Search results for: wheat yield prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4870

Search results for: wheat yield prediction

3670 Yield Loss Estimation Using Multiple Drought Severity Indices

Authors: Sara Tokhi Arab, Rozo Noguchi, Tofeal Ahamed

Abstract:

Drought is a natural disaster that occurs in a region due to a lack of precipitation and high temperatures over a continuous period or in a single season as a consequence of climate change. Precipitation deficits and prolonged high temperatures mostly affect the agricultural sector, water resources, socioeconomics, and the environment. Consequently, it causes agricultural product loss, food shortage, famines, migration, and natural resources degradation in a region. Agriculture is the first sector affected by drought. Therefore, it is important to develop an agricultural drought risk and loss assessment to mitigate the drought impact in the agriculture sector. In this context, the main purpose of this study was to assess yield loss using composite drought indices in the drought-affected vineyards. In this study, the CDI was developed for the years 2016 to 2020 by comprising five indices: the vegetation condition index (VCI), temperature condition index (TCI), deviation of NDVI from the long-term mean (NDVI DEV), normalized difference moisture index (NDMI) and precipitation condition index (PCI). Moreover, the quantitative principal component analysis (PCA) approach was used to assign a weight for each input parameter, and then the weights of all the indices were combined into one composite drought index. Finally, Bayesian regularized artificial neural networks (BRANNs) were used to evaluate the yield variation in each affected vineyard. The composite drought index result indicated the moderate to severe droughts were observed across the Kabul Province during 2016 and 2018. Moreover, the results showed that there was no vineyard in extreme drought conditions. Therefore, we only considered the severe and moderated condition. According to the BRANNs results R=0.87 and R=0.94 in severe drought conditions for the years of 2016 and 2018 and the R= 0.85 and R=0.91 in moderate drought conditions for the years of 2016 and 2018, respectively. In the Kabul Province within the two years drought periods, there was a significate deficit in the vineyards. According to the findings, 2018 had the highest rate of loss almost -7 ton/ha. However, in 2016 the loss rates were about – 1.2 ton/ha. This research will support stakeholders to identify drought affect vineyards and support farmers during severe drought.

Keywords: grapes, composite drought index, yield loss, satellite remote sensing

Procedia PDF Downloads 156
3669 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 133
3668 Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment

Authors: Serge Mudinga Lemika, Samuel Olukayode Akinwamide, Aribo Sunday, Babatunde Abiodun Obadele, Peter Apata Olubambi

Abstract:

Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting.

Keywords: duplex stainless steel, hardness, nanoceramics, spark plasma sintering

Procedia PDF Downloads 304
3667 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks

Authors: Emad A. Mohammed

Abstract:

The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.

Keywords: permeability, hydraulic flow units, artificial intelligence, correlation

Procedia PDF Downloads 135
3666 Levansucrase from Zymomonas Mobilis KIBGE-IB14: Production Optimization and Characterization for High Enzyme Yield

Authors: Sidra Shaheen, Nadir Naveed Siddiqui, Shah Ali Ul Qader

Abstract:

In recent years, significant progress has been made in discovering and developing new bacterial polysaccharides producing organisms possessing extremely functional properties. Levan is a natural biopolymer of fructose which is produced by transfructosylation reaction in the presence of levansucrase. It is one of the industrially promising enzymes that offer a variety of industrial applications in the field of cosmetics, foods and pharmaceuticals. Although levan has significant applications but the yield of levan produced is not equal to other biopolymers due to the inefficiency of producer microorganism. Among wide range of levansucrase producing microorganisms, Zymomonas mobilis is considered as a potential candidate for large scale production of this natural polysaccharide. The present investigation is concerned with the isolation of levansucrase producing natural isolate having maximum enzyme production. Furthermore, production parameters were optimized to get higher enzyme yield. Levansucrase was partially purified and characterized to study its applicability on industrial scale. The results of this study revealed that the bacterial strain Z. mobilis KIBGE-IB14 was the best producer of levansucrase. Bacterial growth and enzyme production was greatly influenced by physical and chemical parameters. Maximum levansucrase production was achieved after 24 hours of fermentation at 30°C using modified medium of pH-6.5. Contrary to other levansucrases, the one presented in the current study is able to produce high amount of products in relatively short period of time with optimum temperature at 35°C. Due to these advantages, this enzyme can be used on large scale for commercial production of levan and other important metabolites.

Keywords: levansucrase, metabolites, polysaccharides, transfructosylation

Procedia PDF Downloads 497
3665 Consumer Experience of 3D Body Scanning Technology and Acceptance of Related E-Commerce Market Applications in Saudi Arabia

Authors: Moudi Almousa

Abstract:

This research paper explores Saudi Arabian female consumers’ experiences using 3D body scanning technology and their level of acceptance of possible market applications of this technology to adopt for apparel online shopping. Data was collected for 82 women after being scanned then viewed a short video explaining three possible scenarios of 3D body scanning applications, which include size prediction, customization, and virtual try-on, before completing the survey questionnaire. Although respondents have strong positive responses towards the scanning experience, the majority were concerned about their privacy during the scanning process. The results indicated that size prediction and virtual try on had greater market application potential and a higher chance of crossing the gap based on consumer interest. The results of the study also indicated a strong positive correlation between respondents’ concern with inability to try on apparel products in online environments and their willingness to use the 3D possible market applications.

Keywords: 3D body scanning, market applications, online, apparel fit

Procedia PDF Downloads 143
3664 Flavonoid Content and Antioxidant Potential of White and Brown Sesame Seed Oils

Authors: Fatima Bello, Ibrahim Sani

Abstract:

Medicinal plants are the most important sources of life saving drugs for the majority of world’s population. People of all continents have used hundreds to thousands of indigenous plants in curing and management of many diseases. Sesame (Sesamum indicum L.) is one of the most widely cultivated species for its nutritious and medicinal seeds and oil. This research was carried out to determine the flavonoid content and antioxidant potential of two varieties of sesame seeds oil. Oil extraction was done using Soxhlet apparatus. The percentage oil yield for white and brown seeds were 47.85% and 20.72%, respectively. Flavonoid was present in both seeds with concentration of 480 mg/g and 360 mg/g in white and brown sesame seeds, respectively. The antioxidant potential was determined at different oil volume; 1.00, 0.75, 0.50 and 0.25ml. The results for the white and brown sesame seed oils were 96.8 and 70.7, 91.0 and 65.2, 83.1 and 55.4, 77.9 and 50.2, respectively. The white seed oil has higher oil yield than the brown seed oil. Likewise, the white seed oil has more flavonoid content than the brown seed oil and also better reducing power than the brown seed oil.

Keywords: antioxidant potential, brown sesame seeds, flavonoid content, sesame seed oil, Sesamum indicum L., white sesame seeds

Procedia PDF Downloads 457
3663 Clinical Prediction Score for Ruptured Appendicitis In ED

Authors: Thidathit Prachanukool, Chaiyaporn Yuksen, Welawat Tienpratarn, Sorravit Savatmongkorngul, Panvilai Tangkulpanich, Chetsadakon Jenpanitpong, Yuranan Phootothum, Malivan Phontabtim, Promphet Nuanprom

Abstract:

Background: Ruptured appendicitis has a high morbidity and mortality and requires immediate surgery. The Alvarado Score is used as a tool to predict the risk of acute appendicitis, but there is no such score for predicting rupture. This study aimed to developed the prediction score to determine the likelihood of ruptured appendicitis in an Asian population. Methods: This study was diagnostic, retrospectively cross-sectional and exploratory model at the Emergency Medicine Department in Ramathibodi Hospital between March 2016 and March 2018. The inclusion criteria were age >15 years and an available pathology report after appendectomy. Clinical factors included gender, age>60 years, right lower quadrant pain, migratory pain, nausea and/or vomiting, diarrhea, anorexia, fever>37.3°C, rebound tenderness, guarding, white blood cell count, polymorphonuclear white blood cells (PMN)>75%, and the pain duration before presentation. The predictive model and prediction score for ruptured appendicitis was developed by multivariable logistic regression analysis. Result: During the study period, 480 patients met the inclusion criteria; of these, 77 (16%) had ruptured appendicitis. Five independent factors were predictive of rupture, age>60 years, fever>37.3°C, guarding, PMN>75%, and duration of pain>24 hours to presentation. A score > 6 increased the likelihood ratio of ruptured appendicitis by 3.88 times. Conclusion: Using the Ramathibodi Welawat Ruptured Appendicitis Score. (RAMA WeRA Score) developed in this study, a score of > 6 was associated with ruptured appendicitis.

Keywords: predictive model, risk score, ruptured appendicitis, emergency room

Procedia PDF Downloads 163
3662 Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition

Authors: Jing Li, Li Jin, Fulin Wang, Jie Dong, Wenjiang Ding

Abstract:

Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic slip in the former one, while basal slip, prismatic slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy.

Keywords: Mg-Li-Gd dual-phase alloy, phase boundary, HDI stress, dislocation slip activity, mechanical properties

Procedia PDF Downloads 200
3661 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite

Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi

Abstract:

Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.

Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction

Procedia PDF Downloads 160
3660 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 72
3659 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 69
3658 Determination of Genotypic Relationship among 12 Sugarcane (Saccharum officinarum) Varieties

Authors: Faith Eweluegim Enahoro-Ofagbe, Alika Eke Joseph

Abstract:

Information on genetic variation within a population is crucial for utilizing heterozygosity for breeding programs that aim to improve crop species. The study was conducted to ascertain the genotypic similarities among twelve sugarcane (Saccharum officinarum) varieties to group them for purposes of hybridizations for cane yield improvement. The experiment was conducted at the University of Benin, Faculty of Agriculture Teaching and Research Farm, Benin City. Twelve sugarcane varieties obtained from National Cereals Research Institute, Badeggi, Niger State, Nigeria, were planted in three replications in a randomized complete block design. Each variety was planted on a five-row plot of 5.0 m in length. Data were collected on 12 agronomic traits, including; the number of millable cane, cane girth, internode length, number of male and female flowers (fuss), days to flag leaf, days to flowering, brix%, cane yield, and others. There were significant differences, according to the findings among the twelve genotypes for the number of days to flag leaf, number of male and female flowers (fuss), and cane yield. The relationship between the twelve sugarcane varieties was expressed using hierarchical cluster analysis. The twelve genotypes were grouped into three major clusters based on hierarchical classification. Cluster I had five genotypes, cluster II had four, and cluster III had three. Cluster III was dominated by varieties characterized by higher cane yield, number of leaves, internode length, brix%, number of millable stalks, stalk/stool, cane girth, and cane length. Cluster II contained genotypes with early maturity characteristics, such as early flowering, early flag leaf development, growth rate, and the number of female and male flowers (fuss). The maximum inter-cluster distance between clusters III and I indicated higher genetic diversity between the two groups. Hybridization between the two groups could result in transgressive recombinants for agronomically important traits.

Keywords: sugarcane, Saccharum officinarum, genotype, cluster analysis, principal components analysis

Procedia PDF Downloads 80
3657 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 39
3656 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 156
3655 Fermentation of Wood Waste by Treating with H₃PO₄-Acetone for Bioethanol Production

Authors: Deokyeong Choe, Keonwook Nam, Young Hoon Roh

Abstract:

Wood waste is a potentially significant resource for economic and environment-friendly recycling. Wood waste represents a key sustainable source of biomass for transformation into bioethanol. Unfortunately, wood waste is highly recalcitrant for biotransformation, which limits its use and prevents economically viable conversion into bioethanol. As a result, an effective pretreatment is necessary to degrade cellulose of the wood waste, which improves the accessibility of cellulase. In this work, a H₃PO₄-acetone pretreatment was selected among the various pretreatment methods and used to dissolve cellulose and lignin. When the H₃PO₄ and acetone were used, 5–6% of the wood waste was found to be very appropriate for saccharification. Also, when the enzymatic saccharification was conducted in the mixture of the wood waste and 0.05 M citrate buffer solution, glucose and xylose were measured to be 80.2 g/L and 9.2 g/L respectively. Furthermore, ethanol obtained after 70 h of fermentation by S. cerevisiae was 30.4 g/L. As a result, the conversion yield from wood waste to bioethanol was calculated to be 57.4%. These results show that the pretreated wood waste can be used as good feedstocks for bioethanol production and that the H₃PO₄-acetone pretreatment can effectively increase the yield of ethanol production.

Keywords: wood waste, H₃PO₄-acetone, bioethanol, fermentation

Procedia PDF Downloads 569
3654 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 136
3653 Biodiesel Synthesis Using Animal Excreta-Based Biochar and Waste Cooking Oil

Authors: Sang-Ryong Lee, Min-Woon Jung, Deugwoo Han, Kiyong Kim

Abstract:

This study laid an emphasis on the possible employment of biochar generated from pyrolysis of animal excreta to establish a green platform for producing biodiesel. To this end, the pseudo-catalytic transesterification reaction using chicken manure biochar and waste cooking oil was investigated. Compared with a commercial porous material (SiO2), chicken manure biochar generated from 350 C showed better performance, resulting in 95.6% of the FAME yield at 350C. The Ca species in chicken manure biochar imparted strong catalytic capability by providing the basicity for transesterification. The identified catalytic effect also led to the thermal cracking of unsaturated FAMEs, which decreased the overall FAME yield. For example, 40–60% of converted FAMEs were thermally degraded. To avoid undesirable thermal cracking arising from the high content of the Ca species in chicken manure biochar, the fabrication of chicken manure biochar at temperatures ≥350C was highly recommended.

Keywords: Trasesterification, Animal excreta, FAME, Biochar, Chicken manure

Procedia PDF Downloads 197
3652 Improved Water Productivity by Deficit Irrigation: Implications for Water Saving in Orange, Olive and Vineyard Orchards in Arid Conditions of Tunisia

Authors: K. Nagaz, F. El Mokh, M. Masmoudi, N. Ben Mechlia, M. O. Baba Sy, G. Ghiglieri

Abstract:

Field experiments on deficit irrigation (DI) were performed in Médenine, Tunisia on drip-irrigated olive, orange and grapevine orchards during 2013 and 2014. Four irrigation treatments were compared: full irrigation (FI), which was irrigated at 100% of ETc for the whole season; two deficit irrigation (DI) strategies -DI75 and DI50- which received, respectively, 25 and 50% less water than FI; and traditional farming management (FM) - with water input much less than actually needed. The traditional farming (FM) applied 11, 18, 30 and 33% less water than the FI treatment, respectively, in orange, grapevine and table and oil olive orchards, indicating that the farmers practices represent a form of unintended deficit irrigation. Yield was reduced when deficit irrigation was applied and there were significant differences between DI75, DI50 and FM treatments. Significant differences were not observed between DI50 and FM treatments even though numerically smaller yield was observed in the former (DI50) as compared to the latter (FM). The irrigation water productivity (IWP) was significantly affected by irrigation treatments. The smallest IWP was recorded under the FI treatment, while the largest IWP was obtained under the deficit irrigation treatment (DI50). The DI50 and FM treatments reduced the economic return compared to the full treatment (FI), while the DI75 treatment resulted in a better economic return in respect to DI50 and FM. Full irrigation (FI) could be recommended for olive, orange and grapevine irrigation under the arid climate of Tunisia. Nevertheless, the treatment DI75 can be applied as a strategy under water scarcity conditions in commercial olive, orange and grapevine orchards allowing water savings up to 25% but with some reduction in yield and net return. The results would be helpful in adopting deficit irrigation in ways that enhance net financial returns.

Keywords: water productivity, deficit irrigation, drip irrigation, orchards

Procedia PDF Downloads 222
3651 Investigation on Remote Sense Surface Latent Heat Temperature Associated with Pre-Seismic Activities in Indian Region

Authors: Vijay S. Katta, Vinod Kushwah, Rudraksh Tiwari, Mulayam Singh Gaur, Priti Dimri, Ashok Kumar Sharma

Abstract:

The formation process of seismic activities because of abrupt slip on faults, tectonic plate moments due to accumulated stress in the Earth’s crust. The prediction of seismic activity is a very challenging task. We have studied the changes in surface latent heat temperatures which are observed prior to significant earthquakes have been investigated and could be considered for short term earthquake prediction. We analyzed the surface latent heat temperature (SLHT) variation for inland earthquakes occurred in Chamba, Himachal Pradesh (32.5 N, 76.1E, M-4.5, depth-5km) nearby the main boundary fault region, the data of SLHT have been taken from National Center for Environmental Prediction (NCEP). In this analysis, we have calculated daily variations with surface latent heat temperature (0C) in the range area 1⁰x1⁰ (~120/KM²) with the pixel covering epicenter of earthquake at the center for a three months period prior to and after the seismic activities. The mean value during that period has been considered in order to take account of the seasonal effect. The monthly mean has been subtracted from daily value to study anomalous behavior (∆SLHT) of SLHT during the earthquakes. The results found that the SLHTs adjacent the epicenters all are anomalous high value 3-5 days before the seismic activities. The abundant surface water and groundwater in the epicenter and its adjacent region can provide the necessary condition for the change of SLHT. To further confirm the reliability of SLHT anomaly, it is necessary to explore its physical mechanism in depth by more earthquakes cases.

Keywords: surface latent heat temperature, satellite data, earthquake, magnetic storm

Procedia PDF Downloads 131
3650 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks

Authors: M. Heydari Vini

Abstract:

There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.

Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips

Procedia PDF Downloads 504
3649 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network

Authors: Biruhi Tesfaye, Avinash M. Potdar

Abstract:

The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.

Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC

Procedia PDF Downloads 190
3648 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field

Authors: Nastaran Moosavi, Mohammad Mokhtari

Abstract:

Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.

Keywords: density, p-impedance, s-impedance, post-stack seismic inversion, pre-stack seismic inversion

Procedia PDF Downloads 321
3647 Fermentation of Xylose and Glucose Mixture in Intensified Reactors by Scheffersomyces stipitis to Produce Ethanol

Authors: S. C. Santos, S. R. Dionísio, A. L. D. De Andrade, L. R. Roque, A. C. Da Costa, J. L. Ienczak

Abstract:

In this work, two fermentations at different temperatures (25 and 30 ºC), with cell recycling, were accomplished to produce ethanol, using a mix of commercial substrates, xylose (70%) and glucose (30%), as organic source for Scheffersomyces stipitis. Five consecutive fermentations of 80 g L-1 (1º, 2º and 3º recycles), 96 g L-1 (4º recycle) and 120 g L-1 (5º recycle)reduced sugars led to a final maximum ethanol concentration of 17.2 and 34.5 g L-1, at 25 and 30 ºC, respectively. Glucose was the preferred substrate; moreover xylose startup degradation was initiated after a remaining glucose presence in the medium. Results showed that yeast acid treatment, performed before each cycle, provided improvements on cell viability, accompanied by ethanol productivity of 2.16 g L-1 h-1 at 30 ºC. A maximum 36% of xylose was retained in the fermentation medium and after five-cycle fermentation an ethanol yield of 0.43 g ethanol/g sugars was observed. S. stipitis fermentation capacity and tolerance showed better results at 30 ºC with 83.4% of theoretical yield referenced on initial biomass.

Keywords: 5-carbon sugar, cell recycling fermenter, mixed sugars, xylose-fermenting yeast

Procedia PDF Downloads 416
3646 The Investigation of Niobium Addition on Mechanical Properties of Al11Si alloy

Authors: Kerem Can Dizdar, Semih Ateş, Ozan Güler, Gökhan Basman, Derya Dışpınar, Cevat Fahir Arısoy

Abstract:

Grain refinement and obtaining homogeneous microstructure is the key parameter in casting of aluminum alloys. Ti has been traditionally used as grain refiner, however, inconsistency and heterogeneous dendrite arms, as well as fading efficiency, have been the drawbacks of Ti. Alternatively, Nb (Niobium) has gained attention. In this work, the effect of Nb was investigated in case of both as cast and T6 heat treated conditions. Different ratios of Nb (0.0, 0.03, 0.05, 0.07, 0.1 weight%) were added to AlSi11 alloy, mechanical properties were examined statistically, and relationship was established between microstructure and mechanical properties by examining the grain size and dendrite characteristics before and after heat treatment. Results indicate that in the case of as cast state; with the increasing addition of Nb has no significant effect on yield strength, however, it increases the tensile strength and elongation starting with 0.05wt% ratio, and it remains constant up to 0.1wt%. For the heat-treated condition; Nb addition provides increment at yield strength and tensile strength up to 0.05wt%, but it leads to decrementfrom 0.05 to 0.1wt%. The opposite is valid for the elongation; It decreases in between 0-0.05wt% then rises in range of 0.05-0.1wt%. Highest yield strength and ultimate tensile strength were found T6 heat treated 0.05wt% Nb addition. 0.05wt% was found as critical Nbaddition ratio for mechanical properties of Al-11Si alloys. Grain refinement and obtaining homogeneous microstructure is the key parameter in casting of aluminum alloys. Ti has been traditionally used as grain refiner, however, inconsistency and heterogeneous dendrite arms, as well as fading efficiency, have been the drawbacks of Ti. Alternatively, Nb (Niobium) has gained attention. In this work, the effect of Nb was investigated in case of both as cast and T6 heat treated conditions. Different ratios of Nb (0.0, 0.03, 0.05, 0.07, 0.1 weight%) were added to AlSi11 alloy, mechanical properties were examined statistically, and relationship was established between microstructure and mechanical properties by examining the grain size and dendrite characteristics before and after heat treatment. Results indicate that in the case of as cast state; with the increasing addition of Nb has no significant effect on yield strength, however, it increases the tensile strength and elongation starting with 0.05wt% ratio, and it remains constant up to 0.1wt%. For the heat-treated condition; Nb addition provides increment at yield strength and tensile strength up to 0.05wt%, but it leads to decrement from 0.05 to 0.1wt%. The opposite is valid for the elongation; It decreases in between 0-0.05wt% then rises in range of 0.05-0.1wt%. Highest yield strength and ultimate tensile strength were found T6 heat treated 0.05wt% Nb addition. 0.05wt% was found as critical Nbaddition ratio for mechanical properties of Al-11Si alloys.

Keywords: al-si alloy, grain refinement, heat treatment, mechanical properties, microstructure, niobium, sand casting

Procedia PDF Downloads 146
3645 Reburning Characteristics of Biomass Syngas in a Pilot Scale Heavy Oil Furnace

Authors: Sang Heon Han, Daejun Chang, Won Yang

Abstract:

NOx reduction characteristics of syngas fuel were numerically investigated for the 2MW pilot scale heavy oil furnace of KITECH (Korea Institute of Industrial Technology). The secondary fuel and syngas was fed into the furnace with two purposes- partial replacement of main fuel and reburning of NOx. Some portion of syngas was fed into the flame zone to partially replace the heavy oil, while the other portion was fed into the furnace downstream to reduce NOx generation. The numerical prediction was verified by comparing it with the experimental results. Syngas of KITECH’s experiment, assumed to be produced from biomass, had very low calorific value and contained 3% hydrocarbon. This study investigated the precise behavior of NOx generation and NOx reduction as well as thermo-fluidic characteristics inside the furnace, which was unavailable with experiment. In addition to 3% hydrocarbon syngas, 5%, and 7% hydrocarbon syngas were numerically tested as reburning fuels to analyze the effect of hydrocarbon proportion to NOx reduction. The prediction showed that the 3% hydrocarbon syngas is as much effective as 7% hydrocarbon syngas in reducing NOx.

Keywords: syngas, reburning, heavy oil, furnace

Procedia PDF Downloads 442
3644 Characteristics of Sorghum (Sorghum bicolor L. Moench) Flour on the Soaking Time of Peeled Grains and Particle Size Treatment

Authors: Sri Satya Antarlina, Elok Zubaidah, Teti Istiana, Harijono

Abstract:

Sorghum bicolor (Sorghum bicolor L. Moench) has the potential as a flour for gluten-free food products. Sorghum flour production needs grain soaking treatment. Soaking can reduce the tannin content which is an anti-nutrient, so it can increase the protein digestibility. Fine particle size decreases the yield of flour, so it is necessary to study various particle sizes to increase the yield. This study aims to determine the characteristics of sorghum flour in the treatment of soaking peeled grain and particle size. The material of white sorghum varieties KD-4 from farmers in East Java, Indonesia. Factorial randomized factorial design (two factors), repeated three times, factor I were the time of grain soaking (five levels) that were 0, 12, 24, 36, and 48 hours, factor II was the size of the starch particles sifted with a fineness level of 40, 60, 80, and 100 mesh. The method of making sorghum flour is grain peeling, soaking peeled grain, drying using the oven at 60ᵒC, milling, and sieving. Physico-chemical analysis of sorghum flour. The results show that there is an interaction between soaking time of grain with the size of sorghum flour particles. Interaction in yield of flour, L* color (brightness level), whiteness index, paste properties, amylose content, protein content, bulk density, and protein digestibility. The method of making sorghum flour through the soaking of peeled grain and the difference in particle size has an important role in producing the physicochemical properties of the specific flour. Based on the characteristics of sorghum flour produced, it is determined the method of making sorghum flour through sorghum grain soaking for 24 hours, the particle size of flour 80 mesh. The sorghum flour with characteristic were 24.88% yield of flour, 88.60 color L* (brightness level), 69.95 whiteness index, 3615 Cp viscosity, 584.10 g/l of bulk density, 24.27% db protein digestibility, 90.02% db starch content, 23.4% db amylose content, 67.45% db amylopectin content, 0.22% db crude fiber content, 0.037% db tannin content, 5.30% db protein content, ash content 0.18% db, carbohydrate content 92.88 % db, and 1.94% db fat content. The sorghum flour is recommended for cookies products.

Keywords: characteristic, sorghum (Sorghum bicolor L. Moench) flour, grain soaking, particle size, physicochemical properties

Procedia PDF Downloads 160
3643 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 80
3642 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 536
3641 The Potential of Sown Pastures as Feedstock for Biofuels in Brazil

Authors: Danilo G. De Quadros

Abstract:

Biofuels are a priority in the renewable energy agenda. The utilization of tropical grasses to ethanol production is a real opportunity to Brazil reaches the world’s leadership in biofuels production because there are 100 million hectares of sown pastures, which represent 20% of all land and 80% of agricultural areas. Basically, nowadays tropical grasses are used to raise livestock. The results obtained in this research could bring tremendous advance not only to national technology and economy but also to improve social and environmental aspects. Thus, the objective of this work was to estimate, through well-established international models, the potential of biofuels production using sown tropical pastures as feedstocks and to compare the results with sugarcane ethanol, considering state-of-art of conversion technology, advantages and limitations factors. There were used data from national and international literature about forage yield and biochemical conversion yield. Some scenarios were studied to evaluate potential advantages and limitations for cellulosic ethanol production, since non-food feedstock appeal to conversion strategies, passing through harvest, densification, logistics, environmental impacts (carbon and water cycles, nutrient recycling and biodiversity), and social aspects. If Brazil used only 1% of sown pastures to ethanol production by biochemical pathway, with average dry matter yield of 15 metric tons per hectare per year (there are results of 40 tons), resulted annually in 721 billion liters, that represents 10 times more than sugarcane ethanol projected by the Government in 2030. However, more research is necessary to take the results to commercial scale with competitive costs, considering many strategies and methods applied in ethanol production using cellulosic feedstock.

Keywords: biofuels, biochemical pathway, cellulosic ethanol, sustainability

Procedia PDF Downloads 259