Search results for: wireless body area network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16851

Search results for: wireless body area network

15651 A Method Development for Improving the Efficiency of Solid Waste Collection System Using Network Analyst

Authors: Dhvanidevi N. Jadeja, Daya S. Kaul, Anurag A. Kandya

Abstract:

Municipal Solid Waste (MSW) collection in a city is performed in less effective manner which results in the poor management of the environment and natural resources. Municipal corporation does not possess efficient waste management and recycling programs because of the complex task involving many factors. Solid waste collection system depends upon various factors such as manpower, number and size of vehicles, transfer station size, dustbin size and weight, on-road traffic, and many others. These factors affect the collection cost, energy and overall municipal tax for the city. Generally, different types of waste are scattered throughout the city in a heterogeneous way that poses changes for efficient collection of solid waste. Efficient waste collection and transportation strategy must be effectively undertaken which will include optimization of routes, volume of waste, and manpower. Being these optimized, the overall cost can be reduced as the fuel and energy requirements would be less and also the municipal waste taxes levied will be less. To carry out the optimization study of collection system various data needs to be collected from the Ahmedabad municipal corporation such as amount of waste generated per day, number of workers, collection schedule, road maps, number of transfer station, location of transfer station, number of equipment (tractors, machineries), number of zones, route of collection etc. The ArcGis Network Analyst is introduced for the best routing identification applied in municipal waste collection. The simulation consists of scenarios of visiting loading spots in the municipality of Ahmedabad, considering dynamic factors like network traffic changes, closed roads due to natural or technical causes. Different routes were selected in a particular area of Ahmedabad city, and present routes were optimized to reduce the length of the routes, by using ArcGis Network Analyst. The result indicates up to 35% length minimization in the routes.

Keywords: collection routes, efficiency, municipal solid waste, optimization

Procedia PDF Downloads 136
15650 Poincare Plot for Heart Rate Variability

Authors: Mazhar B. Tayel, Eslam I. AlSaba

Abstract:

The heart is the most important part in any body organisms. It effects and affected by any factor in the body. Therefore, it is a good detector of any matter in the body. When the heart signal is non-stationary signal, therefore, it should be study its variability. So, the Heart Rate Variability (HRV) has attracted considerable attention in psychology, medicine and have become important dependent measure in psychophysiology and behavioral medicine. Quantification and interpretation of heart rate variability. However, remain complex issues are fraught with pitfalls. This paper presents one of the non-linear techniques to analyze HRV. It discusses 'What Poincare plot is?', 'How it is work?', 'its usage benefits especially in HRV', 'the limitation of Poincare cause of standard deviation SD1, SD2', and 'How overcome this limitation by using complex correlation measure (CCM)'. The CCM is most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2.

Keywords: heart rate variability, chaotic system, poincare, variance, standard deviation, complex correlation measure

Procedia PDF Downloads 399
15649 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 154
15648 Development of Value Based Planning Methodology Incorporating Risk Assessment for Power Distribution Network

Authors: Asnawi Mohd Busrah, Au Mau Teng, Tan Chin Hooi, Lau Chee Chong

Abstract:

This paper describes value based planning (VBP) methodology incorporating risk assessment as an enhanced and more practical approach to evaluate distribution network projects in Peninsular Malaysia. Assessment indicators associated with economics, performance and risks are formulated to evaluate distribution projects to quantify their benefits against investment. The developed methodology is implemented in a web-based software customized to capture investment and network data, compute assessment indicators and rank the proposed projects according to their benefits. Value based planning approach addresses economic factors in the power distribution planning assessment, so as to minimize cost solution to the power utility while at the same time provide maximum benefits to customers.

Keywords: value based planning, distribution network, value of loss load (VoLL), energy not served (ENS)

Procedia PDF Downloads 480
15647 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.

Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)

Procedia PDF Downloads 86
15646 Suitable Models and Methods for the Steady-State Analysis of Multi-Energy Networks

Authors: Juan José Mesas, Luis Sainz

Abstract:

The motivation for the development of this paper lies in the need for energy networks to reduce losses, improve performance, optimize their operation and try to benefit from the interconnection capacity with other networks enabled for other energy carriers. These interconnections generate interdependencies between some energy networks and others, which requires suitable models and methods for their analysis. Traditionally, the modeling and study of energy networks have been carried out independently for each energy carrier. Thus, there are well-established models and methods for the steady-state analysis of electrical networks, gas networks, and thermal networks separately. What is intended is to extend and combine them adequately to be able to face in an integrated way the steady-state analysis of networks with multiple energy carriers. Firstly, the added value of multi-energy networks, their operation, and the basic principles that characterize them are explained. In addition, two current aspects of great relevance are exposed: the storage technologies and the coupling elements used to interconnect one energy network with another. Secondly, the characteristic equations of the different energy networks necessary to carry out the steady-state analysis are detailed. The electrical network, the natural gas network, and the thermal network of heat and cold are considered in this paper. After the presentation of the equations, a particular case of the steady-state analysis of a specific multi-energy network is studied. This network is represented graphically, the interconnections between the different energy carriers are described, their technical data are exposed and the equations that have previously been presented theoretically are formulated and developed. Finally, the two iterative numerical resolution methods considered in this paper are presented, as well as the resolution procedure and the results obtained. The pros and cons of the application of both methods are explained. It is verified that the results obtained for the electrical network (voltages in modulus and angle), the natural gas network (pressures), and the thermal network (mass flows and temperatures) are correct since they comply with the distribution, operation, consumption and technical characteristics of the multi-energy network under study.

Keywords: coupling elements, energy carriers, multi-energy networks, steady-state analysis

Procedia PDF Downloads 78
15645 Execution Time Optimization of Workflow Network with Activity Lead-Time

Authors: Xiaoping Qiu, Binci You, Yue Hu

Abstract:

The executive time of the workflow network has an important effect on the efficiency of the business process. In this paper, the activity executive time is divided into the service time and the waiting time, then the lead time can be extracted from the waiting time. The executive time formulas of the three basic structures in the workflow network are deduced based on the activity lead time. Taken the process of e-commerce logistics as an example, insert appropriate lead time for key activities by using Petri net, and the executive time optimization model is built to minimize the waiting time with the time-cost constraints. Then the solution program-using VC++6.0 is compiled to get the optimal solution, which reduces the waiting time of key activities in the workflow, and verifies the role of lead time in the timeliness of e-commerce logistics.

Keywords: electronic business, execution time, lead time, optimization model, petri net, time workflow network

Procedia PDF Downloads 176
15644 Protein Feeding Pattern, Casein Feeding, or Milk-Soluble Protein Feeding did not Change the Evolution of Body Composition during a Short-Term Weight Loss Program

Authors: Solange Adechian, Michèle Balage, Didier Remond, Carole Migné, Annie Quignard-Boulangé, Agnès Marset-Baglieri, Sylvie Rousset, Yves Boirie, Claire Gaudichon, Dominique Dardevet, Laurent Mosoni

Abstract:

Studies have shown that timing of protein intake, leucine content, and speed of digestion significantly affect postprandial protein utilization. Our aim was to determine if one can spare lean body mass during energy restriction by varying the quality and the timing of protein intake. Obese volunteers followed a 6-wk restricted energy diet. Four groups were compared: casein pulse, casein spread, milk-soluble protein (MSP, = whey) pulse, and MSP spread (n = 10-11 per group). In casein groups, caseins were the only protein source; it was MSP in MSP groups. Proteins were distributed in four meals per day in the proportion 8:80:4:8% in the pulse groups; it was 25:25:25:25% in the spread groups. We measured weight, body composition, nitrogen balance, 3-methylhistidine excretion, perception of hunger, plasma parameters, adipose tissue metabolism, and whole body protein metabolism. Volunteers lost 7.5 ± 0.4 kg of weight, 5.1 ± 0.2 kg of fat, and 2.2 ± 0.2 kg of lean mass, with no difference between groups. In adipose tissue, cell size and mRNA expression of various genes were reduced with no difference between groups. Hunger perception was also never different between groups. In the last week, due to a higher inhibition of protein degradation and despite a lower stimulation of protein synthesis, postprandial balance between whole body protein synthesis and degradation was better with caseins than with MSP. It seems likely that the positive effect of caseins on protein balance occurred only at the end of the experiment.

Keywords: lean body mass, fat mass, casein, whey, protein metabolism

Procedia PDF Downloads 72
15643 Examining the Effects of Exercise and Healthy Diet on Certain Blood Parameter Levels, Oxidative Stress and Anthropometric Measurements in Slightly Overweight Women

Authors: Nezihe Şengün, Ragip Pala

Abstract:

To prevent overweight and obesity, individuals need to consume food and beverages according to their nutritional needs, engage in regular exercises, and regularly monitor their body weight. This study aimed to examine the effects of exercise, diet, or combined intervention on changes in blood lipid parameters (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides) and the level of malondialdehyde (MDA), a marker of oxidative stress, in parallel with the increase in body weight due to poor nutrition and sedentary lifestyle conditions. The study included a total of 48 female students aged 18-28 years with a BMI between 25.0 and 29.9 kg/m². They were divided into four groups: control (C), exercise (Ex), diet (D), and exercise+diet (Ex+D). Those in the exercise groups received aerobic exercises at 60-70% intensity (10 minutes warm-up, 30 minutes running, 10 minutes cool-down), while those in the diet groups were provided with a diet program based on the calculation of energy needs considering basal metabolic rate, physical activity level, age, and BMI. The students’ body weight, body fat mass, Body Mass Index (BMI), and waist-hip ratios were measured at the beginning (day 1) and end (day 60) of the 8-week intervention period. Their total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, and MDA levels were evaluated and analyzed, considering a statistical significance level of p<0.05. As a result, female students in the Ex+D group had the largest difference in body weight, body fat mass, BMI, and waist-hip ratios, and this difference was statistically significant. Except for those in the C group, those in the other groups experienced a decrease in their total cholesterol, LDL cholesterol, and triglyceride levels and an increase in their HDL cholesterol levels. The decrease in total cholesterol, LDL cholesterol, and triglyceride levels was statistically significant for those in the D group, and the increase in HDL cholesterol level was statistically significant for those in the Ex+D group (p<0.05). A decrease in MDA level was found in all groups except those in the C group, and this decrease was significantly higher in the Ex group. In conclusion, our study revealed that the most effective way to achieve weight loss is through a combination of exercise and diet. The application of Ex+D is considered to balance blood lipid levels and suppress oxidative stress.

Keywords: obesity, exercise, diet, body mass index, blood lipids

Procedia PDF Downloads 78
15642 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 210
15641 The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey

Authors: Mahmud Gungor, Ali Aydin, Erdal Akyol, Suat Tasdelen

Abstract:

The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate one-dimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities.

Keywords: seismic data, Gokpinar Damp, urban planning, Denizli

Procedia PDF Downloads 288
15640 Over the Air Programming Method for Learning Wireless Sensor Networks

Authors: K. Sangeeth, P. Rekha, P. Preeja, P. Divya, R. Arya, R. Maneesha

Abstract:

Wireless sensor networks (WSN) are small or tiny devices that consists of different sensors to sense physical parameters like air pressure, temperature, vibrations, movement etc., process these data and sends it to the central data center to take decisions. The WSN domain, has wide range of applications such as monitoring and detecting natural hazards like landslides, forest fire, avalanche, flood monitoring and also in healthcare applications. With such different applications, it is being taught in undergraduate/post graduate level in many universities under department of computer science. But the cost and infrastructure required to purchase WSN nodes for having the students getting hands on expertise on these devices is expensive. This paper gives overview about the remote triggered lab that consists of more than 100 WSN nodes that helps the students to remotely login from anywhere in the world using the World Wide Web, configure the nodes and learn the WSN concepts in intuitive way. It proposes new way called over the air programming (OTAP) and its internals that program the 100 nodes simultaneously and view the results without the nodes being physical connected to the computer system, thereby allowing for sparse deployment.

Keywords: WSN, over the air programming, virtual lab, AT45DB

Procedia PDF Downloads 377
15639 A Deep Learning Based Method for Faster 3D Structural Topology Optimization

Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury

Abstract:

Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.

Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder

Procedia PDF Downloads 174
15638 Methods for Restricting Unwanted Access on the Networks Using Firewall

Authors: Bhagwant Singh, Sikander Singh Cheema

Abstract:

This paper examines firewall mechanisms routinely implemented for network security in depth. A firewall can't protect you against all the hazards of unauthorized networks. Consequently, many kinds of infrastructure are employed to establish a secure network. Firewall strategies have already been the subject of significant analysis. This study's primary purpose is to avoid unnecessary connections by combining the capability of the firewall with the use of additional firewall mechanisms, which include packet filtering and NAT, VPNs, and backdoor solutions. There are insufficient studies on firewall potential and combined approaches, but there aren't many. The research team's goal is to build a safe network by integrating firewall strength and firewall methods. The study's findings indicate that the recommended concept can form a reliable network. This study examines the characteristics of network security and the primary danger, synthesizes existing domestic and foreign firewall technologies, and discusses the theories, benefits, and disadvantages of different firewalls. Through synthesis and comparison of various techniques, as well as an in-depth examination of the primary factors that affect firewall effectiveness, this study investigated firewall technology's current application in computer network security, then introduced a new technique named "tight coupling firewall." Eventually, the article discusses the current state of firewall technology as well as the direction in which it is developing.

Keywords: firewall strategies, firewall potential, packet filtering, NAT, VPN, proxy services, firewall techniques

Procedia PDF Downloads 101
15637 Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method

Authors: Ho Young Son, Bu Seog Ju, Woo Young Jung

Abstract:

This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures.

Keywords: seismic, numerical analysis, FEM, weir, boundary condition

Procedia PDF Downloads 452
15636 The Effect of Different Patterns of Upper, Lower and Whole Body Resistance Exercise Training on Systemic and Vascular Inflammatory Factors in Healthy Untrained Women

Authors: Leyla Sattarzadeh, Shahin Fathi Molk Kian, Maghsoud Peeri, Mohammadali Azarbaijani, Hasan Matin Homaee

Abstract:

Inflammation by various mechanisms may cause atherosclerosis. Systemic circulating inflammatory markers such as C-reactive protein (CRP), pro-inflammatory cytokines such as Interleukin-6 (IL-6), vascular inflammatory markers as adhesion molecules like Intracellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) are the predictors of cardiovascular diseases. Regarding the conflicting results about the effect of different patterns of resistance exercise training on these inflammatory markers, present study aimed to examine the effect of different patterns of eight week resistance exercise training on CRP, IL-6, ICAM-1 and VCAM-1 levels in healthy untrained women. 56 healthy volunteered untrained female university students (aged: 21 ± 3 yr., Body Mass Index: 21.5 ± 3.5 kg/m²) were selected purposefully and divided into four groups. At the end of training protocol and after subject drop during the protocol, upper body exercise training (n=11), lower body (n=12) and whole body resistance exercise training group (n=11) completed the eight weeks of training period although the control group (n=7) did anything. Blood samples gathered pre and post-experimental period and CRP, IL-6, ICAM-1 and VCAM-1 levels were evaluated using special laboratory kits, then the difference of pre and post values of each indices analyzed using one-way analysis of variance (α < 0.05). The results of one way ANOVA for difference of pre and post values of CRP, ICAM-1 and VCAM-1 showed no significant changes due to the exercise training, but there were significant differences between groups about IL-6. Tukey post- hoc test indicated that there is significant difference between the differences of pre and post values of IL-6 between lower body exercise training group and control group, and eight weeks of lower body exercise training lead to significant changes in IL-6 values. There were no changes in anthropometric indices. The findings show that the different patterns of upper, lower and whole body exercise training by involving the different amounts of muscles altered the IL-6 values in lower body exercise training group probably because of engaging the bigger amount of muscles, but showed any significant changes about CRP, ICAM-1 and VCAM-1 probably due to intensity and duration of exercise or the lower levels of these markers at baseline of healthy people.

Keywords: resistance training, C-reactive protein, interleukin-6, intracellular adhesion molecule-1, vascular cell adhesion molecule-1

Procedia PDF Downloads 138
15635 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression

Procedia PDF Downloads 422
15634 Communication About Health and Fitness in Media and Its Hidden Message About Objectification

Authors: Emiko Suzuki

Abstract:

Although fitness is defined as the body’s ability to respond to the demand of physical activity without undue fatigue in health science, in media oftentimes physical activity is presented as means to an attractive body rather than a fit and healthy one. Of all types of media, Instagram is becoming an increasingly persuasive source of information and advice on health and fitness, where individuals conceptualize what health and fitness mean for them. However, this user-generated and unregulated platform can be problematic, as it can communicate misleading information about health and fitness and possibly leading individuals to psychological problems such as eating disorders. In fact, previous research has shown that some messages that were posted with a tag that related to inspire others to do fitness, in fact, encouraged distancing the self from the internal needs of the body. For this reason, this present study aims to explore how health and fitness are communicated on Instagram by analyzing images and texts. A content analysis of images that were labeled with particular hashtags was performed, followed by a thematic analysis of texts from the same set of images. The result shows an interesting insight about messages about how health and fitness are communicated from companies through media, then digested and further shared among communities on Instagram. The study explores how the use of visual focused way of communicating health and fitness can lead to the dehumanization of human bodies.

Keywords: Instagram, fitness, dehumanization, body image, embodiment

Procedia PDF Downloads 138
15633 Geoelectical Resistivity Method in Aquifer Characterization at Opic Estate, Isheri-Osun River Basin, South Western Nigeria

Authors: B. R. Faleye, M. I. Titocan, M. P. Ibitola

Abstract:

Investigation was carried out at Opic Estate in Isheri-Osun River Basin environment using Electrical Resistivity method to study saltwater intrusion into a fresh water aquifer system from the proximal estuarine water body. The investigation is aimed at aquifer characterisation using electrical resistivity method in order to provide the depth to which fresh water fit for both domestic and industrial consumption. The 2D Electrical Resistivity and Vertical Electrical Resistivity techniques alongside Laboratory analysis of water samples obtained from the boreholes were adopted. Three traverses were investigated using Wenner and Pole-Dipole array with multi-electrode system consisting of 84 electrodes and a spread of 581 m, 664 m and 830 m were attained on the traverses. The main lithologies represented in the study area are Sand, Clay and Clayey Sand of which Sand constitutes the aquifer in the study area. Vertical Electrical Sounding data obtained at different lateral distance on the traverses have indicated that the water in the aquifer in the subsurface is brackish. Brackish water is represented by lowelectrical resistivity value signature while fresh water is characterized by relatively high electrical resistivity and in some regionfresh water is existent at depth greater than 200 m. Results of laboratory analysis of samples showed that the pH, Salinity, Total Dissolved Solid and Conductivity indicated existence of water with poor quality, indicating that salinity, TDS and Conductivity is higher in the Northern part of the study area. The 2D electrical resistivity and Vertical Electrical Sounding methods indicate that fresh water region is at ≥200m depth. Aquifers not fit for domestic use in the study area occur downwards to about 200 m in depth. In conclusion, it is recommended that wells should be sunkbeyond 220 m for the possible procurement of portable fresh water.

Keywords: 2D electrical resistivity, aquifer, brackish water, lithologies

Procedia PDF Downloads 431
15632 Participation of Juvenile with Driven of Tobacco Control in Education Institute: Case Study of Suan Sunandha Rajabhat University

Authors: Sakapas Saengchai

Abstract:

This paper studied the participation of juvenile with driven of tobacco control in education institute: case study of Suan Sunandha Rajabhat University is qualitative research has objective to study participation of juvenile with driven of tobacco control in University, as guidance of development participation of juvenile with driven of tobacco control in education institute the university is also free-cigarette university. There are qualitative researches on collection data of participation observation, in-depth interview of group conversation and agent of student in each faculty and college and exchange opinion of student. Result of study found that participation in tobacco control has 3 parts; 1) Participation in campaign of tobacco control, 2) Academic training and activity of free-cigarette of university and 3) As model of juvenile in tobacco control. For guidelines on youth involvement in driven tobacco control is universities should promote tobacco control activities. Reduce smoking campaign continues include a specific area for smokers has living room as sign clearly, staying in the faculty / college and developing network of model students who are non-smoking. This is a key role in the coordination of university students driving to the free cigarette university. Including the strengthening of community in the area and outside the area as good social and quality of country.

Keywords: participation, juvenile, tobacco control, institute

Procedia PDF Downloads 272
15631 Study of Multimodal Resources in Interactions Involving Children with Autistic Spectrum Disorders

Authors: Fernanda Miranda da Cruz

Abstract:

This paper aims to systematize, descriptively and analytically, the relations between language, body and material world explored in a specific empirical context: everyday co-presence interactions between children diagnosed with Autistic Spectrum Disease ASD and various interlocutors. We will work based on 20 hours of an audiovisual corpus in Brazilian Portuguese language. This analysis focuses on 1) the analysis of daily interactions that have the presence/participation of subjects with a diagnosis of ASD based on an embodied interaction perspective; 2) the study of the status and role of gestures, body and material world in the construction and constitution of human interaction and its relation with linguistic-cognitive processes and Autistic Spectrum Disorders; 3) to highlight questions related to the field of videoanalysis, such as: procedures for recording interactions in complex environments (involving many participants, use of objects and body movement); the construction of audiovisual corpora for linguistic-interaction research; the invitation to a visual analytical mentality of human social interactions involving not only the verbal aspects that constitute it, but also the physical space, the body and the material world.

Keywords: autism spectrum disease, multimodality, social interaction, non-verbal interactions

Procedia PDF Downloads 114
15630 A Relational Approach to Adverb Use in Interactions

Authors: Guillaume P. Fernandez

Abstract:

Individual language use is a matter of choice in particular interactions. The paper proposes a conceptual and theoretical framework with methodological consideration to develop how language produced in dyadic relations is to be considered and situated in the larger social configuration the interaction is embedded within. An integrated and comprehensive view is taken: social interactions are expected to be ruled by a normative context, defined by the chain of interdependences that structures the personal network. In this approach, the determinants of discursive practices are not only constrained by the moment of production and isolated from broader influences. Instead, the position the individual and the dyad have in the personal network influences the discursive practices in a twofold manner: on the one hand, the network limits the access to linguistic resources available within it, and, on the other hand, the structure of the network influences the agency of the individual, by the social control inherent to particular network characteristics. Concretely, we investigate how and to what extent consistent ego is from one interaction to another in his or her use of adverbs. To do so, social network analysis (SNA) methods are mobilized. Participants (N=130) are college students recruited in the french speaking part of Switzerland. The personal network of significant ones of each individual is created using name generators and edge interpreters, with a focus on social support and conflict. For the linguistic parts, respondents were asked to record themselves with five of their close relations. From the recordings, we computed an average similarity score based on the adverb used across interactions. In terms of analyses, two are envisaged: First, OLS regressions including network-level measures, such as density and reciprocity, and individual-level measures, such as centralities, are performed to understand the tenets of linguistic similarity from one interaction to another. The second analysis considers each social tie as nested within ego networks. Multilevel models are performed to investigate how the different types of ties may influence the likelihood to use adverbs, by controlling structural properties of the personal network. Primary results suggest that the more cohesive the network, the less likely is the individual to change his or her manner of speaking, and social support increases the use of adverbs in interactions. While promising results emerge, further research should consider a longitudinal approach to able the claim of causality.

Keywords: personal network, adverbs, interactions, social influence

Procedia PDF Downloads 67
15629 Dynamic Transmission Modes of Network Public Opinion on Subevents Clusters of an Emergent Event

Authors: Yuan Xu, Xun Liang, Meina Zhang

Abstract:

The rise and attenuation of the public opinion broadcast of an emergent accident, in the social network, has a close relationship with the dynamic development of its subevents cluster. In this article, we take Tianjin Port explosion's subevents as an example to research the dynamic propagation discipline of Internet public opinion in a sudden accident, and analyze the overall structure of dynamic propagation to propose four different routes for subevents clusters propagation. We also generate network diagrams for the dynamic public opinion propagation, analyze each propagation type specifically. Based on this, suggestions on the supervision and guidance of Internet public opinion broadcast can be made.

Keywords: network dynamic transmission modes, emergent subevents clusters, Tianjin Port explosion, public opinion supervision

Procedia PDF Downloads 296
15628 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 105
15627 Application of Probiotics in the Management of Food Allergies: A Review

Authors: Amir Hosseinvand

Abstract:

Probiotics have health-giving effects on the human body, so by stimulating the immune system, they prevent many occurrences they are diseases and food allergies in humans. There are various bacteria in the human digestive system; some are useful, some are harmless, and other groups of bacteria are harmful to human health. These bacteria should be in balance in the body of people in a normal state. In certain conditions, such as a person's high stress, aging, continuous use of antibiotics, or improper diet, the intestinal microbial flora has changed, and these changes cause some diseases in people. Probiotics have health benefits for the human body and are often found in the digestive system of healthy people. Nevertheless, fermented foods such as fermented dairy products such as yogurt, cheese, buttermilk or fermented pickles contain some species of these bacteria that are useful. But the important point that should be noted is that due to modern and industrial life, high fat and high protein diets, and excessive use of antibiotics, the number of these bacteria in people's bodies has decreased, and it is necessary to consume probiotics either in the form of probiotic foods or in the form of supplements. Probiotics with mild stimulation of the immune system increase the immunity level of the body and prevent the occurrence of food allergies in people.

Keywords: human health, dairy products, food allergies, probiotic

Procedia PDF Downloads 34
15626 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.

Keywords: matching, OpenFlow tables, POX controller, SDN, table-miss

Procedia PDF Downloads 199
15625 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records

Authors: Sara ElElimy, Samir Moustafa

Abstract:

Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).

Keywords: big data analytics, machine learning, CDRs, 5G

Procedia PDF Downloads 139
15624 Novel Recommender Systems Using Hybrid CF and Social Network Information

Authors: Kyoung-Jae Kim

Abstract:

Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models.

Keywords: recommender systems, collaborative filtering, social network information, singular value decomposition

Procedia PDF Downloads 289
15623 Minimization of Propagation Delay in Multi Unmanned Aerial Vehicle Network

Authors: Purva Joshi, Rohit Thanki, Omar Hanif

Abstract:

Unmanned aerial vehicles (UAVs) are becoming increasingly important in various industrial applications and sectors. Nowadays, a multi UAV network is used for specific types of communication (e.g., military) and monitoring purposes. Therefore, it is critical to reducing propagation delay during communication between UAVs, which is essential in a multi UAV network. This paper presents how the propagation delay between the base station (BS) and the UAVs is reduced using a searching algorithm. Furthermore, the iterative-based K-nearest neighbor (k-NN) algorithm and Travelling Salesmen Problem (TSP) algorthm were utilized to optimize the distance between BS and individual UAV to overcome the problem of propagation delay in multi UAV networks. The simulation results show that this proposed method reduced complexity, improved reliability, and reduced propagation delay in multi UAV networks.

Keywords: multi UAV network, optimal distance, propagation delay, K - nearest neighbor, traveling salesmen problem

Procedia PDF Downloads 201
15622 Bit Error Rate Performance of MIMO Systems for Wireless Communications

Authors: E. Ghayoula, M. Haj Taieb, A. Bouallegue, J. Y. Chouinard, R. Ghayoula

Abstract:

This paper evaluates the bit error rate (BER) performance of MIMO systems for wireless communication. MIMO uses multiple transmitting antennas, multiple receiving antennas and the space-time block codes to provide diversity. MIMO transmits signal encoded by space-time block (STBC) encoder through different transmitting antennas. These signals arrive at the receiver at slightly different times. Spatially separated multiple receiving antennas are employed to provide diversity reception to combat the effect of fading in the channel. This paper presents a detailed study of diversity coding for MIMO systems. STBC techniques are implemented and simulation results in terms of the BER performance with varying number of MIMO transmitting and receiving antennas are presented. Our results show how increasing the number of both transmit and receive antenna improves system performance and reduces the bit error rate.

Keywords: MIMO systems, diversity, BER, MRRC, SIMO, MISO, STBC, alamouti, SNR

Procedia PDF Downloads 490