Search results for: artificial potential function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17302

Search results for: artificial potential function

16072 Safety Approach Highway Alignment Optimization

Authors: Seyed Abbas Tabatabaei, Marjan Naderan Tahan, Arman Kadkhodai

Abstract:

An efficient optimization approach, called feasible gate (FG), is developed to enhance the computation efficiency and solution quality of the previously developed highway alignment optimization (HAO) model. This approach seeks to realistically represent various user preferences and environmentally sensitive areas and consider them along with geometric design constraints in the optimization process. This is done by avoiding the generation of infeasible solutions that violate various constraints and thus focusing the search on the feasible solutions. The proposed method is simple, but improves significantly the model’s computation time and solution quality. On the other, highway alignment optimization through Feasible Gates, eventuates only economic model by considering minimum design constrains includes minimum reduce of circular curves, minimum length of vertical curves and road maximum gradient. This modelling can reduce passenger comfort and road safety. In most of highway optimization models, by adding penalty function for each constraint, final result handles to satisfy minimum constraint. In this paper, we want to propose a safety-function solution by introducing gift function.

Keywords: safety, highway geometry, optimization, alignment

Procedia PDF Downloads 409
16071 Fungal Pigments For Fabrics Dyeing: Initial Tests Using Industrial Dyeing Conditions

Authors: Vicente A. Hernandez, Felipe Galleguillos, Rene Thibaut, Alejandro Muller

Abstract:

Natural pigments have been proposed as an eco-friendly alternative to artificial pigments. Among the diverse organisms able to synthesize natural pigments, several wood colonizing fungi produce extracellular pigments which have been tested to dye fabrics at laboratory conditions with good results. However, the dyeing conditions used at laboratory level not necessary meet the real conditions in which dyeing of fabrics is conducted at industrial level. In this work, yellow and red pigments from the fungi Penicillium murcianum and Talaromyces australis, respectively, were used to dye yarn and linen fabrics using dyeing processes optimized according to the standard conditions used at industrial level. After dyeing treatments, fabrics were tested for color fastness to wash and to wet and dry rubbing, but also to tensile strength tests. Satisfactory result was obtained with both yellow and red pigments in yarn and linen, when used alone or mixed to different proportions. According to these results, natural pigments synthesized by both wood colonizing fungi have a great potential to be used in dyeing processes at industrial level.

Keywords: natural pigments, fungal pigments, yarn, linen

Procedia PDF Downloads 327
16070 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.

Keywords: soft jar test, jar test, water treatment plant process, artificial neural network

Procedia PDF Downloads 165
16069 A Survey on Fixed Point Iterations in Modular Function Spaces and an Application to Ode

Authors: Hudson Akewe

Abstract:

This research presents complementary results with wider applications on convergence and rate of convergence of classical fixed point theory in Banach spaces to the world of the theory of fixed points of mappings defined in classes of spaces of measurable functions, known in the literature as modular function spaces. The study gives a comprehensive survey of various iterative fixed point results for the classes of multivalued ρ-contractive-like, ρ-quasi-contractive-like, ρ-quasi-contractive, ρ-Zamfirescu and ρ-contraction mappings in the framework of modular function spaces. An example is presented to demonstrate the applicability of the implicit-type iterative schemes to the system of ordinary differential equations. Furthermore, numerical examples are given to show the rate of convergence of the various explicit Kirk-type and implicit Kirk-type iterative schemes under consideration. Our results complement the results obtained on normed and metric spaces in the literature. Also, our methods of proof serve as a guide to obtain several similar improved results for nonexpansive, pseudo-contractive, and accretive type mappings.

Keywords: implicit Kirk-type iterative schemes, multivalued mappings, convergence results, fixed point

Procedia PDF Downloads 128
16068 Manganese Contamination Exacerbates Reproductive Stress in a Suicidally-Breeding Marsupial

Authors: Ami Fadhillah Amir Abdul Nasir, Amanda C. Niehaus, Skye F. Cameron, Frank A. Von Hippel, John Postlethwait​, Robbie S. Wilson

Abstract:

For suicidal breeders, the physiological stresses and energetic costs of breeding are fatal. Environmental stressors such as pollution should compound these costs, yet suicidal breeding is so rare among mammals that this is unknown. Here, we explored the consequences of metal contamination to the health, aging and performance of endangered, suicidally-breeding northern quolls (Dasyurus hallucatus) living near an active manganese mine on Groote Eylandt, Northern Territory, Australia. We found respirable manganese dust at levels exceeding international recommendations even 20km from mining sites and substantial accumulation of manganese within quolls’ hair, testes, and in two brain regions—the neocortex and cerebellum, responsible for sensory perception and motor function, respectively. Though quolls did not differ in sprint speeds, motor skill, or manoeuvrability, those with higher accumulation of manganese crashed at lower speeds during manoeuvrability tests, indicating a potential effect on sight or cognition. Immune function and telomere length declined over the breeding season, as expected with ageing, but manganese contamination exacerbated immune declines and suppressed cortisol. Unexpectedly, male quolls with higher levels of manganese had longer telomeres, supporting evidence of unusual telomere dynamics among Dasyurids—though whether this affects their lifespan is unknown. We posit that sublethal contamination via pollution, mining, or urbanisation imposes physiological costs on wildlife that may diminish reproductive success or survival.

Keywords: ecotoxicology, heavy metal, manganese, telomere length, cortisol, locomotor

Procedia PDF Downloads 315
16067 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
16066 An Antibacterial Dental Restorative Containing 3,4-Dichlorocrotonolactone: Synthesis, Formulation and Evaluation

Authors: Dong Xie, Leah Howard, Yiming Weng

Abstract:

The objective of this study was to synthesize and characterize 5-acryloyloxy-3,4-dichlorocrotonolactone (a furanone derivative), use this derivative to modify a dental restorative, and study the effect of the derivative on the antibacterial activity and compressive strength of the formed restorative. In this study, a furanone derivative was synthesized, characterized, and used to formulate a dental restorative. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed restorative. The fabricated restorative specimens were photocured and conditioned in distilled water at 37oC for 24 h, followed by direct testing for CS or/and incubating with S. mutans for 48 h for antibacterial testing. The results show that the modified dental restorative showed a significant antibacterial activity without substantially decreasing the mechanical strengths. With addition of the antibacterial derivative up to 30%, the restorative kept its original CS nearly unchanged but showed a significant antibacterial activity with 68% reduction in the S. mutans viability. Furthermore, the antibacterial function of the modified restorative was not affected by human saliva. The aging study also indicates that the modified restorative may have a long-lasting antibacterial function. It is concluded that this experimental antibacterial restorative may potentially be developed into a clinically attractive dental filling restorative due to its high mechanical strength and antibacterial function.

Keywords: antibacterial, dental restorative, compressive strength, S. mutans viability

Procedia PDF Downloads 326
16065 The Importance of Efficient and Sustainable Water Resources Management and the Role of Artificial Intelligence in Preventing Forced Migration

Authors: Fateme Aysin Anka, Farzad Kiani

Abstract:

Forced migration is a situation in which people are forced to leave their homes against their will due to political conflicts, wars and conflicts, natural disasters, climate change, economic crises, or other emergencies. This type of migration takes place under conditions where people cannot lead a sustainable life due to reasons such as security, shelter and meeting their basic needs. This type of migration may occur in connection with different factors that affect people's living conditions. In addition to these general and widespread reasons, water security and resources will be one that is starting now and will be encountered more and more in the future. Forced migration may occur due to insufficient or depleted water resources in the areas where people live. In this case, people's living conditions become unsustainable, and they may have to go elsewhere, as they cannot obtain their basic needs, such as drinking water, water used for agriculture and industry. To cope with these situations, it is important to minimize the causes, as international organizations and societies must provide assistance (for example, humanitarian aid, shelter, medical support and education) and protection to address (or mitigate) this problem. From the international perspective, plans such as the Green New Deal (GND) and the European Green Deal (EGD) draw attention to the need for people to live equally in a cleaner and greener world. Especially recently, with the advancement of technology, science and methods have become more efficient. In this regard, in this article, a multidisciplinary case model is presented by reinforcing the water problem with an engineering approach within the framework of the social dimension. It is worth emphasizing that this problem is largely linked to climate change and the lack of a sustainable water management perspective. As a matter of fact, the United Nations Development Agency (UNDA) draws attention to this problem in its universally accepted sustainable development goals. Therefore, an artificial intelligence-based approach has been applied to solve this problem by focusing on the water management problem. The most general but also important aspect in the management of water resources is its correct consumption. In this context, the artificial intelligence-based system undertakes tasks such as water demand forecasting and distribution management, emergency and crisis management, water pollution detection and prevention, and maintenance and repair control and forecasting.

Keywords: water resource management, forced migration, multidisciplinary studies, artificial intelligence

Procedia PDF Downloads 86
16064 Comparative Stem Cells Therapy for Regeneration of Liver Fibrosis

Authors: H. M. Imam, H. M. Rezk, A. F. Tohamy

Abstract:

Background: Human umbilical cord blood (HUCB) is considered as a unique source for stem cells. HUCB contain different types of progenitor cells which could differentiate into hepatocytes. Aims: To investigate the potential of rat's liver damage repair using human umbilical cord mesenchymal stem cells (hUCMSCs). We investigated the feasibility for hUCMSCs in recovery from liver damage. Moreover, investigating fibrotic liver repair and using the CCl4-induced model for liver damage in the rat. Methods: Rats were injected with 0.5 ml/kg CCl4 to induce liver damage and progressive liver fibrosis. hUCMSCs were injected into the rats through the tail vein; Stem cells were transplanted at a dose of 1×106 cells/rat after 72 hours of CCl4 injection without receiving any immunosuppressant. After (6 and 8 weeks) of transplantation, blood samples were collected to assess liver functions (ALT, AST, GGT and ALB) and level of Procollagen III as a liver fibrosis marker. In addition, hepatic tissue regeneration was assessed histopathologically and immunohistochemically using antihuman monoclonal antibodies against CD34, CK19 and albumin. Results: Biochemical and histopathological analysis showed significantly increased recovery from liver damage in the transplanted group. In addition, HUCB stem cells transdifferentiated into functional hepatocytes in rats with hepatic injury which results in improving liver structure and function. Conclusion: Our findings suggest that transplantation of hUCMSCs may be a novel therapeutic approach for treating liver fibrosis. Therefore, hUCMSCs are a potential option for treatment of liver cirrhosis.

Keywords: carbon tetra chloride, liver fibrosis, mesenchymal stem cells, rat

Procedia PDF Downloads 342
16063 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network

Authors: Gajaanuja Megalathan, Banuka Athuraliya

Abstract:

Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.

Keywords: arima model, ANN, crime prediction, data analysis

Procedia PDF Downloads 131
16062 Technology for Good: Deploying Artificial Intelligence to Analyze Participant Response to Anti-Trafficking Education

Authors: Ray Bryant

Abstract:

3Strands Global Foundation (3SGF), a non-profit with a mission to mobilize communities to combat human trafficking through prevention education and reintegration programs, launched a groundbreaking study that calls out the usage and benefits of artificial intelligence in the war against human trafficking. Having gathered more than 30,000 stories from counselors and school staff who have gone through its PROTECT Prevention Education program, 3SGF sought to develop a methodology to measure the effectiveness of the training, which helps educators and school staff identify physical signs and behaviors indicating a student is being victimized. The program further illustrates how to recognize and respond to trauma and teaches the steps to take to report human trafficking, as well as how to connect victims with the proper professionals. 3SGF partnered with Levity, a leader in no-code Artificial Intelligence (AI) automation, to create the research study utilizing natural language processing, a branch of artificial intelligence, to measure the effectiveness of their prevention education program. By applying the logic created for the study, the platform analyzed and categorized each story. If the story, directly from the educator, demonstrated one or more of the desired outcomes; Increased Awareness, Increased Knowledge, or Intended Behavior Change, a label was applied. The system then added a confidence level for each identified label. The study results were generated with a 99% confidence level. Preliminary results show that of the 30,000 stories gathered, it became overwhelmingly clear that a significant majority of the participants now have increased awareness of the issue, demonstrated better knowledge of how to help prevent the crime, and expressed an intention to change how they approach what they do daily. In addition, it was observed that approximately 30% of the stories involved comments by educators expressing they wish they’d had this knowledge sooner as they can think of many students they would have been able to help. Objectives Of Research: To solve the problem of needing to analyze and accurately categorize more than 30,000 data points of participant feedback in order to evaluate the success of a human trafficking prevention program by using AI and Natural Language Processing. Methodologies Used: In conjunction with our strategic partner, Levity, we have created our own NLP analysis engine specific to our problem. Contributions To Research: The intersection of AI and human rights and how to utilize technology to combat human trafficking.

Keywords: AI, technology, human trafficking, prevention

Procedia PDF Downloads 59
16061 Comparison of Two Artificial Accelerated Weathering Methods of Larch Wood with Natural Weathering in Exterior Conditions

Authors: I. Sterbova, E. Oberhofnerova, M. Panek, M. Pavelek

Abstract:

With growing popularity, wood of European larch (Larix decidua, Mill.) is being more often applied into the exterior, usually as facade elements, also without surface treatment. The aim of this work was to compare two laboratory tests of artificial accelerated weathering of wood with two ways of natural weathering in the exterior. To assess changes in selected surface characteristics of larch wood, accelerated weathering methods in the Xenotest and UV chamber were used, both in combination with temperature cycling, for 6 weeks. They were compared with natural weathering results at exposition under 45° and 90° in the exterior for 12 months. The changes of colour, gloss, contact angle of water and also changes in visual characteristics were evaluated. The results of wood surfaces changes after 6 weeks of accelerated weathering in Xenotest are closer to 12 months of natural weathering in the exterior at an angle of 90° compared to the UV chamber testing. The results, especially the colour changes, of the samples exposed at an angle of 45° in the exterior were significantly different. Testing in Xenotest more closely simulates the weathering of façade elements in the exterior compared to the UV chamber testing.

Keywords: larch wood, wooden facade, wood accelerated weathering, weathering methods

Procedia PDF Downloads 139
16060 Analytical Study of Symbolism in Literary Texts: A Pragma-Stylistic Approach

Authors: Hussain Hameed Mayuuf

Abstract:

We may find multiple functions that are required to exist in order for meaning, in any certain context, to manifest and act accordingly. Pragmatic function and symbolic function need to be contributing in a combined effort towards that manifestation in order for meaning to be acquired or achieved from within a structure too complex to detect meaning in it by employing any other means. This paper inspects symbolism pragma-stylistically in literary texts. Thus, it principally aims at showing the ways writers utilize symbolism to contribute to the themes of their works and, consequently, pinpointing the most frequently flouted maxim involved in symbolic interpretations in addition to the reason(s) behind the writer's exploitation of that maxim in the literary work. E. E. Cummings' play Him constitutes rich data for the present study. Thus, to achieve its aims, the present study hypothesizes that the descriptions of scenes, the playwright’s remarks, and the characters’ references are all manipulated symbolically to contribute to the themes of the play. It is also hypothesized that the maxim of manner is the most frequently flouted maxim involved in symbolic interpretations in the play, which comes as a result of the intended ambiguity and obscurity manipulated in the descriptions of the scenes, the playwright’s remarks and the characters’ references. In order to achieve the aims of the study and test its hypotheses, a theoretical background about symbolism in general and symbolism from pragma-stylistic points of view is presented. Then, (six) extracts of Him according to Eco’s (1984) model Semiotics and the Philosophy of Language are analyzed. The findings of the analysis verify the above-mentioned hypotheses.

Keywords: pragmatic function, stylistic function, Symbolism, pragma-stylistics, Cummings

Procedia PDF Downloads 164
16059 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function

Authors: Pan Hongxia, Wang Zhenhua

Abstract:

In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.

Keywords: gearbox, fault diagnosis, ar model, end effect

Procedia PDF Downloads 366
16058 Approach for an Integrative Technology Assessment Method Combining Product Design and Manufacturing Process

Authors: G. Schuh, S. Woelk, D. Schraknepper, A. Such

Abstract:

The systematic evaluation of manufacturing technologies with regard to the potential for product designing constitutes a major challenge. Until now, conventional evaluation methods primarily consider the costs of manufacturing technologies. Thus, the potential of manufacturing technologies for achieving additional product design features is not completely captured. To compensate this deficit, final evaluations of new technologies are mainly intuitive in practice. Therefore, an additional evaluation dimension is needed which takes the potential of manufacturing technologies for specific realizable product designs into account. In this paper, we present the approach of an evaluation method for selecting manufacturing technologies with regard to their potential for product designing. This research is done within the Fraunhofer innovation cluster »AdaM« (Adaptive Manufacturing) which targets the development of resource efficient and adaptive manufacturing technology processes for complex turbo machinery components.

Keywords: manufacturing, product design, production, technology assessment, technology management

Procedia PDF Downloads 534
16057 Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier

Authors: Amit Verma, Simranjeet Kaur, Sandeep Kaur

Abstract:

Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases.

Keywords: test case prioritization, classification, artificial neural networks, TF-IDF

Procedia PDF Downloads 395
16056 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet

Procedia PDF Downloads 332
16055 Implementation of an Associative Memory Using a Restricted Hopfield Network

Authors: Tet H. Yeap

Abstract:

An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.

Keywords: restricted Hopfield network, Lyapunov function, simultaneous perturbation stochastic approximation

Procedia PDF Downloads 133
16054 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: image registration techniques, medical images, neural networks, optimisaztion, transformation

Procedia PDF Downloads 177
16053 Artificial Neural Network Regression Modelling of GC/MS Retention of Terpenes Present in Satureja montana Extracts Obtained by Supercritical Carbon Dioxide

Authors: Strahinja Kovačević, Jelena Vladić, Senka Vidović, Zoran Zeković, Lidija Jevrić, Sanja Podunavac Kuzmanović

Abstract:

Supercritical extracts of highly valuated medicinal plant Satureja montana were prepared by application of supercritical carbon dioxide extraction in the carbon dioxide pressure range from 125 to 350 bar and temperature range from 40 to 60°C. Using GC/MS method of analysis chemical profiles (aromatic constituents) of S. montana extracts were obtained. Self-training artificial neural networks were applied to predict the retention time of the analyzed terpenes in GC/MS system. The best ANN model obtained was multilayer perceptron (MLP 11-11-1). Hidden activation was tanh and output activation was identity with Broyden–Fletcher–Goldfarb–Shanno training algorithm. Correlation measures of the obtained network were the following: R(training) = 0.9975, R(test) = 0.9971 and R(validation) = 0.9999. The comparison of the experimental and predicted retention times of the analyzed compounds showed very high correlation (R = 0.9913) and significant predictive power of the established neural network.

Keywords: ANN regression, GC/MS, Satureja montana, terpenes

Procedia PDF Downloads 452
16052 Internal Auditing and the Performance of State-Owned Enterprises in Emerging Markets

Authors: Jobo Dubihlela, Kofi Boamah

Abstract:

The inimitable role of the internal auditing, challenges and the predicament of state-owned enterprises in emerging markets are acknowledged. Study sought to address the inter-related questions, about how does IAF complement the performance and sustainability of SOEs? How can effective IA control systems be implemented to improve the performance results and culture of SOEs in Namibia? The weaknesses inherent in the SOE sector, unfortunately, impacts on the IAF ability to effectively support the SOEs. Despite these challenges, the study has unearthed IAF potential capabilities to contribute to SOE survival in Namibia by complementing the governance practices of the sector. Using a quantitative research approach, the dataset was collected and analysed from SOEs to confirm the role of the internal auditing function (IAF) as an indispensable concomitant of SOE performance. The study adopted a data approach supported by the literary evidence, which enabled generalisation and connectedness of the issues being addressed. The outcome of the data analysis contributed to achieving the results, which are discussed and eventually support the conclusions reached. Results show that the intractable task of internal auditing depends on the leadership of the board of directors of the SOEs. Study also revealed critical priorities needed to influence policymakers and oversight bodies to overcome the iniquities influencing SOE operations, understand and embrace IAF to salvage a sector that has a lot to offer and yet is severely mismanaged. Results support literature on IA’s contribution to SOE development from a developing country’s point of view and is the first of its kind in Namibia. Findings suggest ways to possibly enhance knowledge development of future researchers and ‘wet their appetite’ for further research in emerging markets and on a global scale.

Keywords: internal auditing activity, state-owned enterprises, emerging markets, auditing function

Procedia PDF Downloads 103
16051 Filler Elastomers Abrasion at Steady State: Optimal Use Conditions

Authors: Djeridi Rachid, Ould Ouali Mohand

Abstract:

The search of a mechanism for the elastomer abrasive wear study is an open issue. The practice difficulties are complex due to the complexity of deformation mechanism, to the complex mechanism of the material tearing and to the marked interactions between the tribological parameters. In this work, we present an experimental technique to study the elastomers abrasive wear. The interaction 'elastomer/indenter' implicate dependant ant temporary of different tribological parameters. Consequently, the phenomenon that governs this interaction is not easy to explain. An optimal elastomers compounding and an adequate utilization conditions of these materials that define its resistance at the abrasion is discussed. The results are confronted to theoretical models: the weight loss variation in function of blade angle or in function of cycle number is in agreement with rupture models and with the mechanism of fissures propagation during the material tearing in abrasive wear of filler elastomers. The weight loss in function of the sliding velocity shows the existence of a critical velocity that corresponds to the maximal wear. The adding of silica or black carbon influences in a different manner on wear abrasive behavior of filler elastomers.

Keywords: abrasion wear, filler elastomer, tribology, hyperelastic

Procedia PDF Downloads 322
16050 Evaluation of Low Temperature as Treatment Tool for Eradication of Mediterranean Fruit Fly (Ceratitis capitata) in Artificial Diet

Authors: Farhan J. M. Al-Behadili, Vineeta Bilgi, Miyuki Taniguchi, Junxi Li, Wei Xu

Abstract:

Mediterranean fruit fly (Ceratitis capitata) is one of the most destructive pests of fruits and vegetables. Medfly originated from Africa and spread in many countries, and is currently an endemic pest in Western Australia. Medfly has been recorded from over 300 plant species including fruits, vegetables, nuts and its main hosts include blueberries, citrus, stone fruit, pome fruits, peppers, tomatoes, and figs. Global trade of fruits and other farm fresh products are suffering from the damages of this pest, which prompted towards the need to develop more effective ways to control these pests. The available quarantine treatment technologies mainly include chemical treatment (e.g., fumigation) and non-chemical treatments (e.g., cold, heat and irradiation). In recent years, with the loss of several chemicals, it has become even more important to rely on non-chemical postharvest control technologies (i.e., heat, cold and irradiation) to control fruit flies. Cold treatment is one of the most potential trends of focus in postharvest treatment because it is free of chemical residues, mitigates or kills the pest population, increases the strength of the fruits, and prolongs storage time. It can also be applied to fruits after packing and ‘in transit’ during lengthy transport by sea during their exports. However, limited systematic study on cold treatment of Medfly stages in artificial diets was reported, which is critical to provide a scientific basis to compare with previous research in plant products and design an effective cold treatment suitable for exported plant products. The overall purpose of this study was to evaluate and understand Medfly responses to cold treatments. Medfly stages were tested. The long-term goal was to optimize current postharvest treatments and develop more environmentally-friendly, cost-effective, and efficient treatments for controlling Medfly. Cold treatment with different exposure times is studied to evaluate cold eradication treatment of Mediterranean fruit fly (Ceratitis capitata), that reared on carrot diet. Mortality is important aspect was studied in this study. On the other hand, study effects of exposure time on mortality means of medfly stages.

Keywords: cold treatment, fruit fly, Ceratitis capitata, carrot diet, temperature effects

Procedia PDF Downloads 224
16049 The Contribution of Density Fluctuations in Ultrasound Scattering in Cancellous Bone

Authors: A. Elsariti, T. Evans

Abstract:

An understanding of the interaction between acoustic waves and cancellous bone is needed in order to realize the full clinical potential of ultrasonic bone measurements. Scattering is likely to be of central importance but has received little attention to date. Few theoretical approaches have been described to explain scattering of ultrasound from bone. In this study, a scattering model based on velocity and density fluctuations in a binary mixture (marrow fat and cortical matrix) was used to estimate the ultrasonic attenuation in cancellous bone as a function of volume fraction. Predicted attenuation and backscatter coefficient were obtained for a range of porosities and scatterer size. At 600 kHZ and for different scatterer size the effect of velocity and density fluctuations in the predicted attenuation was approximately 60% higher than velocity fluctuations.

Keywords: ultrasound scattering, sound speed, density fluctuations, attenuation coefficient

Procedia PDF Downloads 326
16048 Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, NDT, artificial defect, ultrasonic testing

Procedia PDF Downloads 475
16047 Popularization of Persian Scientific Articles in the Public Media: An Analysis Based on Experimental Meta-function View Point

Authors: Behnaz Zolfaghari

Abstract:

In civilized societies, linguists seek to find suitable equivalents for scientific terms in the common language of their society. Many researches have conducted surveys about language of science on one hand and media discourse on the other, but the goal of this research is the comparative analysis of science discourse in Persian academic media and public discourse in the general Persian media by applying experimental meta-function as one of the four theoretical tools introduced by Holiday’s Systemic Functional Grammar .The said analysis aims to explore the processes that can convert the language in which scientific facts are published to a language well suited to the interested layman. The results of comparison show that these two discourses use differently six processes of experimental meta-function. Comparing the redundancy of different processes, the researcher tried to re-identify these differences in these two discourses and present a model for the procedures of converting science discourse to popularized discourse. This model can be useful for those journalists and textbook authors who want to restate scientific technical texts in a simple style for inexpert addresser including general people and students.

Keywords: systemic functional grammar, discourse analysis, science language, popularization, media discourse

Procedia PDF Downloads 194
16046 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations

Authors: Sarra Hasni, Sami Faiz

Abstract:

In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.

Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation

Procedia PDF Downloads 25
16045 The Magnification of Early Detect Nutrition Case through Local Potential Utilization in Urban Region, Indonesia

Authors: Oktia Woro Kasmini Handayani, Sri Ratna Rahayu, Efa Nugroho, Bertakalswa Hermawati

Abstract:

The double burden of nutrition problem must be faced by Indonesia as developing country. The implemented program did not improve the nutritional status, therefore need to consider to utilize local potential. The objective of this research was to find out the effectivity of magnification model of early detect through local potential utilization in urban region, Semarang, Central Java, Indonesia. The research used an experimental design with the quantitative-qualitative approach. The population was all toddlers under five within the research region, sample determination by purposive sampling, as many as 216 toddlers. Quantitative data analysis used effectively criteria by Sugiono. Qualitative data was analyzed using NVivo. The optimization of local potential in the effort of nutrition status improvement shows number of nutrition case found was increased 225% (very effective), number of cases treated was increased 175% (very effective), number of cases counselled was increased 200% (effective), and number of cases that have improvement increase 75% (effective). The local potential need to be utilized in the effort of nutrition program improvement one of it is through the community empowerment, particularly health care and health high education institution as partner.

Keywords: early detection, nutrition status, local potential, health cadre

Procedia PDF Downloads 274
16044 A Guide to User-Friendly Bash Prompt: Adding Natural Language Processing Plus Bash Explanation to the Command Interface

Authors: Teh Kean Kheng, Low Soon Yee, Burra Venkata Durga Kumar

Abstract:

In 2022, as the future world becomes increasingly computer-related, more individuals are attempting to study coding for themselves or in school. This is because they have discovered the value of learning code and the benefits it will provide them. But learning coding is difficult for most people. Even senior programmers that have experience for a decade year still need help from the online source while coding. The reason causing this is that coding is not like talking to other people; it has the specific syntax to make the computer understand what we want it to do, so coding will be hard for normal people if they don’t have contact in this field before. Coding is hard. If a user wants to learn bash code with bash prompt, it will be harder because if we look at the bash prompt, we will find that it is just an empty box and waiting for a user to tell the computer what we want to do, if we don’t refer to the internet, we will not know what we can do with the prompt. From here, we can conclude that the bash prompt is not user-friendly for new users who are learning bash code. Our goal in writing this paper is to give an idea to implement a user-friendly Bash prompt in Ubuntu OS using Artificial Intelligent (AI) to lower the threshold of learning in Bash code, to make the user use their own words and concept to write and learn Bash code.

Keywords: user-friendly, bash code, artificial intelligence, threshold, semantic similarity, lexical similarity

Procedia PDF Downloads 142
16043 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 345