Search results for: cell- material interaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13310

Search results for: cell- material interaction

920 Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures

Authors: Atin Adhikari, Sushma Kurella, Pratik Banerjee, Nabanita Mukherjee, Yamini M. Chandana Gollapudi, Bushra Shah

Abstract:

Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed.

Keywords: bioaerosols, hospital hygiene, indoor air quality, occupational biohazards

Procedia PDF Downloads 310
919 Speech and Swallowing Function after Tonsillo-Lingual Sulcus Resection with PMMC Flap Reconstruction: A Case Study

Authors: K. Rhea Devaiah, B. S. Premalatha

Abstract:

Background: Tonsillar Lingual sulcus is the area between the tonsils and the base of the tongue. The surgical resection of the lesions in the head and neck results in changes in speech and swallowing functions. The severity of the speech and swallowing problem depends upon the site and extent of the lesion, types and extent of surgery and also the flexibility of the remaining structures. Need of the study: This paper focuses on the importance of speech and swallowing rehabilitation in an individual with the lesion in the Tonsillar Lingual Sulcus and post-operative functions. Aim: Evaluating the speech and swallow functions post-intensive speech and swallowing rehabilitation. The objectives are to evaluate the speech intelligibility and swallowing functions after intensive therapy and assess the quality of life. Method: The present study describes a report of an individual aged 47years male, with the diagnosis of basaloid squamous cell carcinoma, left tonsillar lingual sulcus (pT2n2M0) and underwent wide local excision with left radical neck dissection with PMMC flap reconstruction. Post-surgery the patient came with a complaint of reduced speech intelligibility, and difficulty in opening the mouth and swallowing. Detailed evaluation of the speech and swallowing functions were carried out such as OPME, articulation test, speech intelligibility, different phases of swallowing and trismus evaluation. Self-reported questionnaires such as SHI-E(Speech handicap Index- Indian English), DHI (Dysphagia handicap Index) and SESEQ -K (Self Evaluation of Swallowing Efficiency in Kannada) were also administered to know what the patient feels about his problem. Based on the evaluation, the patient was diagnosed with pharyngeal phase dysphagia associated with trismus and reduced speech intelligibility. Intensive speech and swallowing therapy was advised weekly twice for the duration of 1 hour. Results: Totally the patient attended 10 intensive speech and swallowing therapy sessions. Results indicated misarticulation of speech sounds such as lingua-palatal sounds. Mouth opening was restricted to one finger width with difficulty chewing, masticating, and swallowing the bolus. Intervention strategies included Oro motor exercise, Indirect swallowing therapy, usage of a trismus device to facilitate mouth opening, and change in the food consistency to help to swallow. A practice session was held with articulation drills to improve the production of speech sounds and also improve speech intelligibility. Significant changes in articulatory production and speech intelligibility and swallowing abilities were observed. The self-rated quality of life measures such as DHI, SHI and SESE Q-K revealed no speech handicap and near-normal swallowing ability indicating the improved QOL after the intensive speech and swallowing therapy. Conclusion: Speech and swallowing therapy post carcinoma in the tonsillar lingual sulcus is crucial as the tongue plays an important role in both speech and swallowing. The role of Speech-language and swallowing therapists in oral cancer should be highlighted in treating these patients and improving the overall quality of life. With intensive speech-language and swallowing therapy post-surgery for oral cancer, there can be a significant change in the speech outcome and swallowing functions depending on the site and extent of lesions which will thereby improve the individual’s QOL.

Keywords: oral cancer, speech and swallowing therapy, speech intelligibility, trismus, quality of life

Procedia PDF Downloads 111
918 Optimizing the Field Emission Performance of SiNWs-Based Heterostructures: Controllable Synthesis, Core-Shell Structure, 3D ZnO/Si Nanotrees and Graphene/SiNWs

Authors: Shasha Lv, Zhengcao Li

Abstract:

Due to the CMOS compatibility, silicon-based field emission (FE) devices as potential electron sources have attracted much attention. The geometrical arrangement and dimensional features of aligned silicon nanowires (SiNWs) have a determining influence on the FE properties. We discuss a multistep template replication process of Ag-assisted chemical etching combined with polystyrene (PS) spheres to fabricate highly periodic and well-aligned silicon nanowires, then their diameter, aspect ratio and density were further controlled via dry oxidation and post chemical treatment. The FE properties related to proximity and aspect ratio were systematically studied. A remarkable improvement of FE propertiy was observed with the average nanowires tip interspace increasing from 80 to 820 nm. On the basis of adjusting SiNWs dimensions and morphology, addition of a secondary material whose properties complement the SiNWs could yield a combined characteristic. Three different nanoheterostructures were fabricated to control the FE performance, they are: NiSi/Si core-shell structures, ZnO/Si nanotrees, and Graphene/SiNWs. We successfully fabricated the high-quality NiSi/Si heterostructured nanowires with excellent conformality. First, nickle nanoparticles were deposited onto SiNWs, then rapid thermal annealing process were utilized to form NiSi shell. In addition, we demonstrate a new and simple method for creating 3D nanotree-like ZnO/Si nanocomposites with a spatially branched hierarchical structure. Compared with the as-prepared SiNRs and ZnO NWs, the high-density ZnO NWs on SiNRs have exhibited predominant FE characteristics, and the FE enhancement factors were attributed to band bending effect and geometrical morphology. The FE efficiency from flat sheet structure of graphene is low. We discussed an effective approach towards full control over the diameter of uniform SiNWs to adjust the protrusions of large-scale graphene sheet deposited on SiNWs. The FE performance regarding the uniformity and dimensional control of graphene protrusions supported on SiNWs was systematically clarified. Therefore, the hybrid SiNWs/graphene structures with protrusions provide a promising class of field emission cathodes.

Keywords: field emission, silicon nanowires, heterostructures, controllable synthesis

Procedia PDF Downloads 272
917 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag

Authors: L. Pu, C. Unluer

Abstract:

MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.

Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂

Procedia PDF Downloads 191
916 An Analysis of Emmanuel Macron's Campaign Discourse

Authors: Robin Turner

Abstract:

In the context of the strengthening conservative movements such as “Brexit” and the election of US President Donald Trump, the global political stage was shaken up by the election of Emmanuel Macron to the French presidency, defeating the far-right candidate Marine Le Pen. The election itself was a first for the Fifth Republic in which neither final candidate was from the traditional two major political parties: the left Parti Socialiste (PS) and the right Les Républicains (LR). Macron, who served as the Minister of Finance under his predecessor, founded the centrist liberal political party En Marche! in April 2016 before resigning from his post in August to launch his bid for the presidency. Between the time of the party’s creation to the first round of elections a year later, Emmanuel Macron and En Marche! had garnered enough support to make it to the run-off election, finishing far ahead of many seasoned national political figures. Now months into his presidency, the youngest President of the Republic shows no sign of losing fuel anytime soon. His unprecedented success raises a lot of questions with respect to international relations, economics, and the evolving relationship between the French government and its citizens. The effectiveness of Macron’s campaign, of course, relies on many factors, one of which is his manner of communicating his platform to French voters. Using data from oral discourse and primary material from Macron and En Marche! in sources such as party publications and Twitter, the study categorizes linguistic instruments – address, lexicon, tone, register, and syntax – to identify prevailing patterns of speech and communication. The linguistic analysis in this project is two-fold. In addition to these findings’ stand-alone value, these discourse patterns are contextualized by comparable discourse of other 2017 presidential candidates with high emphasis on that of Marine Le Pen. Secondly, to provide an alternative approach, the study contextualizes Macron’s discourse using those of two immediate predecessors representing the traditional stronghold political parties, François Hollande (PS) and Nicolas Sarkozy (LR). These comparative methods produce an analysis that gives insight to not only a contributing factor to Macron’s successful 2017 campaign but also provides insight into how Macron’s platform presents itself differently to previous presidential platforms. Furthermore, this study extends analysis to supply data that contributes to a wider analysis of the defeat of “traditional” French political parties by the “start-up” movement En Marche!.

Keywords: Emmanuel Macron, French, discourse analysis, political discourse

Procedia PDF Downloads 260
915 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 141
914 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls

Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac

Abstract:

No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.

Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations

Procedia PDF Downloads 317
913 Assessing the Social Impacts of a Circular Economy in the Global South

Authors: Dolores Sucozhañay, Gustavo Pacheco, Paul Vanegas

Abstract:

In the context of sustainable development and the transition towards a sustainable circular economy (CE), evaluating the social dimension remains a challenge. Therefore, developing a respective methodology is highly important. First, the change of the economic model may cause significant social effects, which today remain unaddressed. Second, following the current level of globalization, CE implementation requires targeting global material cycles and causes social impacts on potentially vulnerable social groups. A promising methodology is the Social Life Cycle Assessment (SLCA), which embraces the philosophy of life cycle thinking and provides complementary information to environmental and economic assessments. In this context, the present work uses the updated Social Life Cycle Assessment (SLCA) Guidelines 2020 to assess the social performance of the recycling system of Cuenca, Ecuador, to exemplify a social assessment method. Like many other developing countries, Ecuador heavily depends on the work of informal waste pickers (recyclers), who, even contributing to a CE, face harsh socio-economic circumstances, including inappropriate working conditions, social exclusion, exploitation, etc. Under a Reference Scale approach (Type 1), 12 impact subcategories were assessed through 73 site-specific inventory indicators, using an ascending reference scale ranging from -2 to +2. Findings reveal a social performance below compliance levels with local and international laws, basic societal expectations, and practices in the recycling sector; only eight and five indicators present a positive score. In addition, a social hotspot analysis depicts collection as the most time-consuming lifecycle stage and the one with the most hotspots, mainly related to working hours and health and safety aspects. This study provides an integrated view of the recyclers’ contributions, challenges, and opportunities within the recycling system while highlighting the relevance of assessing the social dimension of CE practices. It also fosters an understanding of the social impact of CE operations in developing countries, highlights the need for a close north-south relationship in CE, and enables the connection among the environmental, economic, and social dimensions.

Keywords: SLCA, circular economy, recycling, social impact assessment

Procedia PDF Downloads 151
912 Optimum Method to Reduce the Natural Frequency for Steel Cantilever Beam

Authors: Eqqab Maree, Habil Jurgen Bast, Zana K. Shakir

Abstract:

Passive damping, once properly characterized and incorporated into the structure design is an autonomous mechanism. Passive damping can be achieved by applying layers of a polymeric material, called viscoelastic layers (VEM), to the base structure. This type of configuration is known as free or unconstrained layer damping treatment. A shear or constrained damping treatment uses the idea of adding a constraining layer, typically a metal, on top of the polymeric layer. Constrained treatment is a more efficient form of damping than the unconstrained damping treatment. In constrained damping treatment a sandwich is formed with the viscoelastic layer as the core. When the two outer layers experience bending, as they would if the structure was oscillating, they shear the viscoelastic layer and energy is dissipated in the form of heat. This form of energy dissipation allows the structural oscillations to attenuate much faster. The purpose behind this study is to predict damping effects by using two methods of passive viscoelastic constrained layer damping. First method is Euler-Bernoulli beam theory; it is commonly used for predicting the vibratory response of beams. Second method is Finite Element software packages provided in this research were obtained by using two-dimensional solid structural elements in ANSYS14 specifically eight nodded (SOLID183) and the output results from ANSYS 14 (SOLID183) its damped natural frequency values and mode shape for first five modes. This method of passive damping treatment is widely used for structural application in many industries like aerospace, automobile, etc. In this paper, take a steel cantilever sandwich beam with viscoelastic core type 3M-468 by using methods of passive viscoelastic constrained layer damping. Also can proved that, the percentage reduction of modal frequency between undamped and damped steel sandwich cantilever beam 8mm thickness for each mode is very high, this is due to the effect of viscoelastic layer on damped beams. Finally this types of damped sandwich steel cantilever beam with viscoelastic materials core type (3M468) is very appropriate to use in automotive industry and in many mechanical application, because has very high capability to reduce the modal vibration of structures.

Keywords: steel cantilever, sandwich beam, viscoelastic materials core type (3M468), ANSYS14, Euler-Bernoulli beam theory

Procedia PDF Downloads 318
911 Evaluation of Nanoparticle Application to Control Formation Damage in Porous Media: Laboratory and Mathematical Modelling

Authors: Gabriel Malgaresi, Sara Borazjani, Hadi Madani, Pavel Bedrikovetsky

Abstract:

Suspension-Colloidal flow in porous media occurs in numerous engineering fields, such as industrial water treatment, the disposal of industrial wastes into aquifers with the propagation of contaminants and low salinity water injection into petroleum reservoirs. The main effects are particle mobilization and captured by the porous rock, which can cause pore plugging and permeability reduction which is known as formation damage. Various factors such as fluid salinity, pH, temperature, and rock properties affect particle detachment. Formation damage is unfavorable specifically near injection and production wells. One way to control formation damage is pre-treatment of the rock with nanoparticles. Adsorption of nanoparticles on fines and rock surfaces alters zeta-potential of the surfaces and enhances the attachment force between the rock and fine particles. The main objective of this study is to develop a two-stage mathematical model for (1) flow and adsorption of nanoparticles on the rock in the pre-treatment stage and (2) fines migration and permeability reduction during the water production after the pre-treatment. The model accounts for adsorption and desorption of nanoparticles, fines migration, and kinetics of particle capture. The system of equations allows for the exact solution. The non-self-similar wave-interaction problem was solved by the Method of Characteristics. The analytical model is new in two ways: First, it accounts for the specific boundary and initial condition describing the injection of nanoparticle and production from the pre-treated porous media; second, it contains the effect of nanoparticle sorption hysteresis. The derived analytical model contains explicit formulae for the concentration fronts along with pressure drop. The solution is used to determine the optimal injection concentration of nanoparticle to avoid formation damage. The mathematical model was validated via an innovative laboratory program. The laboratory study includes two sets of core-flood experiments: (1) production of water without nanoparticle pre-treatment; (2) pre-treatment of a similar core with nanoparticles followed by water production. Positively-charged Alumina nanoparticles with the average particle size of 100 nm were used for the rock pre-treatment. The core was saturated with the nanoparticles and then flushed with low salinity water; pressure drop across the core and the outlet fine concentration was monitored and used for model validation. The results of the analytical modeling showed a significant reduction in the fine outlet concentration and formation damage. This observation was in great agreement with the results of core-flood data. The exact solution accurately describes fines particle breakthroughs and evaluates the positive effect of nanoparticles in formation damage. We show that the adsorbed concentration of nanoparticle highly affects the permeability of the porous media. For the laboratory case presented, the reduction of permeability after 1 PVI production in the pre-treated scenario is 50% lower than the reference case. The main outcome of this study is to provide a validated mathematical model to evaluate the effect of nanoparticles on formation damage.

Keywords: nano-particles, formation damage, permeability, fines migration

Procedia PDF Downloads 620
910 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT

Procedia PDF Downloads 275
909 NEOM Coast from Intertidal to Sabkha Systems: A Geological Overview

Authors: Mohamed Abouelresh, Subhajit Kumar, Lamidi Babalola, Septriandi Chan, Ali Al Musabeh A., Thadickal V. Joydas, Bruno Pulido

Abstract:

Neom has a relatively long coastline on the Red Sea and the Gulf of Aqaba, which is about 300 kilometres long, in addition to many naturally formed bays along the Red Sea coast. Undoubtedly, these coasts provide an excellent opportunity for tourism and other activities; however, these coastal areas host a wide range of salinity-dependent ecosystems that need to be protected. The main objective of the study was to identify the coastal features, including tidal flats and salt flats, along the NEOM coast. A base map of the study area generated from the satellite images contained the main landform features and, in particular, the boundaries of the inland and coastal sabkhas. A field survey was conducted to map and characterize the intertidal and sabkha landforms. The coastal and inner coastal areas of NEOM are mainly covered by the quaternary sediments, which include gravel sheets, terraces, raised reef limestone, evaporite successions, eolian dunes, and undifferentiated sand/gravel deposits (alluvium, alluvial outwash, wind-blown sand beach). There are different landforms that characterizes the NEOM coast, including rocky coast, tidal zone, and sabkha. Sabkha area ranges between a few to tens of square kilometers. Coastal sabkha extended across the shoreline of NEOM, specifically at Gayal and Sharma areas, while the continental sabkha only existed at Gayal Town. The inland Sabkha at Gayal is mainly composed of a thin (15-25 cm) evaporite crust composed of a dark brown, cavernous, rugged, pitted, colloidal salty sand layer with salt-tolerant vegetation. The inland Sabkha is considered a groundwater-driven sedimentary system as indicated by syndepositional intra-sediment capillary evaporites, which precipitate in both marine and continental salt flats. Gayal coastal Sabkha is made up of tidal inlets, tidal creeks, and lagoons followed in a landward direction with well-developed sabkha layers. The surface sediments of the coastal Sabkha are composed of unlithified calcareous, gypsiferous, coarse to medium sands, and silt with bioclastic fragments underlain by several organic-rich layers. The coastal flat is graded landward into widespread, flat vegetated Sabkhas dissected by tributaries of the fluvial system, which debouches to the Red Sea. The coast from Gayal to Magna through Ras El-Sheikh Humaid is continuously subjected to tidal flows, which create an intertidal depositional system. The intertidal flats at NEOM are extensive, nearly horizontal land forming a very dynamic system in which several physical, chemical, geomorphological, and biological processes are acting simultaneously. The current work provides a field-based identification of the coastal sabkha and intertidal sites at NEOM. However, the mutual interaction between tidal flows and sabkha development, particularly at Gayal, needs to be well understood through comprehensive field and lab analysis.

Keywords: coast, intertidal, deposition, sabkha

Procedia PDF Downloads 81
908 Necessity of Recognition of Same-Sex Marriages and Civil Partnerships Concluded Abroad from Civil Status Registry Point of View

Authors: Ewa Kamarad

Abstract:

Recent problems with adopting the EU Regulation on matrimonial property regimes have clearly proven that Member States are unable to agree on the scope of the Regulation and, therefore, on the definitions of matrimonial property and marriage itself. Taking into account that the Regulation on the law applicable to divorce and legal separation, as well as the Regulation on matrimonial property regimes, were adopted in the framework of enhanced cooperation, it is evident that lack of a unified definition of marriage has very wide-ranging consequences. The main problem with the unified definition of marriage is that the EU is not entitled to adopt measures in the domain of material family law, as this area remains under the exclusive competence of the Member States. Because of that, the legislation on marriage in domestic legal orders of the various Member States is very different. These differences concern not only issues such as form of marriage or capacity to enter into marriage, but also the most basic matter, namely the core of the institution of marriage itself. Within the 28 Member States, we have those that allow both different-sex and same-sex marriages, those that have adopted special, separate institutions for same-sex couples, and those that allow only marriage between a man and a woman (e.g. Hungary, Latvia, Lithuania, Poland, Slovakia). Because of the freedom of movement within the European Union, it seems necessary to somehow recognize the civil effects of a marriage that was concluded in another Member State. The most crucial issue is how far that recognition should go. The thesis presented in the presentation is that, at an absolute minimum, the authorities of all Member States must recognize the civil status of the persons who enter into marriage in another Member State. Lack of such recognition might cause serious problems, both for the spouses and for other individuals. The authorities of some Member States may treat the marriage as if it does not exist because it was concluded under foreign law that defines marriage differently. Because of that, it is possible for the spouse to obtain a certificate of civil status stating that he or she is single and thus eligible to enter into marriage – despite being legally married under the law of another Member State. Such certificate can then be used in another country to serve as a proof of civil status. Eventually the lack of recognition can lead to so-called “international bigamy”. The biggest obstacle to recognition of marriages concluded under the law of another Member State that defines marriage differently is the impossibility of transcription of a foreign civil certificate in the case of such a marriage. That is caused by the rule requiring that a civil certificate issued (or transcribed) under one country's law can contain only records of legal institutions recognized by that country's legal order. The presentation is going to provide possible solutions to this problem.

Keywords: civil status, recognition of marriage, conflict of laws, private international law

Procedia PDF Downloads 234
907 Activated Carbon Content Influence in Mineral Barrier Performance

Authors: Raul Guerrero, Sandro Machado, Miriam Carvalho

Abstract:

Soil and aquifer pollution, caused by hydrocarbon liquid spilling, is induced by misguided operational practices and inefficient safety guidelines. According to the Environmental Brazilian Institute (IBAMA), during 2013 alone, over 472.13 m3 of diesel oil leaked into the environment nationwide for those reported cases only. Regarding the aforementioned information, there’s an indisputable need to adopt appropriate environmental safeguards specially in those areas intended for the production, treatment, transportation and storage of hydrocarbon fluids. According to Brazilian norm, ABNT-NBR 7505-1:2000, compacted soil or mineral barriers used in structural contingency levees, such as storage tanks, are required to present a maximum water permeability coefficient, k, of 1x10-6 cm/s. However, as discussed by several authors, water can not be adopted as the reference fluid to determine the site’s containment performance against organic fluids. Mainly, due to the great discrepancy observed in polarity values (dielectric constant) between water and most organic fluids. Previous studies, within this same research group, proposed an optimal range of values for the soil’s index properties for mineral barrier composition focused on organic fluid containment. Unfortunately, in some circumstances, it is not possible to encounter a type of soil with the required geotechnical characteristics near the containment site, increasing prevention and construction costs, as well as environmental risks. For these specific cases, the use of an organic product or material as an additive to enhance mineral-barrier containment performance may be an attractive geotechnical solution. This paper evaluates the effect of activated carbon (AC) content additions into a clayey soil towards hydrocarbon fluid permeability. Variables such as compaction energy, carbon texture and addition content (0%, 10% and 20%) were analyzed through laboratory falling-head permeability tests using distilled water and commercial diesel as percolating fluids. The obtained results showed that the AC with smaller particle-size reduced k values significantly against diesel, indicating a direct relationship between particle-size reduction (surface area increase) of the organic product and organic fluid containment.

Keywords: activated carbon, clayey soils, permeability, surface area

Procedia PDF Downloads 255
906 From Context to Text and Back Again: Teaching Toni Morrison Overseas

Authors: Helena Maragou

Abstract:

Introducing Toni Morrison’s fiction to a classroom overseas entails a significant pedagogical investment, from monitoring students’ uncertain journey through Morrison’s shifty semantics to filling in the gaps of cultural knowledge and understanding for the students to be able to relate text to context. A rewarding process, as Morrison’s works present a tremendous opportunity for transnational dialogue, an opportunity that hinges upon Toni Morrison’s bringing to the fore the untold and unspeakable lives of racial ‘Others’, but also, crucially, upon her broader critique of Western ideological hegemony. This critique is a fundamental aspect of Toni Morrison’s politics and one that appeals to young readers of Toni Morrison in Greece at a time when the questioning of institutions and ideological traditions is precipitated by regional and global change. It is more or less self-evident that to help a class of international students get aboard a Morrison novel, an instructor should begin by providing them with cultural context. These days, students’ exposure to Hollywood representations of the African American past and present, as well as the use of documentaries, photography, music videos, etc., as supplementary class material, provide a starting point, a workable historical and cultural framework for textual comprehension. The true challenge, however, lies ahead: it is one thing for students to intellectually grasp the historical hardships and traumas of Morrison’s characters and to even engage in aesthetic appreciation of Morrison’s writing; quite another to relate to her works as articulations of experiences akin to their own. The great challenge, then, is in facilitating students’ discovery of the universal Morrison, the author who speaks across cultures while voicing the untold tales of her own people; this process of discovery entails, on a pedagogical level, that students be guided through the works’ historical context, to plunge into the intricacies of Morrison’s discourse, itself an elaborate linguistic booby trap, so as to be finally brought to reconsider their own historical experiences using the lens of Morrison’s fiction. The paper will be based on experience of teaching a Toni Morrison seminar to a class of Greek students at the American College of Greece and will draw from students’ exposure and responses to Toni Morrison’s “Nobel Prize Lecture,” as well as her novels Song of Solomon and Home.

Keywords: toni morrison, international classroom, pedagogy, African American literature

Procedia PDF Downloads 81
905 Innovation Mechanism in Developing Cultural and Creative Industries

Authors: Liou Shyhnan, Chia Han Yang

Abstract:

The study aims to investigate the promotion of innovation in the development of cultural and creative industries (CCI) and apply research on culture and creativity to this promotion. Using the research perspectives of culture and creativity as the starting points, this study has examined the challenges, trends, and opportunities that have emerged from the development of the CCI until the present. It is found that a definite context of cause and effect exist between them, and that a homologous theoretical basis can be used to understand and interpret them. Based on the characteristics of the aforementioned challenges and trends, this study has compiled two main theoretical systems for conducting research on culture and creativity: (i) reciprocal process between creativity and culture, and (ii) a mechanism for innovation involving multicultural convergence. Both theoretical systems were then used as the foundation to arrive at possible research propositions relating to the two developmental systems. This was respectively done through identification of the theoretical context through a literature review, and interviews and observations of actual case studies within Taiwan’s CCI. In so doing, the critical factors that can address the aforementioned challenges and trends were discovered. Our results indicated that, for reciprocal process between creativity and culture, we recognize that culture serves as creative resources in cultural and creative industries. According to shared consensus, culture provides symbolic meanings and emotional attachment for products and experiences offered by CCI. Besides, different cultures vary in their effects on creativity processes and standards, thus engendering distinctive preferences for and evaluations of the creative expressions and experiences of CCIs. In addition, we identify that creativity serves as the engine for driving the continuation and rebirth of cultures. Accounting for the core of culture, the employment of technology, design, and business facilitates the transformation and innovation mechanism for promoting culture continuity. In addition, with cultural centered, the digital technology, design thinking, and business model are critical constitutes of the innovation mechanism to promote the cultural continuity. Regarding cultural preservation and regeneration of local spaces and folk customs, we argue that the preservation and regeneration of local spaces and cultural cultures must embody the interactive experiences of present-day life. And cultural space and folk custom would regenerate with interact and experience in modern life. Regarding innovation mechanism for multicultural convergence, we propose that innovative stakeholders from different disciplines (e.g., creators, designers, engineers, and marketers) in CCIs rely on the establishment of a cocreation mechanism to promote interdisciplinary interaction. Furthermore, CCI development needs to develop a cocreation mechanism for enhancing the interdisciplinary collaboration among CCI innovation stakeholders. We further argue multicultural mixing would enhance innovation in developing CCI, and assuming an open and mutually enlightening attitude to enrich one another’s cultures in the multicultural exchanges under globalization will create diversity in homogenous CCIs. Finally, for promoting innovation in developing cultural and creative industries, we further propose a model for joint knowledge creation that can be established for enhancing the mutual reinforcement of theoretical and practical research on culture and creativity.

Keywords: culture and creativity, innovation, cultural and creative industries, cultural mixing

Procedia PDF Downloads 324
904 ADAM10 as a Potential Blood Biomarker of Cognitive Frailty

Authors: Izabela P. Vatanabe, Rafaela Peron, Patricia Manzine, Marcia R. Cominetti

Abstract:

Introduction: Considering the increase in life expectancy of world population, there is an emerging concern in health services to allocate better care and care to elderly, through promotion, prevention and treatment of health. It has been observed that frailty syndrome is prevalent in elderly people worldwide and this complex and heterogeneous clinical syndrome consist of the presence of physical frailty associated with cognitive dysfunction, though in absence of dementia. This can be characterized by exhaustion, unintentional weight loss, decreased walking speed, weakness and low level of physical activity, in addition, each of these symptoms may be a predictor of adverse outcomes such as hospitalization, falls, functional decline, institutionalization, and death. Cognitive frailty is a recent concept in literature, which is defined as the presence of physical frailty associated with mild cognitive impairment (MCI) however in absence of dementia. This new concept has been considered as a subtype of frailty, which along with aging process and its interaction with physical frailty, accelerates functional declines and can result in poor quality of life of the elderly. MCI represents a risk factor for Alzheimer's disease (AD) in view of high conversion rate for this disease. Comorbidities and physical frailty are frequently found in AD patients and are closely related to heterogeneity and clinical manifestations of the disease. The decreased platelets ADAM10 levels in AD patients, compared to cognitively healthy subjects, matched by sex, age and education. Objective: Based on these previous results, this study aims to evaluate whether ADAM10 platelet levels of could act as a biomarker of cognitive frailty. Methods: The study was approved by Ethics Committee of Federal University of São Carlos (UFSCar) and conducted in the municipality of São Carlos, headquarters of Federal University of São Carlos (UFSCar). Biological samples of subjects were collected, analyzed and then stored in a biorepository. ADAM10 platelet levels were analyzed by western blotting technique in subjects with MCI and compared to subjects without cognitive impairment, both with and without presence of frailty. Statistical tests of association, regression and diagnostic accuracy were performed. Results: The results have shown that ADAM10/β-actin ratio is decreased in elderly individuals with cognitive frailty compared to non-frail and cognitively healthy controls. Previous studies performed by this research group, already mentioned above, demonstrated that this reduction is still higher in AD patients. Therefore, the ADAM10/β-actin ratio appears to be a potential biomarker for cognitive frailty. The results bring important contributions to an accurate diagnosis of cognitive frailty from the perspective of ADAM10 as a biomarker for this condition, however, more experiments are being conducted, using a high number of subjects, and will help to understand the role of ADAM10 as biomarker of cognitive frailty and contribute to the implementation of tools that work in the diagnosis of cognitive frailty. Such tools can be used in public policies for the diagnosis of cognitive frailty in the elderly, resulting in a more adequate planning for health teams and better quality of life for the elderly.

Keywords: ADAM10, biomarkers, cognitive frailty, elderly

Procedia PDF Downloads 234
903 Recycling Waste Product for Metal Removal from Water

Authors: Saidur R. Chowdhury, Mamme K. Addai, Ernest K. Yanful

Abstract:

The research was performed to assess the potential of nickel smelter slag, an industrial waste, as an adsorbent in the removal of metals from aqueous solution. An investigation was carried out for Arsenic (As), Copper (Cu), lead (Pb) and Cadmium (Cd) adsorption from aqueous solution. Smelter slag was obtain from Ni ore at the Vale Inco Ni smelter in Sudbury, Ontario, Canada. The batch experimental studies were conducted to evaluate the removal efficiencies of smelter slag. The slag was characterized by surface analytical techniques. The slag contained different iron oxides and iron silicate bearing compounds. In this study, the effect of pH, contact time, particle size, competition by other ions, slag dose and distribution coefficient were evaluated to measure the optimum adsorption conditions of the slag as an adsorbent for As, Cu, Pb and Cd. The results showed 95-99% removal of As, Cu, Pb, and almost 50-60% removal of Cd, while batch experimental studies were conducted at 5-10 mg/L of initial concentration of metals, 10 g/L of slag doses, 10 hours of contact time and 170 rpm of shaking speed and 25oC condition. The maximum removal of Arsenic (As), Copper (Cu), lead (Pb) was achieved at pH 5 while the maximum removal of Cd was found after pH 7. The column experiment was also conducted to evaluate adsorption depth and service time for metal removal. This study also determined adsorption capacity, adsorption rate and mass transfer rate. The maximum adsorption capacity was found to be 3.84 mg/g for As, 4 mg/g for Pb, and 3.86 mg/g for Cu. The adsorption capacity of nickel slag for the four test metals were in decreasing order of Pb > Cu > As > Cd. Modelling of experimental data with Visual MINTEQ revealed that saturation indices of < 0 were recorded in all cases suggesting that the metals at this pH were under- saturated and thus in their aqueous forms. This confirms the absence of precipitation in the removal of these metals at the pHs. The experimental results also showed that Fe and Ni leaching from the slag during the adsorption process was found to be very minimal, ranging from 0.01 to 0.022 mg/L indicating the potential adsorbent in the treatment industry. The study also revealed that waste product (Ni smelter slag) can be used about five times more before disposal in a landfill or as a stabilization material. It also highlighted the recycled slags as a potential reactive adsorbent in the field of remediation engineering. It also explored the benefits of using renewable waste products for the water treatment industry.

Keywords: adsorption, industrial waste, recycling, slag, treatment

Procedia PDF Downloads 144
902 Reasons for Lack of an Ideal Disinfectant after Dental Treatments

Authors: Ilma Robo, Saimir Heta, Rialda Xhizdari, Kers Kapaj

Abstract:

Background: The ideal disinfectant for surfaces, instruments, air, skin, both in dentistry and in the fields of medicine, does not exist.This is for the sole reason that all the characteristics of the ideal disinfectant cannot be contained in one; these are the characteristics that if one of them is emphasized, it will conflict with the other. A disinfectant must be stable, not be affected by changes in the environmental conditions where it stands, which means that it should not be affected by an increase in temperature or an increase in the humidity of the environment. Both of these elements contradict the other element of the idea of an ideal disinfectant, as they disrupt the solubility ratios of the base substance of the disinfectant versus the diluent. Material and methods: The study aims to extract the constant of each disinfectant/antiseptic used during dental disinfection protocols, accompanied by the side effects of the surface of the skin or mucosa where it is applied in the role of antiseptic. In the end, attempts were made to draw conclusions about the best possible combination for disinfectants after a dental procedure, based on the data extracted from the basic literature required during the development of the pharmacology module, as a module in the formation of a dentist, against data published in the literature. Results: The sensitivity of the disinfectant to changes in the atmospheric conditions of the environment where it is kept is a known fact. The care against this element is always accompanied by the advice on the application of the specific disinfectant, in order to have the desired clinical result. The constants of disinfectants according to the classification based on the data collected and presented are for alcohols 70-120, glycols 0.2, aldehydes 30-200, phenols 15-60, acids 100, povidone iodine halogens 5-75, hypochlorous acid halogens 150, sodium hypochlorite halogens 30-35, oxidants 18-60, metals 0.2-10. The part of halogens should be singled out, where specific results were obtained according to the representatives of this class, since it is these representatives that find scope for clinical application in dentistry. Conclusions: The search for the "ideal", in the conditions where its defining criteria are also established, not only for disinfectants but also for any medication or pharmaceutical product, is an ongoing search, without any definitive results. In this mine of data in the published literature if there is something fixed, calculable, such as the specific constant for disinfectants, the search for the ideal is more concrete. During the disinfection protocols, different disinfectants are applied since the field of action is different, including water, air, aspiration devices, tools, disinfectants used in full accordance with the production indications.

Keywords: disinfectant, constant, ideal, side effects

Procedia PDF Downloads 67
901 Agronomic Test to Determine the Efficiency of Hydrothermally Treated Alkaline Igneous Rocks and Their Potassium Fertilizing Capacity

Authors: Aaron Herve Mbwe Mbissik, Lotfi Khiari, Otmane Raji, Abdellatif Elghali, Abdelkarim Lajili, Muhammad Ouabid, Martin Jemo, Jean-Louis Bodinier

Abstract:

Potassium (K) is an essential macronutrient for plant growth, helping to regulate several physiological and metabolic processes. Evaporite-related potash salts, mainly sylvite minerals (K chloride or KCl), are the principal source of K for the fertilizer industry. However, due to the high potash-supply risk associated with its considerable price fluctuations and uneven geographic distribution for most agriculture-based developing countries, the development of alternative sources of fertilizer K is imperative to maintain adequate crop yield, reduce yield gaps, and food security. Alkaline Igneous rocks containing significant K-rich silicate minerals such as K feldspar are increasingly seen as the best alternative available. However, these rocks may require to be hydrothermally treatment to enhance the release of potassium. In this study, we evaluate the fertilizing capacity of raw and hydrothermally treated K-bearing silicate rocks from different areas in Morocco. The effectiveness of rock powders was tested in a greenhouse experiment using ryegrass (Lolium multiflorum) by comparing them to a control (no K added) and to a conventional fertilizer (muriate of potash: MOP or KCl). The trial was conducted in a randomized complete block design with three replications, and plants were grown on K-depleted soils for three growing cycles. To achieve our objective, in addition to the analysis of the muriate response curve and the different biomasses, we also examined three necessary coefficients, namely: the K uptake, then apparent K recovery (AKR), and the relative K efficiency (RKE). The results showed that based on the optimum economic rate of MOP (230 kg.K.ha⁻¹) and the optimum yield (44 000 kg.K.ha⁻¹), the efficiency of K silicate rocks was as high as that of MOP. Although the plants took up only half of the K supplied by the powdered rock, the hydrothermal material was found to be satisfactory, with a biomass value reaching the optimum economic limit until the second crop cycle. In comparison, the AKR of the MOP (98.6%) and its RKE in the 1st cycle were higher than our materials: 39% and 38%, respectively. Therefore, the raw and hydrothermal materials mixture could be an appropriate solution for long-term agronomic use based on the obtained results.

Keywords: K-uptake, AKR, RKE, K-bearing silicate rock, MOP

Procedia PDF Downloads 88
900 Temperamental Determinants of Eye-Hand Coordination Formation in the Special Aerial Gymnastics Instruments (SAGI)

Authors: Zdzisław Kobos, Robert Jędrys, Zbigniew Wochyński

Abstract:

Motor activity and good health are sine qua non determinants of a proper practice of the profession, especially aviation. Therefore, candidates to the aviation are selected according their psychomotor ability by both specialist medical commissions. Moreover, they must past an examination of the physical fitness. During the studies in the air force academy, eye-hand coordination is formed in two stages. The future aircraft pilots besides all-purpose physical education must practice specialist training on SAGI. Training includes: looping, aerowheel, and gyroscope. Aim of the training on the above listed apparatuses is to form eye-hand coordination during the tasks in the air. Such coordination is necessary to perform various figures in the real flight. Therefore, during the education of the future pilots, determinants of the effective ways of this important parameter of the human body functioning are sought for. Several studies of the sport psychology indicate an important role of the temperament as a factor determining human behavior during the task performance and acquiring operating skills> Polish psychologist Jan Strelau refers to the basic, relatively constant personality features which manifest themselves in the formal characteristics of the human behavior. Temperament, being initially determined by the inborn physiological mechanisms, changes in the course of maturation and some environmental factors and concentrates on the energetic level and reaction characteristics in time. Objectives. This study aimed at seeking a relationship between temperamental features and eye-hand coordination formation during training on SAGI. Material and Methods: Group of 30 students of pilotage was examined in two situations. The first assessment of the eye-hand coordination level was carried out before the beginning of a 30-hour training on SAGI. The second assessment was carried out after training completion. Training lasted for 2 hours once a week. Temperament was evaluated with The Formal Characteristics of Behavior − Temperament Inventory (FCB-TI) developed by Bogdan Zawadzki and Jan Strelau. Eye-hand coordination was assessed with a computer version of the Warsaw System of Psychological Tests. Results: It was found that the training on SAGI increased the level of eye-hand coordination in the examined students. Conclusions: Higher level of the eye-hand coordination was obtained after completion of the training. Moreover, a relationship between eye-hand coordination level and selected temperamental features was statistically significant.

Keywords: temperament, eye-hand coordination, pilot, SAGI

Procedia PDF Downloads 439
899 Light and Scanning Electron Microscopic Studies on Corneal Ontogeny in Buffalo

Authors: M. P. S. Tomar, Neelam Bansal

Abstract:

Histomorphological, histochemical and scanning electron microscopic observations were recorded in developing cornea of buffalo fetuses. The samples from fetal cornea were collected in appropriate fixative from slaughter house and Veterinary Clinics, GADVASU, Ludhiana. The microscopic slides were stained for detailed histomorphological and histochemical studies. The scanning electron microscopic studies were performed at Electron microscopy & Nanobiology Lab, PAU Ludhiana. In present study, it was observed that, in 36 days (d) fetus, the corneal epithelium was well marked single layered structure which was placed on stroma mesenchyme. Cornea appeared as the continuation of developing sclera. The thickness of cornea and its epithelium increased as well as the epithelium started becoming double layered in 47d fetus at corneo-scleral junction. The corneal thickness in this stage suddenly increased thus easily distinguished from developing sclera. The separation of corneal endothelium from stroma was evident as a single layered epithelium. The stroma possessed numerous fibroblasts in 49d stage eye. Descemet’s membrane was appeared at 52d stage. The limbus area was separated by a depression from the developing cornea in 61d stage. In 65d stage, the Bowman’s layer was more developed. Fibroblasts were arranged parallel to each other as well as parallel to the surface of developing cornea in superficial layers. These fibroblasts and fibers were arranged in wavy pattern in the center of stroma. Corneal epithelium started to be stratified as a double layered epithelium was present in this age of fetal eye. In group II (>120 Days), the corneal epithelium was stratified towards a well marked irido-corneal angle. The stromal fibroblasts followed a complete parallel arrangement in its entire thickness. In full term fetuses, a well developed cornea was observed. It was a fibrous layer which had five distinct layers. From outside to inwards were described as the outer most layer was the 7-8 layered corneal epithelial, subepithelial basement membrane (Bowman’s membrane), substantia propria or stroma, posterior limiting membrane (Descemet’s membrane) and the posterior epithelium (corneal endothelium). The corneal thickness and connective tissue elements were continued to be increased. It was 121.39 + 3.73µ at 36d stage which increased to 518.47 + 4.98 µ in group III fetuses. In fetal life, the basement membrane of corneal epithelium and endothelium depicted strong to intense periodic Acid Schiff’s (PAS) reaction. At the irido-corneal angle, the endothelium of blood vessels was also positive for PAS activity. However, cornea was found mild positive for alcian blue reaction. The developing cornea showed strong reaction for basic proteins in outer epithelium and the inner endothelium layers. Under low magnification scanning electron microscope, cornea showed two types of cells viz. light cells and dark cells. The light cells were smaller in size and had less number of microvilli in their surface than in the dark cells. Despite these surface differences between light and dark cells, the corneal surface showed the same general pattern of microvilli studding all exposed surfaces out to the cell margin. which were long (with variable height), slight tortuous slender and possessed a micro villus shaft with a very prominent knob.

Keywords: buffalo, cornea, eye, fetus, ontogeny, scanning electron microscopy

Procedia PDF Downloads 149
898 An Investigation of the Structural and Microstructural Properties of Zn1-xCoxO Thin Films Applied as Gas Sensors

Authors: Ariadne C. Catto, Luis F. da Silva, Khalifa Aguir, Valmor Roberto Mastelaro

Abstract:

Zinc oxide (ZnO) pure or doped are one of the most promising metal oxide semiconductors for gas sensing applications due to the well-known high surface-to-volume area and surface conductivity. It was shown that ZnO is an excellent gas-sensing material for different gases such as CO, O2, NO2 and ethanol. In this context, pure and doped ZnO exhibiting different morphologies and a high surface/volume ratio can be a good option regarding the limitations of the current commercial sensors. Different studies showed that the sensitivity of metal-doped ZnO (e.g. Co, Fe, Mn,) enhanced its gas sensing properties. Motivated by these considerations, the aim of this study consisted on the investigation of the role of Co ions on structural, morphological and the gas sensing properties of nanostructured ZnO samples. ZnO and Zn1-xCoxO (0 < x < 5 wt%) thin films were obtained via the polymeric precursor method. The sensitivity, selectivity, response time and long-term stability gas sensing properties were investigated when the sample was exposed to a different concentration range of ozone (O3) at different working temperatures. The gas sensing property was probed by electrical resistance measurements. The long and short-range order structure around Zn and Co atoms were investigated by X-ray diffraction and X-ray absorption spectroscopy. X-ray photoelectron spectroscopy measurement was performed in order to identify the elements present on the film surface as well as to determine the sample composition. Microstructural characteristics of the films were analyzed by a field-emission scanning electron microscope (FE-SEM). Zn1-xCoxO XRD patterns were indexed to the wurtzite ZnO structure and any second phase was observed even at a higher cobalt content. Co-K edge XANES spectra revealed the predominance of Co2+ ions. XPS characterization revealed that Co-doped ZnO samples possessed a higher percentage of oxygen vacancies than the ZnO samples, which also contributed to their excellent gas sensing performance. Gas sensor measurements pointed out that ZnO and Co-doped ZnO samples exhibit a good gas sensing performance concerning the reproducibility and a fast response time (around 10 s). Furthermore, the Co addition contributed to reduce the working temperature for ozone detection and improve the selective sensing properties.

Keywords: cobalt-doped ZnO, nanostructured, ozone gas sensor, polymeric precursor method

Procedia PDF Downloads 245
897 The Environmental Impacts of Textiles Reuse and Recycling: A Review on Life-Cycle-Assessment Publications

Authors: Samuele Abagnato, Lucia Rigamonti

Abstract:

Life-Cycle-Assessment (LCA) is an effective tool to quantify the environmental impacts of reuse models and recycling technologies for textiles. In this work, publications in the last ten years about LCA on textile waste are classified according to location, goal and scope, functional unit, waste composition, impact assessment method, impact categories, and sensitivity analysis. Twenty papers have been selected: 50% are focused only on recycling, 30% only on reuse, the 15% on both, while only one paper considers only the final disposal of the waste. It is found that reuse is generally the best way to decrease the environmental impacts of textiles waste management because of the avoided impacts of manufacturing a new item. In the comparison between a product made with recycled yarns and a product from virgin materials, in general, the first option is less impact, especially for the categories of climate change, water depletion, and land occupation, while for other categories, such as eutrophication or ecotoxicity, under certain conditions the impacts of the recycled fibres can be higher. Cultivation seems to have quite high impacts when natural fibres are involved, especially in the land use and water depletion categories, while manufacturing requires a remarkable amount of electricity, with its associated impact on climate change. In the analysis of the reuse processes, relevant importance is covered by the laundry phase, with water consumption and impacts related to the use of detergents. About the sensitivity analysis, it can be stated that one of the main variables that influence the LCA results and that needs to be further investigated in the modeling of the LCA system about this topic is the substitution rate between recycled and virgin fibres, that is the amount of recycled material that can be used in place of virgin one. Related to this, also the yield of the recycling processes has a strong influence on the results of the impact. The substitution rate is also important in the modeling of the reuse processes because it represents the number of avoided new items bought in place of the reused ones. Another aspect that appears to have a large influence on the impacts is consumer behaviour during the use phase (for example, the number of uses between two laundry cycles). In conclusion, to have a deeper knowledge of the impacts of a life-cycle approach of textile waste, further data and research are needed in the modeling of the substitution rate and of the use phase habits of the consumers.

Keywords: environmental impacts, life-cycle-assessment, textiles recycling, textiles reuse, textiles waste management

Procedia PDF Downloads 87
896 Use of Zikani’s Ribosome Modulating Agents for Treating Recessive Dystrophic & Junctional Epidermolysis Bullosa with Nonsense Mutations

Authors: Mei Chen, Yingping Hou, Michelle Hao, Soheil Aghamohammadzadeh, Esteban Terzo, Roger Clark, Vijay Modur

Abstract:

Background: Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a genetic skin condition characterized by skin tearing and unremitting blistering upon minimal trauma. Repeated blistering, fibrosis, and scarring lead to aggressive squamous cell carcinoma later in life. RDEB is caused by mutations in the COL7A1 gene encoding collagen type VII (C7), the major component of anchoring fibrils mediating epidermis-dermis adherence. Nonsense mutations in the COL7A1 gene of a subset of RDEB patients leads to premature termination codons (PTC). Similarly, most Junctional Epidermolysis Bullosa (JEB) cases are caused by nonsense mutations in the LAMB3 gene encoding the β3 subunit of laminin 332. Currently, there is an unmet need for the treatment of RDEB and JEB. Zikani Therapeutics has discovered an array of macrocyclic compounds with ring structures similar to macrolide antibiotics that can facilitate readthrough activity of nonsense mutations in the COL7A1 and LAMB3 genes by acting as Ribosome Modulating Agents (RMAs). The medicinal chemistry synthetic advancements of these macrocyclic compounds have allowed targeting the human ribosome while preserving the structural elements responsible for the safety and pharmacokinetic profile of clinically used macrolide antibiotics. Methods: C7 expression was used as a measure of readthrough activity by immunoblot assays in two primary human fibroblasts from RDEB patients (R578X/R578X and R163X/R1683X-COL7A1). Similarly, immunoblot assays in C325X/c.629-12T > A-LAMB3 keratinocytes were used to measure readthrough activity for JEB. The relative readthrough activity of each compound was measured relative to Gentamicin. An imaging-based fibroblast migration assay was used as an assessment of C7 functionality in RDEB-fibroblasts over 16-20 hrs. The incubation period for the above experiments was 48 hrs for RDEB fibroblasts and 72 hours for JEB keratinocytes. Results: 9 RMAs demonstrated increased protein expression in both patient RDEB fibroblasts. The highest readthrough activity at tested concentrations without cytotoxicities increased protein expression up to 179% of Gentamicin (400 µg/ml), with favored readthrough activity in R163X/R1683X-COL7A1 fibroblasts. Concurrent with protein expression, fibroblast hypermotility phenotype observed in RDEB was rescued by reducing motility by ~35% to WT levels (the same level as 690 µM Gentamicin treated cells). Laminin β3 expression was also shown to be increased by 6 RMAs in keratinocytes to 33-83% of (400 µg/ml) Gentamicin. Conclusions: To date, 9 RMAs have been identified that enhance the expression of functional C7 in a mutation-dependent manner in two different RDEB patient fibroblast backgrounds (R578X/R578X and R163X/R1683X-COL7A1). A further 6 RMAs have been identified that enhance the readthrough of C325X-LAMB3 in JEB patient keratinocytes. Based on the clinical trial conducted by us with topical gentamycin in 2017, Zikani’s RMAs achieve clinically significant levels of read-through for the treatment of recessive dystrophic and Junctional Epidermolysis Bullosa.

Keywords: epidermolysis bullosa, nonsense mutation, readthrough, ribosome modulation

Procedia PDF Downloads 97
895 Stress Reduction Techniques for First Responders: Scientifically Proven Methods

Authors: Esther Ranero Carrazana, Maria Karla Ramirez Valdes

Abstract:

First responders, including firefighters, police officers, and emergency medical personnel, are frequently exposed to high-stress scenarios that significantly increase their risk of mental health issues such as depression, anxiety, and post-traumatic stress disorder (PTSD). Their work involves life-threatening situations, witnessing suffering, and making critical decisions under pressure, all contributing to psychological strain. The objectives of this research on "Stress Reduction Techniques for First Responders: Scientifically Proven Methods" are as follows. One of them is to evaluate the effectiveness of stress reduction techniques. The primary objective is to assess the efficacy of various scientifically proven stress reduction techniques explicitly tailored for first responders. Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness are scrutinized for their ability to mitigate stress-related symptoms. Furthermore, we evaluate and enhance the understanding of stress mechanisms in first responders by exploring how different techniques influence the physiological and psychological responses to stress. The study aims to deepen the understanding of stress mechanisms in high-risk professions. Additionally, the study promotes psychological resilience by seeking to identify and recommend methods that can significantly enhance the psychological resilience of first responders, thereby supporting their mental health and operational efficiency in high-stress environments. Guide training and policy development is an additional objective to provide evidence-based recommendations that can be used to guide training programs and policy development aimed at improving the mental health and well-being of first responders. Lastly, the study aims to contribute valuable insights to the existing body of knowledge in stress management, specifically tailored to the unique needs of first responders. This study involved a comprehensive literature review assessing the effectiveness of various stress reduction techniques tailored for first responders. Techniques evaluated include Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness, focusing on their ability to alleviate stress-related symptoms. The review indicates promising results for several stress reduction methods. HRV Training demonstrates the potential to reflect stress vulnerability and enhance physiological and behavioral flexibility. Interoception and Exteroception help modulate the stress response by enhancing awareness of the body's internal state and its interaction with the environment. Sensory integration plays a crucial role in adaptive responses to stress by focusing on individual senses and their integration. Therefore, body perception awareness addresses stress and anxiety through enhanced body perception and mindfulness. The evaluated techniques show significant potential in reducing stress and improving the mental health of first responders. Implementing these scientifically supported methods into routine training could significantly enhance their psychological resilience and operational effectiveness in high-stress environments.

Keywords: first responders, HRV training, mental health, sensory integration, stress reduction

Procedia PDF Downloads 37
894 Learning the History of a Tuscan Village: A Serious Game Using Geolocation Augmented Reality

Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti

Abstract:

An important tool for the enhancement of cultural sites is serious games (SG), i.e., games designed for educational purposes; SG is applied in cultural sites through trivia, puzzles, and mini-games for participation in interactive exhibitions, mobile applications, and simulations of past events. The combination of Augmented Reality (AR) and digital cultural content has also produced examples of cultural heritage recovery and revitalization around the world. Through AR, the user perceives the information of the visited place in a more real and interactive way. Another interesting technological development for the revitalization of cultural sites is the combination of AR and Global Positioning System (GPS), which integrated have the ability to enhance the user's perception of reality by providing historical and architectural information linked to specific locations organized on a route. To the author’s best knowledge, there are currently no applications that combine GPS AR and SG for cultural heritage revitalization. The present research focused on the development of an SG based on GPS and AR. The study area is the village of Caldana in Tuscany, Italy. Caldana is a fortified Renaissance village; the most important architectures are the walls, the church of San Biagio, the rectory, and the marquis' palace. The historical information is derived from extensive research by the Department of Architecture at the University of Florence. The storyboard of the SG is based on the history of the three characters who built the village: marquis Marcello Agostini, who was commissioned by Cosimo I de Medici, Grand Duke of Tuscany, to build the village, his son Ippolito and his architect Lorenzo Pomarelli. The three historical characters were modeled in 3D using the freeware MakeHuman and imported into Blender and Mixamo to associate a skeleton and blend shapes to have gestural animations and reproduce lip movement during speech. The Unity Rhubarb Lip Syncer plugin was used for the lip sync animation. The historical costumes were created by Marvelous Designer. The application was developed using the Unity 3D graphics and game engine. The AR+GPS Location plugin was used to position the 3D historical characters based on GPS coordinates. The ARFoundation library was used to display AR content. The SG is available in two versions: for children and adults. the children's version consists of finding a digital treasure consisting of valuable items and historical rarities. Players must find 9 village locations where 3D AR models of historical figures explaining the history of the village provide clues. To stimulate players, there are 3 levels of rewards for every 3 clues discovered. The rewards consist of AR masks for archaeologist, professor, and explorer. At the adult level, the SG consists of finding the 16 historical landmarks in the village, and learning historical and architectural information interactively and engagingly. The application is being tested on a sample of adults and children. Test subjects will be surveyed on a Likert scale to find out their perceptions of using the app and the learning experience between the guided tour and interaction with the app.

Keywords: augmented reality, cultural heritage, GPS, serious game

Procedia PDF Downloads 92
893 Pursuing Knowledge Society Excellence: Knowledge Management and Open Innovation Platforms for Research, Industry and Business Collaboration in Singapore

Authors: Irina-Emily Hansen, Ola Jon Mork

Abstract:

The European economic growth strategy and supporting it framework for research and innovation highlight the importance of nurturing new open innovation in order to strengthen Europe’s competitiveness. One of the main approaches to enhance innovation in European society is the Triple Helix model that centres on science- industry collaboration where the universities are assigned the managerial role. In spite of the defined collaboration strategy, the collaboration between academics and in-dustry in Europe has still many challenges. Many of them are explained by culture difference: academic culture aims towards scientific knowledge, while businesses are oriented towards pro-duction and profitable results; also execution of collaborative projects is seen differently by part-ners involved. That proves that traditional management strategies applied to collaboration between researchers and businesses are not effective. There is a need for dynamic strategies that can support the interaction between researchers and industry intensifying knowledge co-creation and contributing to development of national innovation system (NIS) by incorporating individual, organizational and inter-organizational learning. In order to find a good subject to follow, the researchers of a given paper have investigated one of the most rapidly developing knowledge-based, innovation society, Singapore. Singapore does not dispose much land- or sea- resources that normally provide income for any country. Therefore, Singapore was forced to think differently and build society on resources that are available: talented people and knowledge. Singapore has during the last twenty years developed attracting high rated university camps, research institutions and leading industrial companies from all over the world. This article elucidates and elaborates Singapore’s national innovation strategies from Knowledge Management perspective. The research is done on the variety of organizations that enable and support knowledge development in this state: governmental research and development (R&D) centers in universities, private talent incubators for entrepreneurs, and industrial companies with own R&D departments. The research methods are based on presentations, documents, and visits at a number of universities, research institutes, innovation parks, governmental institutions, industrial companies and innovation exhibitions in Singapore. In addition, a literature review of science articles is made regarding the topic. The first finding is that objectives of collaboration between researchers, entrepreneurs and industry in Singapore correspond primary goals of the state: knowledge- and economy growth. There are common objectives for all stakeholders on all national levels. The second finding is that Singapore has enabled system on a national level that supports innovation the entire way from fostering or capturing the new knowledge, providing knowledge exchange and co-creation to application of it in real-life. The conclusion is that innovation means not only new idea, but also the enabling mechanism for its execution and the marked-oriented approach in order that new knowledge can be absorbed in society. The future research can be done with regards to application of Singapore knowledge management strategy in innovation to European countries.

Keywords: knowledge management strategy, national innovation system, research industry and business collaboration, knowledge enabling

Procedia PDF Downloads 183
892 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms

Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee

Abstract:

Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.

Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences

Procedia PDF Downloads 272
891 Optical and Surface Characteristics of Direct Composite, Polished and Glazed Ceramic Materials After Exposure to Tooth Brush Abrasion and Staining Solution

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Aim and background: esthetic and structural reconstruction of anterior teeth may require the application of different restoration material. In this regard combination of direct composite veneer and ceramic crown is a common treatment option. Despite the initial matching, their long term harmony in term of optical and surface characteristics is a matter of concern. The purpose of this study is to evaluate and compare optical and surface characteristic of direct composite polished and glazed ceramic materials after exposure to tooth brush abrasion and staining solution. Materials and Methods: ten 2 mm thick disk shape specimens were prepared from IPS empress direct composite and twenty specimens from IPS e.max CAD blocks. Composite specimens and ten ceramic specimens were polished by using D&Z composite and ceramic polishing kit. The other ten specimens of ceramic were glazed with glazing liquid. Baseline measurement of roughness, CIElab coordinate, and luminance were recorded. Then the specimens underwent thermocycling, tooth brushing, and coffee staining. Afterword, the final measurements were recorded. Color coordinate were used to calculate ΔE76, ΔE00, translucency parameter, and contrast ratio. Data were analyzed by One-way ANOVA and post hoc LSD test. Results: baseline and final roughness of the study group were not different. At baseline, the order of roughness for the study group were as follows: composite < glazed ceramic < polished ceramic, but after aging, no difference. Between ceramic groups was not detected. The comparison of baseline and final luminance was similar to roughness but in reverse order. Unlike differential roughness which was comparable between the groups, changes in luminance of the glazed ceramic group was higher than other groups. ΔE76 and ΔE00 in the composite group were 18.35 and 12.84, in the glazed ceramic group were 1.3 and 0.79, and in polished ceramic were 1.26 and 0.85. These values for the composite group were significantly different from ceramic groups. Translucency of composite at baseline was significantly higher than final, but there was no significant difference between these values in ceramic groups. Composite was more translucency than ceramic at baseline and final measurement. Conclusion: Glazed ceramic surface was smoother than polished ceramic. Aging did not change the roughness. Optical properties (color and translucency) of the composite were influenced by aging. Luminance of composite, glazed ceramic, and polished ceramic decreased after aging, but the reduction in glazed ceramic was more pronounced.

Keywords: ceramic, tooth-brush abrasion, staining solution, composite resin

Procedia PDF Downloads 184