Search results for: stochastic noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1553

Search results for: stochastic noise

353 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel

Authors: Joseph C. Chen, Joshua Cox

Abstract:

This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.

Keywords: Taguchi Parameter Design, surface roughness, Wire EDM, dimensional accuracy

Procedia PDF Downloads 348
352 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood

Authors: Randa Alharbi, Vladislav Vyshemirsky

Abstract:

Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.

Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)

Procedia PDF Downloads 186
351 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.

Keywords: grinding, MQL, precision grinding, Taguchi optimization, titanium alloy

Procedia PDF Downloads 253
350 Parametric Investigation of Wire-Cut Electric Discharge Machining on Steel ST-37

Authors: Mearg Berhe Gebregziabher

Abstract:

Wire-cut electric discharge machining (WEDM) is one of the advanced machining processes. Due to the development of the current manufacturing sector, there has been no research work done before about the optimization of the process parameters based on the availability of the workpiece of the Steel St-37 material in Ethiopia. Material Removal Rate (MRR) is considered as the experimental response of WCEDM. The main objective of this work is to investigate and optimize the process parameters on machining quality that gives high MRR during machining of Steel St-37. Throughout the investigation, Pulse on Time (TON), Pulse off Time (TOFF) and Velocities of Wire Feed (WR) are used as variable parameters at three different levels, and Wire tension, flow rate, type of dielectric fluid, type of the workpiece and wire material and dielectric flow rate are keeping as constants for each experiment. The Taguchi methodology, as per Taguchi‟ 's standard L9 (3^3) Orthogonal Array (OA), has been carried out to investigate their effects and to predict the optimal combination of process parameters over MRR. Signal to Noise ratio (S/N) and Analysis of Variance (ANOVA) were used to analyze the effect of the parameters and to identify the optimum cutting parameters on MRR. MRR was measured by using the Electronic Balance Model SI-32. The results indicated that the most significant factors for MRR are TOFF, TON and lastly WR. Taguchi analysis shows that, the optimal process parameters combination is A2B2C2, i.e., TON 6μs, TOFF 29μs and WR 2 m/min. At this level, the MRR of 0.414 gram/min has been achieved.

Keywords: ANOVA, MRR, parameter, Taguchi Methode

Procedia PDF Downloads 4
349 The Involvement of Visual and Verbal Representations Within a Quantitative and Qualitative Visual Change Detection Paradigm

Authors: Laura Jenkins, Tim Eschle, Joanne Ciafone, Colin Hamilton

Abstract:

An original working memory model suggested the separation of visual and verbal systems in working memory architecture, in which only visual working memory components were used during visual working memory tasks. It was later suggested that the visuo spatial sketch pad was the only memory component at use during visual working memory tasks, and components such as the phonological loop were not considered. In more recent years, a contrasting approach has been developed with the use of an executive resource to incorporate both visual and verbal representations in visual working memory paradigms. This was supported using research demonstrating the use of verbal representations and an executive resource in a visual matrix patterns task. The aim of the current research is to investigate the working memory architecture during both a quantitative and a qualitative visual working memory task. A dual task method will be used. Three secondary tasks will be used which are designed to hit specific components within the working memory architecture – Dynamic Visual Noise (visual components), Visual Attention (spatial components) and Verbal Attention (verbal components). A comparison of the visual working memory tasks will be made to discover if verbal representations are at use, as the previous literature suggested. This direct comparison has not been made so far in the literature. Considerations will be made as to whether a domain specific approach should be employed when discussing visual working memory tasks, or whether a more domain general approach could be used instead.

Keywords: semantic organisation, visual memory, change detection

Procedia PDF Downloads 568
348 On the Effects of the Frequency and Amplitude of Sinusoidal External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder

Authors: Abouzar Kaboudian, Ravi Chaithanya Mysa, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). Periodic forces can be considered as a combinations of sinusoids. In this work, we present the effects of sinusoidal external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of these sinusoidal external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder.

Keywords: circular cylinder, external force, vortex-shedding, VIV

Procedia PDF Downloads 344
347 Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery

Authors: S. Benkraouda, Z. Djelloul-Khedda, B. Yagoubi

Abstract:

we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection.

Keywords: forest fire, forest fire detection, satellite image, normal distribution, theoretical gaussian model, thermal infrared matrix image

Procedia PDF Downloads 118
346 Freeform Lens System for Collimation SERS irradiation Radiation Produced by Biolayers which Deposit on High Quality Resonant System

Authors: Iuliia Riabenko, Konstantin Beloshenko, Sergey Shulga, Valeriy Shulga

Abstract:

An optical system has been developed consisting of a TIR lens and an aspherical surface designed to collect Stokes radiation from biomolecules. The freeform material is SYLGARD-184, which provides a low level of noise associated with the luminescence of the substrate. The refractive index of SYLGARD-184 is 1.4028 for a wavelength of 632 nm, the Abbe number is 72, these material parameters make it possible to design the desired shape for the wavelength range of 640-700 nm. The system consists of a TIR lens, inside which is placed a high-quality resonant system consisting of a biomolecule and a metal colloid. This system can be described using the coupled oscillator model. The laser excitation radiation was fed through the base of the TIR lens. The sample was mounted inside the TIR lens at a distance of 8 mm from the base. As a result of Raman scattering of laser radiation, a Stokes bend appeared from the biolayer. The task of this work was that it was necessary to collect this radiation emitted at a 4π steradian angle. For this, an internal aspherical surface was used, which made it possible to defocus the beam emanating from the biolayer and direct its radiation to the borders of the TIR lens at the Brewster angle. The collated beam of Stokes radiation contains 97% of the energy scattered by the biolayer. Thus, a simple scheme was proposed for collecting and collimating the Stokes radiation of biomolecules.

Keywords: TIR lens, freeform material, raman scattering, biolayer, brewster angle

Procedia PDF Downloads 120
345 Case Study of High-Resolution Marine Seismic Survey in Shallow Water, Arabian Gulf, Saudi Arabia

Authors: Almalki M., Alajmi M., Qadrouh Y., Alzahrani E., Sulaiman A., Aleid M., Albaiji A., Alfaifi H., Alhadadi A., Almotairy H., Alrasheed R., Alhafedh Y.

Abstract:

High-resolution marine seismic survey is a well-established technique that commonly used to characterize near-surface sediments and geological structures at shallow water. We conduct single channel seismic survey to provide high quality seismic images for near-surface sediments upto 100m depth at Jubal costal area, Arabian Gulf. Eight hydrophones streamer has been used to collect stacked seismic traces alone 5km seismic line. To reach the required depth, we have used spark system that discharges energies above 5000 J with expected frequency output span the range from 200 to 2000 Hz. A suitable processing flow implemented to enhance the signal-to-noise ratio of the seismic profile. We have found that shallow sedimentary layers at the study site have complex pattern of reflectivity, which decay significantly due to amount of source energy used as well as the multiples associated to seafloor. In fact, the results reveal that single channel marine seismic at shallow water is a cost-effective technique that can be easily repeated to observe any possibly changes in the wave physical properties at the near surface layers

Keywords: shallow marine single-channel data, high resolution, frequency filtering, shallow water

Procedia PDF Downloads 54
344 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks

Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft

Abstract:

Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: autonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 369
343 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)

Procedia PDF Downloads 217
342 A Critical Study of the Performance of Self Compacting Concrete (SCC) Using Locally Supplied Materials in Bahrain

Authors: A. Umar, A. Tamimi

Abstract:

Development of new types of concrete with improved performance is a very important issue for the whole building industry. The development is based on the optimization of the concrete mix design, with an emphasis not only on the workability and mechanical properties but also to the durability and the reliability of the concrete structure in general. Self-compacting concrete (SCC) is a high-performance material designed to flow into formwork under its own weight and without the aid of mechanical vibration. At the same time it is cohesive enough to fill spaces of almost any size and shape without segregation or bleeding. Construction time is shorter and production of SCC is environmentally friendly (no noise, no vibration). Furthermore, SCC produces a good surface finish. Despite these advantages, SCC has not gained much local acceptance though it has been promoted in the Middle East for the last ten to twelve years. The reluctance in utilizing the advantages of SCC, in Bahrain, may be due to lack of research or published data pertaining to locally produced SCC. Therefore, there is a need to conduct studies on SCC using locally available material supplies. From the literature, it has been observed that the use of viscosity modifying admixtures (VMA), micro silica and glass fibers have proved to be very effective in stabilizing the rheological properties and the strength of fresh and hardened properties of self-compacting concrete (SCC). Therefore, in the present study, it is proposed to carry out investigations of SCC with combinations of various dosages of VMAs with and without micro silica and glass fibers and to study their influence on the properties of fresh and hardened concrete.

Keywords: self-compacting concrete, viscosity modifying admixture, micro silica, glass fibers

Procedia PDF Downloads 628
341 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control

Procedia PDF Downloads 477
340 A Posteriori Trading-Inspired Model-Free Time Series Segmentation

Authors: Plessen Mogens Graf

Abstract:

Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.

Keywords: time series segmentation, model-free, trading-inspired, multivariate data

Procedia PDF Downloads 111
339 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Authors: Pankaj Chandna, Dinesh Kumar

Abstract:

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.

Keywords: D2 steel, orthogonal array, optimization, surface roughness, Taguchi methodology

Procedia PDF Downloads 524
338 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems

Authors: Zahid Ullah, Atlas Khan

Abstract:

This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.

Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms

Procedia PDF Downloads 89
337 Dynamic Reliability for a Complex System and Process: Application on Offshore Platform in Mozambique

Authors: Raed KOUTA, José-Alcebiades-Ernesto HLUNGUANE, Eric Châtele

Abstract:

The search for and exploitation of new fossil energy resources is taking place in the context of the gradual depletion of existing deposits. Despite the adoption of international targets to combat global warming, the demand for fuels continues to grow, contradicting the movement towards an energy-efficient society. The increase in the share of offshore in global hydrocarbon production tends to compensate for the depletion of terrestrial reserves, thus constituting a major challenge for the players in the sector. Through the economic potential it represents, and the energy independence it provides, offshore exploitation is also a challenge for States such as Mozambique, which have large maritime areas and whose environmental wealth must be considered. The exploitation of new reserves on economically viable terms depends on available technologies. The development of deep and ultra-deep offshore requires significant research and development efforts. Progress has also been made in managing the multiple risks inherent in this activity. Our study proposes a reliability approach to develop products and processes designed to live at sea. Indeed, the context of an offshore platform requires highly reliable solutions to overcome the difficulties of access to the system for regular maintenance and quick repairs and which must resist deterioration and degradation processes. One of the characteristics of failures that we consider is the actual conditions of use that are considered 'extreme.' These conditions depend on time and the interactions between the different causes. These are the two factors that give the degradation process its dynamic character, hence the need to develop dynamic reliability models. Our work highlights mathematical models that can explicitly manage interactions between components and process variables. These models are accompanied by numerical resolution methods that help to structure a dynamic reliability approach in a physical and probabilistic context. The application developed makes it possible to evaluate the reliability, availability, and maintainability of a floating storage and unloading platform for liquefied natural gas production.

Keywords: dynamic reliability, offshore plateform, stochastic process, uncertainties

Procedia PDF Downloads 102
336 Vibration Frequency Analysis of Sandwich Nano-Plate on Visco Pasternak Foundation by Using Modified Couple Stress Theory

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In this research, the free vibration of a rectangular sandwich nano-plate (SNP) made of three smart layers in the visco Pasternak foundation is studied. The core of the sandwich is a piezo magnetic nano-plate integrated with two layers of piezoelectric materials. First-order shear deformation plate theory is utilized to derive the motion equations by using Hamilton’s principle, piezoelectricity, and modified couple stress theory. Elastic medium is modeled by visco Pasternak foundation, where the damping coefficient effect is investigated on the stability of sandwich nano-plate. These equations are solved by the differential quadrature method (DQM), considering different boundary conditions. Results indicate the effect of various parameters such as aspect ratio, thickness ratio, shear correction factor, damping coefficient, and boundary conditions on the dimensionless frequency of sandwich nano-plate. The results are also compared by those available in the literature, and these findings can be used for automotive industry, communications equipment, active noise, stability, and vibration cancellation systems and utilized for designing the magnetostrictive actuator, motor, transducer and sensors in nano and micro smart structures.

Keywords: free vibration, modified couple stress theory, sandwich nano-plate, visco Pasternak foundation

Procedia PDF Downloads 116
335 Control System Design for a Simulated Microbial Electrolysis Cell

Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen

Abstract:

Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.

Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller

Procedia PDF Downloads 225
334 Algorithm for Quantification of Pulmonary Fibrosis in Chest X-Ray Exams

Authors: Marcela de Oliveira, Guilherme Giacomini, Allan Felipe Fattori Alves, Ana Luiza Menegatti Pavan, Maria Eugenia Dela Rosa, Fernando Antonio Bacchim Neto, Diana Rodrigues de Pina

Abstract:

It is estimated that each year one death every 10 seconds (about 2 million deaths) in the world is attributed to tuberculosis (TB). Even after effective treatment, TB leaves sequelae such as, for example, pulmonary fibrosis, compromising the quality of life of patients. Evaluations of the aforementioned sequel are usually performed subjectively by radiology specialists. Subjective evaluation may indicate variations inter and intra observers. The examination of x-rays is the diagnostic imaging method most accomplished in the monitoring of patients diagnosed with TB and of least cost to the institution. The application of computational algorithms is of utmost importance to make a more objective quantification of pulmonary impairment in individuals with tuberculosis. The purpose of this research is the use of computer algorithms to quantify the pulmonary impairment pre and post-treatment of patients with pulmonary TB. The x-ray images of 10 patients with TB diagnosis confirmed by examination of sputum smears were studied. Initially the segmentation of the total lung area was performed (posteroanterior and lateral views) then targeted to the compromised region by pulmonary sequel. Through morphological operators and the application of signal noise tool, it was possible to determine the compromised lung volume. The largest difference found pre- and post-treatment was 85.85% and the smallest was 54.08%.

Keywords: algorithm, radiology, tuberculosis, x-rays exam

Procedia PDF Downloads 398
333 Received Signal Strength Indicator Based Localization of Bluetooth Devices Using Trilateration: An Improved Method for the Visually Impaired People

Authors: Muhammad Irfan Aziz, Thomas Owens, Uzair Khaleeq uz Zaman

Abstract:

The instantaneous and spatial localization for visually impaired people in dynamically changing environments with unexpected hazards and obstacles, is the most demanding and challenging issue faced by the navigation systems today. Since Bluetooth cannot utilize techniques like Time Difference of Arrival (TDOA) and Time of Arrival (TOA), it uses received signal strength indicator (RSSI) to measure Receive Signal Strength (RSS). The measurements using RSSI can be improved significantly by improving the existing methodologies related to RSSI. Therefore, the current paper focuses on proposing an improved method using trilateration for localization of Bluetooth devices for visually impaired people. To validate the method, class 2 Bluetooth devices were used along with the development of a software. Experiments were then conducted to obtain surface plots that showed the signal interferences and other environmental effects. Finally, the results obtained show the surface plots for all Bluetooth modules used along with the strong and weak points depicted as per the color codes in red, yellow and blue. It was concluded that the suggested improved method of measuring RSS using trilateration helped to not only measure signal strength affectively but also highlighted how the signal strength can be influenced by atmospheric conditions such as noise, reflections, etc.

Keywords: Bluetooth, indoor/outdoor localization, received signal strength indicator, visually impaired

Procedia PDF Downloads 113
332 The Impact of Biodiversity and Urban Ecosystem Services in Real Estate

Authors: Carmen Cantuarias-Villessuzanne, Jeffrey Blain, Radmila Pineau

Abstract:

Our research project aims at analyzing the sensitiveness of French households to urban biodiversity and urban ecosystem services (UES). Opinion surveys show that the French population is sensitive to biodiversity and ecosystem services loss, but the value given to these issues within urban fabric and real estate market lacks evidence. Using GIS data and economic evaluation, by hedonic price methods, weassess the isolated contribution of the explanatory variables of biodiversityand UES on the price of residential real estate. We analyze the variation of the valuefor three urban ecosystem services - flood control, proximity to green spaces, and refreshment - on the price of real estate whena property changes ownership. Our modeling and mapping focus on the price at theIRIS scale (statistical information unit) from 2014 to 2019. The main variables are internal characteristics of housing (area, kind of housing, heating), external characteristics(accessibility and infrastructure, economic, social, and physical environmentsuch as air pollution, noise), and biodiversity indicators and urban ecosystemservices for the Ile-de-France region. Moreover, we compare environmental values on the enhancement of greenspaces and their impact on residential choices. These studies are very useful for real estate developers because they enable them to promote green spaces, and municipalities to become more attractive.

Keywords: urban ecosystem services, sustainable real estate, urban biodiversity perception, hedonic price, environmental values

Procedia PDF Downloads 113
331 Numerical Investigation and Optimization of the Effect of Number of Blade and Blade Type on the Suction Pressure and Outlet Mass Flow Rate of a Centrifugal Fan

Authors: Ogan Karabas, Suleyman Yigit

Abstract:

Number of blade and blade type of centrifugal fans are the most decisive factor on the field of application, noise level, suction pressure and outlet mass flow rate. Nowadays, in order to determine these effects on centrifugal fans, numerical studies are carried out in addition to experimental studies. In this study, it is aimed to numerically investigate the changes of suction pressure and outlet mass flow rate values of a centrifugal fan according to the number of blade and blade type. Centrifugal fans of the same size with forward, backward and straight blade type were analyzed by using a simulation program and compared with each other. This analysis was carried out under steady state condition by selecting k-Ɛ turbulence model and air is assumed incompressible. Then, 16, 32 and 48 blade centrifugal fans were again analyzed by using same simulation program, and the optimum number of blades was determined for the suction pressure and the outlet mass flow rate. According to the results of the analysis, it was obtained that the suction pressure in the 32 blade fan was twice the value obtained in the 16 blade fan. In addition, the outlet mass flow rate increased by 45% with the increase in the number of blade from 16 to 32. There is no significant change observed on the suction pressure and outlet mass flow rate when the number of blades increased from 32 to 48. In the light of the analysis results, the optimum blade number was determined as 32.

Keywords: blade type, centrifugal fan, cfd, outlet mass flow rate, suction pressure

Procedia PDF Downloads 383
330 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method

Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy

Abstract:

With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.

Keywords: heat transfer, pde, taguchi optimization, SI/Ge

Procedia PDF Downloads 317
329 Vehicle Maneuverability on Horizontal Curves on Hilly Terrain: A Study on Shillong Highway

Authors: Surendra Choudhary, Sapan Tiwari

Abstract:

The driver has two fundamental duties i) controlling the position of the vehicle along the longitudinal and lateral direction of movement ii) roadway width. Both of these duties are interdependent and are concurrently referred to as two-dimensional driver behavior. One of the main problems facing driver behavior modeling is to identify the parameters for describing the exemplary driving conduct and car maneuver under distinct traffic circumstances. Still, to date, there is no well-accepted theory that can comprehensively model the 2-D driver conduct (longitudinal and lateral). The primary objective of this research is to explore the vehicle's lateral longitudinal behavior in the heterogeneous condition of traffic on horizontal curves as well as the effect of road geometry on dynamic traffic parameters, i.e., car velocity and lateral placement. In this research, with their interrelationship, a thorough assessment of dynamic car parameters, i.e., speed, lateral acceleration, and turn radius. Also, horizontal curve road parameters, i.e., curvature radius, pavement friction, are performed. The dynamic parameters of the various types of car drivers are gathered using a VBOX GPS-based tool with high precision. The connection between dynamic car parameters and curve geometry is created after the removal of noise from the GPS trajectories. The major findings of the research are that car maneuvers with higher than the design limits of speed, acceleration, and lateral deviation on the studied curves of the highway. It can become lethal if the weather changes from dry to wet.

Keywords: geometry, maneuverability, terrain, trajectory, VBOX

Procedia PDF Downloads 128
328 Understanding Regional Circulations That Modulate Heavy Precipitations in the Kulfo Watershed

Authors: Tesfay Mekonnen Weldegerima

Abstract:

Analysis of precipitation time series is a fundamental undertaking in meteorology and hydrology. The extreme precipitation scenario of the Kulfo River watershed is studied using wavelet analysis and atmospheric transport, a lagrangian trajectory model. Daily rainfall data for the 1991-2020 study periods are collected from the office of the Ethiopian Meteorology Institute. Meteorological fields on a three-dimensional grid at 0.5o x 0.5o spatial resolution and daily temporal resolution are also obtained from the Global Data Assimilation System (GDAS). Wavelet analysis of the daily precipitation processed with the lag-1 coefficient reveals some high power recurred once every 38 to 60 days with greater than 95% confidence for red noise. The analysis also identified inter-annual periodicity in the periods 2002 - 2005 and 2017 - 2019. Back trajectory analysis for 3-day periods up to May 19/2011, indicates the Indian Ocean source; trajectories crossed the eastern African escarpment to arrive at the Kulfo watershed. Atmospheric flows associated with the Western Indian monsoon redirected by the low-level Somali winds and Arabian ridge are responsible for the moisture supply. The time-localization of the wavelet power spectrum yields valuable hydrological information, and the back trajectory approaches provide useful characterization of air mass source.

Keywords: extreme precipitation events, power spectrum, back trajectory, kulfo watershed

Procedia PDF Downloads 49
327 Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models

Authors: Sofia M. Karadimitriou, Kostas Triantafyllopoulos, Timothy Heaton

Abstract:

Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data.

Keywords: multidimensional Laplace prior, particle filtering, spatio-temporal modelling, wavelets

Procedia PDF Downloads 408
326 Flight School Perceptions of Electric Planes for Training

Authors: Chelsea-Anne Edwards, Paul Parker

Abstract:

Flight school members are facing a major disruption in the technologies available for them to fly as electric planes enter the aviation industry. The year 2020 marked a new era in aviation with the first type certification of an electric plane. The Pipistrel Velis Electro is a two-seat electric aircraft (e-plane) designed for flight training. Electric flight training has the potential to deeply reduce emissions, noise, and cost of pilot training. Though these are all attractive features, understanding must be developed on the perceptions of the essential actor of the technology, the pilot. This study asks student pilots, flight instructors, flight center managers, and other members of flight schools about their perceptions of e-planes. The questions were divided into three categories: safety and trust of the technology, expected costs in comparison to conventional planes, and interest in the technology, including their desire to fly electric planes. Participants were recruited from flight schools using a protocol approved by the Office of Research Ethics. None of these flight schools have an e-plane in their fleet so these views are based on perceptions rather than direct experience. The results revealed perceptions that were strongly positive with many qualitative comments indicating great excitement about the potential of the new electric aviation technology. Some concerns were raised regarding battery endurance limits. Overall, the flight school community is clearly in favor of introducing electric propulsion technology and reducing the environmental impacts of their industry.

Keywords: electric planes, flight training, green aircraft, student pilots, sustainable aviation

Procedia PDF Downloads 144
325 Is Electricity Consumption Stationary in Turkey?

Authors: Eyup Dogan

Abstract:

The number of research articles analyzing the integration properties of energy variables has rapidly increased in the energy literature for about a decade. The stochastic behaviors of energy variables are worth knowing due to several reasons. For instance, national policies to conserve or promote energy consumption, which should be taken as shocks to energy consumption, will have transitory effects in energy consumption if energy consumption is found to be stationary in one country. Furthermore, it is also important to know the order of integration to employ an appropriate econometric model. Despite being an important subject for applied energy (economics) and having a huge volume of studies, several known limitations still exist with the existing literature. For example, many of the studies use aggregate energy consumption and national level data. In addition, a huge part of the literature is either multi-country studies or solely focusing on the U.S. This is the first study in the literature that considers a form of energy consumption by sectors at sub-national level. This research study aims at investigating unit root properties of electricity consumption for 12 regions of Turkey by four sectors in addition to total electricity consumption for the purpose of filling the mentioned limits in the literature. In this regard, we analyze stationarity properties of 60 cases . Because the use of multiple unit root tests make the results robust and consistent, we apply Dickey-Fuller unit root test based on Generalized Least Squares regression (DFGLS), Phillips-Perron unit root test (PP) and Zivot-Andrews unit root test with one endogenous structural break (ZA). The main finding of this study is that electricity consumption is trend stationary in 7 cases according to DFGLS and PP, whereas it is stationary process in 12 cases when we take into account the structural change by applying ZA. Thus, shocks to electricity consumption have transitory effects in those cases; namely, agriculture in region 1, region 4 and region 7, industrial in region 5, region 8, region 9, region 10 and region 11, business in region 4, region 7 and region 9, total electricity consumption in region 11. Regarding policy implications, policies to decrease or stimulate the use of electricity have a long-run impact on electricity consumption in 80% of cases in Turkey given that 48 cases are non-stationary process. On the other hand, the past behavior of electricity consumption can be used to predict the future behavior of that in 12 cases only.

Keywords: unit root, electricity consumption, sectoral data, subnational data

Procedia PDF Downloads 388
324 Investigating the Environmental Impact of Tourists Activities on Yankari Resort and Safari

Authors: Eldah Ephraim Buba, Sanusi Abubakar Sadiq

Abstract:

Habitat can be degraded by tourism leisure activities for example wildlife viewing can bring abrupt stress for animals and alter their natural behaviors when tourist come too close and wildlife watching have degradation effects on the habitats as they often are accompanied by the noise and commotion created by tourist as they chase wild animals. It is observed that Jos Wild Life Park is usually congested during on-peak periods which causes littering and contamination of the environment by tourist which may lead to changes in the soil nutrient. The issue of unauthorized feeding of animals by a tourist in which the food might be dangerous and harmful to their health and making them be so aggressive is also observed. The aim of the study is to investigate the environmental impact of tourists’ activities in Jos Wild Life Park, Nigeria. The study used survey questionnaires to both tourists and the staff of the wildlife park. One hundred questionnaires were self-administered to randomly selected tourists as the visit the park and some staff. The average mean score of the response was used to show agreement or disagreement. Major findings show the negative impact of tourist’s activities to the environment as air pollution, overcrowding, and congestion, solid littering of the environment, distress to animals and alteration of the ecosystem. Furthermore, the study found the positive impact of tourists activities on the environment to be income generation through tourists activities and infrastructural development. It is recommended that the impact of tourism should be minimized through admitting the right carrying capacity and impact assessment.

Keywords: environmental, impact, investigation, tourists, activities

Procedia PDF Downloads 338