)

Procedia PDF Downloads 142
236 Using Photogrammetric Techniques to Map the Mars Surface

Authors: Ahmed Elaksher, Islam Omar

Abstract:

For many years, Mars surface has been a mystery for scientists. Lately with the help of geospatial data and photogrammetric procedures researchers were able to capture some insights about this planet. Two of the most imperative data sources to explore Mars are the The High Resolution Imaging Science Experiment (HiRISE) and the Mars Orbiter Laser Altimeter (MOLA). HiRISE is one of six science instruments carried by the Mars Reconnaissance Orbiter, launched August 12, 2005, and managed by NASA. The MOLA sensor is a laser altimeter carried by the Mars Global Surveyor (MGS) and launched on November 7, 1996. In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images for generating a more accurate and trustful surface of Mars. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. In this project, we employed three different 3D to 2D transformation models. These are the parallel projection (3D affine) transformation model; the extended parallel projection transformation model; the Direct Linear Transformation (DLT) model. A set of tie-points was digitized from both datasets. These points were split into two sets: Ground Control Points (GCPs), used to evaluate the transformation parameters using least squares adjustment techniques, and check points (ChkPs) to evaluate the computed transformation parameters. Results were evaluated using the RMSEs between the precise horizontal coordinates of the digitized check points and those estimated through the transformation models using the computed transformation parameters. For each set of GCPs, three different configurations of GCPs and check points were tested, and average RMSEs are reported. It was found that for the 2D transformation models, average RMSEs were in the range of five meters. Increasing the number of GCPs from six to ten points improve the accuracy of the results with about two and half meters. Further increasing the number of GCPs didn’t improve the results significantly. Using the 3D to 2D transformation parameters provided three to two meters accuracy. Best results were reported using the DLT transformation model. However, increasing the number of GCPS didn’t have substantial effect. The results support the use of the DLT model as it provides the required accuracy for ASPRS large scale mapping standards. However, well distributed sets of GCPs is a key to provide such accuracy. The model is simple to apply and doesn’t need substantial computations.

Keywords: mars, photogrammetry, MOLA, HiRISE

Procedia PDF Downloads 43
235 Campaigns of Youth Empowerment and Unemployment In Development Discourses: In the Case of Ethiopia

Authors: Fentie, Belay, Mulat

Abstract:

In today’s high decrement figure of the global economy, nations are facing many economic, social and political challenges; universally, there is high distress of food and other survival insecurity. Further, as a result of conflict, natural disasters, and leadership influences, youths are existentially less empowered and unemployed, especially in developing countries. With this situation to handle well challenges, it’s important to search, investigate and deliberate about youth, unemployment, empowerment and possible management fashions, as youths have the potential to carry and fight such battles. The method adopted is a qualitative analysis of secondary data sources in youth empowerment, unemployment and development as an inclusive framework. Youth unemployment is a major development headache for most African countries. In Ethiopia, following weak youth empowerment, youth unemployment has increased from time to time, and quality education and organization linkage matter as an important constraint. As a management challenge, although accessibility of quality education for Ethiopian youths is an important constraint, the country's youths are fortified deceptively and harassed in a vicious political challenge in their struggle to fetch social and economic changes in the country. Further, thousands of youths are inactivated, criminalized and lost their lives and this makes youths hopeless anger in their lives and pushes them further to be exposed for addictions, prostitution, violence, and illegitimate migrations. This youth challenge wasn’t only destined for African countries; rather, indeed, it was a global burden and headed as a global agenda. As a resolution, the construction of a healthy education system can create independent youths who acquire success and accelerate development. Developing countries should ensue development in the cultivation of empowerment tools through long and short-term education, implementing policy in action, diminishing wide-ranging gaps of (religion, ethnicity & region), and take high youth population as an opportunity and empower them. Further managing and empowering youths to be involved in decision-making, giving political weight and building a network of organizations to easily access job opportunities are important suggestions to save youths in work, for both increasing their income and the country's food security balance.

Keywords: development, Ethiopia, management, unemployment, youth empowerment

Procedia PDF Downloads 33
234 Rapid Flood Damage Assessment of Population and Crops Using Remotely Sensed Data

Authors: Urooj Saeed, Sajid Rashid Ahmad, Iqra Khalid, Sahar Mirza, Imtiaz Younas

Abstract:

Pakistan, a flood-prone country, has experienced worst floods in the recent past which have caused extensive damage to the urban and rural areas by loss of lives, damage to infrastructure and agricultural fields. Poor flood management system in the country has projected the risks of damages as the increasing frequency and magnitude of floods are felt as a consequence of climate change; affecting national economy directly or indirectly. To combat the needs of flood emergency, this paper focuses on remotely sensed data based approach for rapid mapping and monitoring of flood extent and its damages so that fast dissemination of information can be done, from local to national level. In this research study, spatial extent of the flooding caused by heavy rains of 2014 has been mapped by using space borne data to assess the crop damages and affected population in sixteen districts of Punjab. For this purpose, moderate resolution imaging spectroradiometer (MODIS) was used to daily mark the flood extent by using Normalised Difference Water Index (NDWI). The highest flood value data was integrated with the LandScan 2014, 1km x 1km grid based population, to calculate the affected population in flood hazard zone. It was estimated that the floods covered an area of 16,870 square kilometers, with 3.0 million population affected. Moreover, to assess the flood damages, Object Based Image Analysis (OBIA) aided with spectral signatures was applied on Landsat image to attain the thematic layers of healthy (0.54 million acre) and damaged crops (0.43 million acre). The study yields that the population of Jhang district (28% of 2.5 million population) was affected the most. Whereas, in terms of crops, Jhang and Muzzafargarh are the ‘highest damaged’ ranked district of floods 2014 in Punjab. This study was completed within 24 hours of the peak flood time, and proves to be an effective methodology for rapid assessment of damages due to flood hazard

Keywords: flood hazard, space borne data, object based image analysis, rapid damage assessment

Procedia PDF Downloads 302
233 Evaluation of Air Movement, Humidity and Temperature Perceptions with the Occupant Satisfaction in Office Buildings in Hot and Humid Climate Regions by Means of Field Surveys

Authors: Diego S. Caetano, Doreen E. Kalz, Louise L. B. Lomardo, Luiz P. Rosa

Abstract:

The energy consumption in non-residential buildings in Brazil has a great impact on the national infrastructure. The growth of the energy consumption has a special role over the building cooling systems, supported by the increased people's requirements on hygrothermal comfort. This paper presents how the occupants of office buildings notice and evaluate the hygrothermic comfort regarding temperature, humidity, and air movement, considering the cooling systems presented at the buildings studied, analyzed by real occupants in areas of hot and humid climate. The paper presents results collected over a long time from 3 office buildings in the cities of Rio de Janeiro and Niteroi (Brazil) in 2015 and 2016, from daily questionnaires with eight questions answered by 114 people between 3 to 5 weeks per building, twice a day (10 a.m. and 3 p.m.). The paper analyses 6 out of 8 questions, emphasizing on the perception of temperature, humidity, and air movement. Statistics analyses were made crossing participant answers and humidity and temperature data related to time high time resolution time. Analyses were made from regressions comparing: internal and external temperature, and then compared with the answers of the participants. The results were put in graphics combining statistic graphics related to temperature and air humidity with the answers of the real occupants. Analysis related to the perception of the participants to humidity and air movements were also analyzed. The hygrothermal comfort statistic model of the European standard DIN EN 15251 and that from the Brazilian standard NBR 16401 were compared taking into account the perceptions of the hygrothermal comfort of the participants, with emphasis on air humidity, taking basis on prior studies published on this same research. The studies point out a relative tolerance for higher temperatures than the ones determined by the standards, besides a variation on the participants' perception concerning air humidity. The paper presents a group of detailed information that permits to improve the quality of the buildings based on the perception of occupants of the office buildings, contributing to the energy reduction without health damages and demands of necessary hygrothermal comfort, reducing the consumption of electricity on cooling.

Keywords: thermal comfort, energy consumption, energy standards, comfort models

Procedia PDF Downloads 297
232 Detection and Identification of Antibiotic Resistant Bacteria Using Infra-Red-Microscopy and Advanced Multivariate Analysis

Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel

Abstract:

Antimicrobial drugs have an important role in controlling illness associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing like disk diffusion are time-consuming and other method including E-test, genotyping are relatively expensive. Fourier transform infrared (FTIR) microscopy is rapid, safe, and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 550 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 85% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.

Keywords: antibiotics, E. coli, FTIR, multivariate analysis, susceptibility

Procedia PDF Downloads 237
231 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 47
230 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)

Authors: Ali Pourkazemi

Abstract:

The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.

Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies

Procedia PDF Downloads 45
229 Campaigns of Youth Empowerment and Unemployment in Development Discourses: Case of Ethiopia

Authors: Belay Mulat Fentie

Abstract:

In today’s high decrement figure of the global economy, nations are facing many economic, social, and political challenges; universally, there is high distress of food and other survival insecurity. Further, as a result of conflict, natural disaster, and leadership influences, youths are existentially less empowered and unemployed, especially in developing countries. With this situation to handle well challenges, it’s important to search, investigate and deliberate about youth, unemployment, empowerment, and possible management fashions, as youths has a potential to carry and fight such battles. The method adopted is qualitative analysis of secondary data sources in youth empowerment, unemployment, and development as inclusive framework. Youth unemployment is a major development headache for most African countries. In Ethiopia, following weak youth empowerment, youth unemployment has been increased time to time; and quality education and organizations linkage matters as an important constraint. As a management challenge, although accessibility of quality education for Ethiopian youths is an important constraint; the country youths fortified deceptively and harassed in a vicious political challenge in their struggle to fetch social and economic changes in the country. Further, thousands of youths inactivated, criminalized, and lost their lives, and this makes youths to be hopeless, anger in their lives and pushes further to expose for addictions, prostitution, violence, and illegitimate migrations. This youth challenge didn’t only destinate in African countries, rather, indeed, the global burden and headed as a global agenda. As a resolution, the construction of a healthy education system can create independent youths that acquire success and accelerate development. Developing countries should ensue development in cultivation of empowerment tool through long and short-term education, implementing policy in action, diminishing wide ranged gaps of (religion, ethnicity & region), and take the high youth population as an opportunity and empower them. And further manage and empower youths to involve in decision making, in giving political weight and build a network on organizations to easily access jobs opportunities are important suggestion to alive youths in work, for both increasing their income and country food security balance.

Keywords: development, Ethiopia, management, unemployment, youth empowerment

Procedia PDF Downloads 93
228 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling

Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng

Abstract:

This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.

Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT

Procedia PDF Downloads 57
227 Development of mHealth Information in Community Based on Geographical Information: A Case Study from Saraphi District, Chiang Mai, Thailand

Authors: Waraporn Boonchieng, Ekkarat Boonchieng, Wilawan Senaratana, Jaras Singkaew

Abstract:

Geographical information system (GIS) is a designated system widely used for collecting and analyzing geographical data. Since the introduction of ultra-mobile, 'smart' devices, investigators, clinicians, and even the general public have had powerful new tools for collecting, uploading and accessing information in the field. Epidemiology paired with GIS will increase the efficacy of preventive health care services. The objective of this study is to apply GPS location services that are available on the common mobile device with district health systems, storing data on our private cloud system. The mobile application has been developed for use on iOS, Android, and web-based platforms. The system consists of two parts of district health information, including recorded resident data forms and individual health recorded data forms, which were developed and approved by opinion sharing and public hearing. The application's graphical user interface was developed using HTML5 and PHP with MySQL as a database management system (DBMS). The reporting module of the developed software displays data in a variety of views, from traditional tables to various types of high-resolution, layered graphics, incorporating map location information with street views from Google Maps. Multi-extension exporting is also supported, utilizing standard platforms such as PDF, PNG, JPG, and XLS. The data were collected in the database beginning in March 2013, by district health volunteers and district youth volunteers who had completed the application training program. District health information consisted of patients’ household coordinates, individual health data, social and economic information. This was combined with Google Street View data, collected in March 2014. Studied groups consisted of 16,085 (67.87%) and 47,811 (59.87%) of the total 23,701 households and 79,855 people were collected by the system respectively, in Saraphi district, Chiang Mai Province. The report generated from the system has had a major benefit directly to the Saraphi District Hospital. Healthcare providers are able to use the basic health data to provide a specific home health care service and also to create health promotion activities according to medical needs of the people in the community.

Keywords: health, public health, GIS, geographic information system

Procedia PDF Downloads 307
226 Monitoring Memories by Using Brain Imaging

Authors: Deniz Erçelen, Özlem Selcuk Bozkurt

Abstract:

The course of daily human life calls for the need for memories and remembering the time and place for certain events. Recalling memories takes up a substantial amount of time for an individual. Unfortunately, scientists lack the proper technology to fully understand and observe different brain regions that interact to form or retrieve memories. The hippocampus, a complex brain structure located in the temporal lobe, plays a crucial role in memory. The hippocampus forms memories as well as allows the brain to retrieve them by ensuring that neurons fire together. This process is called “neural synchronization.” Sadly, the hippocampus is known to deteriorate often with age. Proteins and hormones, which repair and protect cells in the brain, typically decline as the age of an individual increase. With the deterioration of the hippocampus, an individual becomes more prone to memory loss. Many memory loss starts off as mild but may evolve into serious medical conditions such as dementia and Alzheimer’s disease. In their quest to fully comprehend how memories work, scientists have created many different kinds of technology that are used to examine the brain and neural pathways. For instance, Magnetic Resonance Imaging - or MRI- is used to collect detailed images of an individual's brain anatomy. In order to monitor and analyze brain functions, a different version of this machine called Functional Magnetic Resonance Imaging - or fMRI- is used. The fMRI is a neuroimaging procedure that is conducted when the target brain regions are active. It measures brain activity by detecting changes in blood flow associated with neural activity. Neurons need more oxygen when they are active. The fMRI measures the change in magnetization between blood which is oxygen-rich and oxygen-poor. This way, there is a detectable difference across brain regions, and scientists can monitor them. Electroencephalography - or EEG - is also a significant way to monitor the human brain. The EEG is more versatile and cost-efficient than an fMRI. An EEG measures electrical activity which has been generated by the numerous cortical layers of the brain. EEG allows scientists to be able to record brain processes that occur after external stimuli. EEGs have a very high temporal resolution. This quality makes it possible to measure synchronized neural activity and almost precisely track the contents of short-term memory. Science has come a long way in monitoring memories using these kinds of devices, which have resulted in the inspections of neurons and neural pathways becoming more intense and detailed.

Keywords: brain, EEG, fMRI, hippocampus, memories, neural pathways, neurons

Procedia PDF Downloads 57
225 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source

Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka

Abstract:

After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.

Keywords: neutron source, neutron resonance, nuclear debris, time of flight

Procedia PDF Downloads 216
224 Modeling the Effects of Leachate-Impacted Groundwater on the Water Quality of a Large Tidal River

Authors: Emery Coppola Jr., Marwan Sadat, Il Kim, Diane Trube, Richard Kurisko

Abstract:

Contamination sites like landfills often pose significant risks to receptors like surface water bodies. Surface water bodies are often a source of recreation, including fishing and swimming, which not only enhances their value but also serves as a direct exposure pathway to humans, increasing their need for protection from water quality degradation. In this paper, a case study presents the potential effects of leachate-impacted groundwater from a large closed sanitary landfill on the surface water quality of the nearby Raritan River, situated in New Jersey. The study, performed over a two year period, included in-depth field evaluation of both the groundwater and surface water systems, and was supplemented by computer modeling. The analysis required delineation of a representative average daily groundwater discharge from the Landfill shoreline into the large, highly tidal Raritan River, with a corresponding estimate of daily mass loading of potential contaminants of concern. The average daily groundwater discharge into the river was estimated from a high-resolution water level study and a 24-hour constant-rate aquifer pumping test. The significant tidal effects induced on groundwater levels during the aquifer pumping test were filtered out using an advanced algorithm, from which aquifer parameter values were estimated using conventional curve match techniques. The estimated hydraulic conductivity values obtained from individual observation wells closely agree with tidally-derived values for the same wells. Numerous models were developed and used to simulate groundwater contaminant transport and surface water quality impacts. MODFLOW with MT3DMS was used to simulate the transport of potential contaminants of concern from the down-gradient edge of the Landfill to the Raritan River shoreline. A surface water dispersion model based upon a bathymetric and flow study of the river was used to simulate the contaminant concentrations over space within the river. The modeling results helped demonstrate that because of natural attenuation, the Landfill does not have a measurable impact on the river, which was confirmed by an extensive surface water quality study.

Keywords: groundwater flow and contaminant transport modeling, groundwater/surface water interaction, landfill leachate, surface water quality modeling

Procedia PDF Downloads 240
223 Shoreline Variation with Construction of a Pair of Training Walls, Ponnani Inlet, Kerala, India

Authors: Jhoga Parth, T. Nasar, K. V. Anand

Abstract:

An idealized definition of shoreline is that it is the zone of coincidence of three spheres such as atmosphere, lithosphere, and hydrosphere. Despite its apparent simplicity, this definition in practice a challenge to apply. In reality, the shoreline location deviates continually through time, because of various dynamic factors such as wave characteristics, currents, coastal orientation and the bathymetry, which makes the shoreline volatile. This necessitates us to monitor the shoreline in a temporal basis. If shoreline’s nature is understood at particular coastal stretch, it need not be the same trend at the other location, though belonging to the same sea front. Shoreline change is hence a local phenomenon and has to be studied with great intensity considering as many factors involved as possible. Erosion and accretion of sediment are such natures of a shoreline, which needs to be quantified by comparing with its predeceasing variations and understood before implementing any coastal projects. In recent years, advent of Global Positioning System (GPS) and Geographic Information System (GIS) acts as an emerging tool to quantify the intra and inter annual sediment rate getting accreted or deposited compared to other conventional methods in regards with time was taken and man power. Remote sensing data, on the other hand, paves way to acquire historical sets of data where field data is unavailable with a higher resolution. Short term and long term period shoreline change can be accurately tracked and monitored using a software residing in GIS - Digital Shoreline Analysis System (DSAS) developed by United States Geological Survey (USGS). In the present study, using DSAS, End Point Rate (EPR) is calculated analyze the intra-annual changes, and Linear Rate Regression (LRR) is adopted to study inter annual changes of shoreline. The shoreline changes are quantified for the scenario during the construction of breakwater in Ponnani river inlet along Kerala coast, India. Ponnani is a major fishing and landing center located 10°47’12.81”N and 75°54’38.62”E in Malappuram district of Kerala, India. The rate of erosion and accretion is explored using satellite and field data. The full paper contains the rate of change of shoreline, and its analysis would provide us understanding the behavior of the inlet at the study area during the construction of the training walls.

Keywords: DSAS, end point rate, field measurements, geo-informatics, shoreline variation

Procedia PDF Downloads 229
222 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level

Authors: M. A. Spielmann, L. Schebek

Abstract:

In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.

Keywords: building sector, economic-ecological assessment, heat, LCA, quarter level

Procedia PDF Downloads 203
221 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM

Authors: Fazli Rahim Shinwari, Ulrich Dittmer

Abstract:

Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.

Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage

Procedia PDF Downloads 128
220 Sympatric Calanus Species: A High Temporal Resolution of Reproductive Timing and Stage Composition

Authors: Mads Schultz, Galice Hoarau, Marvin Choquet

Abstract:

Members of the genus Calanus are key species in the North Atlantic and Arctic marine ecosystems due to their vast abundance and their ability to accumulate high amounts of lipid. As a link between primary producers and higher trophic levels, the temporal presence of each Calanus species is important in a time of changing communities and northward distribution shifts. This study focused on the temporal niches of the sympatric species Calanus helgolandicus, Calanus finmarchicus, Calanus glacialis, and Calanus hyperboreus in Skjerstad fjord, a Norwegian fjord (67˚14’N, 14 ˚44’E). Three depth intervals were sampled monthly over a year, targeting copepodite stages of the genus Calanus. Species determination was carried out genetically using insertion/deletion markers. In addition, during the reproductive season (Jan-May), weekly samples of the upper 50 meters of the water column targeting nauplii and 5 depth intervals targeting copepodites were collected. Nauplii samples were sorted into two groups (NI-NIII and NIV-NVI), and species were genetically identified. Specimens from stage CIV to adults from each depth interval of copepodite sampling were photographed in order to generate a supporting timeline of visual traits, including gonad maturation stage, presence of stomach content, and total lipid content. The most abundant species were Calanus finmarchicus and Calanus glacialis, followed by Calanus hyperboreus. These species were present in the water column throughout the year, whereas Calanus helgolandicus, the least abundant species, was only present during the summer and autumn period. Each species showed distinct temporal niches, with Calanus finmarchicus occupying the upper 50 meters longer than any of the other species. Calanus hyperboreus dominates in abundance early in the spring but are outnumbered by Calanus glacialis and Calanus finmarchicus after spring bloom sets in. In Skjerstad fjord, Calanus hyperboreus is a clear capital breeder with a long period of nauplii presence before the spring bloom. Calanus glacialis and Calanus finmarchicus both utilize income breeding, with Calanus glacialis developing to the larger nauplii stages quicker than Calanus finmarchicus, but also having a shorter reproduction period. Indeed, the “traditional Arctic” species Calanus hyperboreus and Calanus glacialis appear to end their reproduction period earlier than the North Atlantic Calanus finmarchicus.

Keywords: calanus, depth distribution, reproduction, stage composition, temporal niches

Procedia PDF Downloads 128
219 Assessment of Hydrologic Response of a Naturalized Tropical Coastal Mangrove Ecosystem Due to Land Cover Change in an Urban Watershed

Authors: Bryan Clark B. Hernandez, Eugene C. Herrera, Kazuo Nadaoka

Abstract:

Mangrove forests thriving in intertidal zones in tropical and subtropical regions of the world offer a range of ecosystem services including carbon storage and sequestration. They can regulate the detrimental effects of climate change due to carbon releases two to four times greater than that of mature tropical rainforests. Moreover, they are effective natural defenses against storm surges and tsunamis. However, their proliferation depends significantly on the prevailing hydroperiod at the coast. In the Philippines, these coastal ecosystems have been severely threatened with a 50% decline in areal extent observed from 1918 to 2010. The highest decline occurred in 1950 - 1972 when national policies encouraged the development of fisheries and aquaculture. With the intensive land use conversion upstream, changes in the freshwater-saltwater envelope at the coast may considerably impact mangrove growth conditions. This study investigates a developing urban watershed in Kalibo, Aklan province with a 220-hectare mangrove forest replanted for over 30 years from coastal mudflats. Since then, the mangrove forest was sustainably conserved and declared as protected areas. Hybrid land cover classification technique was used to classify Landsat images for years, 1990, 2010, and 2017. Digital elevation model utilized was Interferometric Synthetic Aperture Radar (IFSAR) with a 5-meter resolution to delineate the watersheds. Using numerical modelling techniques, the hydrologic and hydraulic analysis of the influence of land cover change to flow and sediment dynamics was simulated. While significant land cover change occurred upland, thereby increasing runoff and sediment loads, the mangrove forests abundance adjacent to the coasts for the urban watershed, was somehow sustained. However, significant alteration of the coastline was observed in Kalibo through the years, probably due to the massive land-use conversion upstream and significant replanting of mangroves downstream. Understanding the hydrologic-hydraulic response of these watersheds to change land cover is essential to helping local government and stakeholders facilitate better management of these mangrove ecosystems.

Keywords: coastal mangroves, hydrologic model, land cover change, Philippines

Procedia PDF Downloads 101
218 Development of Special Education in Moldova: Paradoxes of Inclusion

Authors: Liya Kalinnikova Magnusson

Abstract:

The present and ongoing research investigation are focusing on special educational origins in Moldova for children with disabilities and its development towards inclusion. The research is coordinated with related research on inclusion in Ukraine and other countries. The research interest in these issues in Moldova is caused by several reasons. The first one is based upon one of the intensive processes of deconstruction of special education institutions in Moldova since 1989. A large number of children with disabilities have been dropping out of these institutions: from 11400 students in 1989 to 5800 students in 1996, corresponding to 1% of all school-age Moldovan learners. Despite the fact that a huge number of students was integrated into regular schools and the dynamics of this data across the country was uneven (the opposite, the dynamics of exclusion was raised in Trans-Dniester on the border of Moldova), the volume of the change was evident and traditional special educational provision was under stable decline. The second reason is tied to transitional challenges, which Moldova met under the force to economic liberalisation that led the country to poverty. Deinstitutionalization of the entire state system took place in the situation of economic polarization of the society. The level of social benefits was dramatically diminished, increasing inequality. The most vulnerable from the comprehensive income consideration were families with many children, children with disabilities, children with health problems, etc.: each third child belonged to the poorest population. In 2000-2001: 87,4% of all families with children had incomes below the minimum wage. The research question raised based upon these considerations has been addressed to the investigation of particular patterns of the origins of special education and its development towards inclusion in Moldova from 1980 until the present date: what is the pattern of special education origins and what are particular arrangements of special education development towards inclusion against inequality? This is a qualitative study, with relevant peer review resources connected to the research question and national documents of educational reforms towards inclusion retrospectively and contemporary, analysed by a content analysis approach. This study utilises long term statistics completed by the respective international agencies as a result of regular monitoring of the implementation of educational reforms. The main findings were composed in three big themes: adoption of the Soviet pattern of special education, ‘endemic stress’ of breaking the pattern, and ‘paradoxes of resolution’.

Keywords: special education, statistics, educational reforms, inclusion, children with disabilities, content analysis

Procedia PDF Downloads 141
217 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach

Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi

Abstract:

Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.

Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial Information Science, remote sensing, surface elevation changes,

Procedia PDF Downloads 247
216 Assessment of Mediation of Community-Based Disputes in Selected Barangays of Batangas City

Authors: Daisyree S. Arrieta

Abstract:

The purpose of this study was to assess the mediation process applied on community-based disputes in the selected barangays of Batangas City, namely: Barangay Sta. Rita Karsada, Barangay Bolbok, and Barangay Alangilan. The researcher initially speculated that the required procedures under Republic Act No. 7160 were not religiously followed and satisfied by the Lupong Tagapamayapa members in most of the barangays in the subject locality and this prompted the researcher to conduct an investigation about this research topic. In this study, the subject barangays and their Lupon members still resorted to mediation processes to amicably settle conflicts among community members. It can also be appreciated among the Lupon Tagapamayapa members that they are aware of the purpose and processes required in the mediation of cases brought before them. However, the manner in which they conduct this mediation processes seems to be dependent on the general characteristics of their respective barangays and of the people situated therein. It also very noticeable that the strategies applied by the Lupon members on these cases depend on the ways and means the parties in dispute may arrive into agreements and conciliations. It is concluded by the researcher that the Lupong Tagapamayapa members in Barangay Sta. Rita Karsada, Barangay Bolbok, and Barangay Alangilan are aware and are applying the objectives and procedures of mediation. Also, the success and failure of the mediation processes applied by the Lupong Tagapamayapa members of the subject barangays on community-based disputes brought before them are generally attributed on the attitude and perspective of the parties in dispute towards the entire process of mediation and not on the capacity or capability of the Lupon members to subject them into amicable settlements. In view of the above, the researcher humbly recommends the following: (1) that the composition of the Lupong Tagapamayapa should include individuals from various sectors of the barangay; (2) that the Lupong Tagapamayapa members should undergo various trainings that may enhance their capability to mediate any type of community-based disputes at the expense of the barangay fund or budget; (3) that the Punong Barangay and the Sangguniang Pambarangay, in their own discretion, should allocate budget that will consistently provide regular honoraria for the Lupong Tagapamayapa members; (4) that the Punong Barangay and the Sangguniang Pambarangay should provide an ideal venue for the hearing of community-based disputes; (5) that the City/ Municipal Governments should allocate necessary financial assistance to the barangays under their jurisdiction in honing eligible Lupong Tagapamayapa members; and (6) that the Punong Barangay and other officials should initiate series of information campaigns for their constituents to be informed on the objectives, advantages, and procedures of mediation.

Keywords: amicable settlement, community-based disputes, dispute resolution, mediation

Procedia PDF Downloads 356