Search results for: steel truss bridge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2482

Search results for: steel truss bridge

1282 Effect of Austenitizing Temperature, Soaking Time and Grain Size on Charpy Impact Toughness of Quenched and Tempered Steel

Authors: S. Gupta, R. Sarkar, S. Pathak, D. H. Kela, A. Pramanick, P. Talukdar

Abstract:

Low alloy quenched and tempered steels are typically used in cast railway components such as knuckles, yokes, and couplers. Since these components experience extensive impact loading during their service life, adequate impact toughness of these grades need to be ensured to avoid catastrophic failure of parts in service. Because of the general availability of Charpy V Test equipment, Charpy test is the most common and economical means to evaluate the impact toughness of materials and is generally used in quality control applications. With this backdrop, an experiment was designed to evaluate the effect of austenitizing temperature, soaking time and resultant grain size on the Charpy impact toughness and the related fracture mechanisms in a quenched and tempered low alloy steel, with the aim of optimizing the heat treatment parameters (i.e. austenitizing temperature and soaking time) with respect to impact toughness. In the first phase, samples were austenitized at different temperatures viz. 760, 800, 840, 880, 920 and 960°C, followed by quenching and tempering at 600°C for 4 hours. In the next phase, samples were subjected to different soaking times (0, 2, 4 and 6 hours) at a fixed austenitizing temperature (980°C), followed by quenching and tempering at 600°C for 4 hours. The samples corresponding to different test conditions were then subjected to instrumented Charpy tests at -40°C and energy absorbed were recorded. Subsequently, microstructure and fracture surface of samples corresponding to different test conditions were observed under scanning electron microscope, and the corresponding grain sizes were measured. In the final stage, austenitizing temperature, soaking time and measured grain sizes were correlated with impact toughness and the fracture morphology and mechanism.

Keywords: heat treatment, grain size, microstructure, retained austenite and impact toughness

Procedia PDF Downloads 321
1281 Optimization of Temperature Coefficients for MEMS Based Piezoresistive Pressure Sensor

Authors: Vijay Kumar, Jaspreet Singh, Manoj Wadhwa

Abstract:

Piezo-resistive pressure sensors were one of the first developed micromechanical system (MEMS) devices and still display a significant growth prompted by the advancements in micromachining techniques and material technology. In MEMS based piezo-resistive pressure sensors, temperature can be considered as the main environmental condition which affects the system performance. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics to drift. In this work, a study on the effects of temperature and doping concentration in a boron implanted piezoresistor for a silicon-based pressure sensor is discussed. We have optimized the temperature coefficient of resistance (TCR) and temperature coefficient of sensitivity (TCS) values to determine the effect of temperature drift on the sensor performance. To be more precise, in order to reduce the temperature drift, a high doping concentration is needed. And it is well known that the Wheatstone bridge in a pressure sensor is supplied with a constant voltage or a constant current input supply. With a constant voltage supply, the thermal drift can be compensated along with an external compensation circuit, whereas the thermal drift in the constant current supply can be directly compensated by the bridge itself. But it would be beneficial to also compensate the temperature coefficient of piezoresistors so as to further reduce the temperature drift. So, with a current supply, the TCS is dependent on both the TCπ and TCR. As TCπ is a negative quantity and TCR is a positive quantity, it is possible to choose an appropriate doping concentration at which both of them cancel each other. An exact cancellation of TCR and TCπ values is not readily attainable; therefore, an adjustable approach is generally used in practical applications. Thus, one goal of this work has been to better understand the origin of temperature drift in pressure sensor devices so that the temperature effects can be minimized or eliminated. This paper describes the optimum doping levels for the piezoresistors where the TCS of the pressure transducers will be zero due to the cancellation of TCR and TCπ values. Also, the fabrication and characterization of the pressure sensor are carried out. The optimized TCR value obtained for the fabricated die is 2300 ± 100ppm/ᵒC, for which the piezoresistors are implanted at a doping concentration of 5E13 ions/cm³ and the TCS value of -2100ppm/ᵒC is achieved. Therefore, the desired TCR and TCS value is achieved, which are approximately equal to each other, so the thermal effects are considerably reduced. Finally, we have calculated the effect of temperature and doping concentration on the output characteristics of the sensor. This study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the doping concentration.

Keywords: piezo-resistive, pressure sensor, doping concentration, TCR, TCS

Procedia PDF Downloads 171
1280 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.

Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness

Procedia PDF Downloads 407
1279 The Foundation of Islamic Center of Thailand Made Valuable Contributions to Thai Society

Authors: Tosaporn Mahamud

Abstract:

The foundation of the Islamic center of Thailand plays a vital role in order to bring diverse Muslim communities in a common place. The center itself is a bridge between Muslims in Thailand and Islamic world. The operational task of the center runs by many organizations through the funds and funds use for different activities for empowerment of Thai society in general and Muslim community in particular. This paper aims to focus on the role of the foundation of the Islamic center of Thailand to the Thai society. This paper also finds out the historical background of the center in term of building structure and design and functions.

Keywords: design, empowerment, islamic, society

Procedia PDF Downloads 350
1278 Mechanical Behavior of Corroded RC Beams Strengthened by NSM CFRP Rods

Authors: Belal Almassri, Amjad Kreit, Firas Al Mahmoud, Raoul François

Abstract:

Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the crosssectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products.

Keywords: carbon fibre, corrosion, strength, mechanical testing

Procedia PDF Downloads 441
1277 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods

Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo

Abstract:

In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.

Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe

Procedia PDF Downloads 247
1276 Effect of Correlation of Random Variables on Structural Reliability Index

Authors: Agnieszka Dudzik

Abstract:

The problem of correlation between random variables in the structural reliability analysis has been extensively discussed in literature on the subject. The cases taken under consideration were usually related to correlation between random variables from one side of ultimate limit state: correlation between particular loads applied on structure or correlation between resistance of particular members of a structure as a system. It has been proved that positive correlation between these random variables reduces the reliability of structure and increases the probability of failure. In the paper, the problem of correlation between random variables from both side of the limit state equation will be taken under consideration. The simplest case where these random variables are of the normal distributions will be concerned. The case when a degree of that correlation is described by the covariance or the coefficient of correlation will be used. Special attention will be paid on questions: how much that correlation changes the reliability level and can it be ignored. In reliability analysis will be used well-known methods for assessment of the failure probability: based on the Hasofer-Lind reliability index and Monte Carlo method adapted to the problem of correlation. The main purpose of this work will be a presentation how correlation of random variables influence on reliability index of steel bar structures. Structural design parameters will be defined as deterministic values and random variables. The latter will be correlated. The criterion of structural failure will be expressed by limit functions related to the ultimate and serviceability limit state. In the description of random variables will be used only for the normal distribution. Sensitivity of reliability index to the random variables will be defined. If the reliability index sensitivity due to the random variable X will be low when compared with other variables, it can be stated that the impact of this variable on failure probability is small. Therefore, in successive computations, it can be treated as a deterministic parameter. Sensitivity analysis leads to simplify the description of the mathematical model, determine the new limit functions and values of the Hasofer-Lind reliability index. In the examples, the NUMPRESS software will be used in the reliability analysis.

Keywords: correlation of random variables, reliability index, sensitivity of reliability index, steel structure

Procedia PDF Downloads 225
1275 Collapse Analysis of Planar Composite Frame under Impact Loads

Authors: Lian Song, Shao-Bo Kang, Bo Yang

Abstract:

Concrete filled steel tubular (CFST) structure has been widely used in construction practices due to its superior performances under various loading conditions. However, limited studies are available when this type of structure is subjected to impact or explosive loads. Current methods in relevant design codes are not specific for preventing progressive collapse of CFST structures. Therefore, it is necessary to carry out numerical simulations on CFST structure under impact loads. In this study, finite element analyses are conducted on the mechanical behaviour of composite frames which composed of CFST columns and steel beams subject to impact loading. In the model, CFST columns are simulated using finite element software ABAQUS. The model is verified by test results of solid and hollow CFST columns under lateral impacts, and reasonably good agreement is obtained through comparisons. Thereafter, a multi-scale finite element modelling technique is developed to evaluate the behaviour of a five-storey three-span planar composite frame. Alternate path method and direct simulation method are adopted to perform the dynamic response of the frame when a supporting column is removed suddenly. In the former method, the reason for column removal is not considered and only the remaining frame is simulated, whereas in the latter, a specific impact load is applied to the frame to take account of the column failure induced by vehicle impact. Comparisons are made between these two methods in terms of displacement history and internal force redistribution, and design recommendations are provided for the design of CFST structures under impact loads.

Keywords: planar composite frame, collapse analysis, impact loading, direct simulation method, alternate path method

Procedia PDF Downloads 506
1274 From Shop-Floor to Classroom and from Classroom to Shop-Floor: A Way to Bridge Gap between Industry and Academy

Authors: Muhammad Haris Aziz, Shoaib Sarfraz, Chanchal Saha

Abstract:

The basic functions of a university are research and education. Research develops theories and education provides the link between the theory and the practical. Being an applied science, the link between theory and practice needs to be strong in engineering disciplines. But there remains a gap between industry and academy due lack of understanding and awareness from both sides. This gap is been shorten with an industrial engineering graduate class composed of a mix of students from industrial background and from theoretical background. Results are four industrial case studies which are the outcome of group projects in a course on operations research.

Keywords: industrial-academia linkage, operations research, industrial engineering, engineering education.

Procedia PDF Downloads 645
1273 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease

Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove

Abstract:

Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.

Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease

Procedia PDF Downloads 89
1272 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity

Procedia PDF Downloads 119
1271 Total Life Cycle Cost and Life Cycle Assessment of Mass Timber Buildings in the US

Authors: Hongmei Gu, Shaobo Liang, Richard Bergman

Abstract:

With current worldwide trend in designs to have net-zero emission buildings to mitigate climate change, widespread use of mass timber products, such as Cross Laminated Timber (CLT), or Nail Laminated Timber (NLT) or Dowel Laminated Timber (DLT) in buildings have been proposed as one approach in reducing Greenhouse Gas (GHG) emissions. Consequentially, mass timber building designs are being adopted more and more by architectures in North America, especially for mid- to high-rise buildings where concrete and steel buildings are currently prevalent, but traditional light-frame wood buildings are not. Wood buildings and their associated wood products have tended to have lower environmental impacts than competing energy-intensive materials. It is common practice to conduct life cycle assessments (LCAs) and life cycle cost analyses on buildings with traditional structural materials like concrete and steel in the building design process. Mass timber buildings with lower environmental impacts, especially GHG emissions, can contribute to the Net Zero-emission goal for the world-building sector. However, the economic impacts from CLT mass timber buildings still vary from the life-cycle cost perspective and environmental trade-offs associated with GHG emissions. This paper quantified the Total Life Cycle Cost and cradle-to-grave GHG emissions of a pre-designed CLT mass timber building and compared it to a functionally-equivalent concrete building. The Total life cycle Eco-cost-efficiency is defined in this study and calculated to discuss the trade-offs for the net-zero emission buildings in a holistic view for both environmental and economic impacts. Mass timber used in buildings for the United States is targeted to the materials from the nation’s sustainable managed forest in order to benefit both national and global environments and economies.

Keywords: GHG, economic impact, eco-cost-efficiency, total life-cycle costs

Procedia PDF Downloads 122
1270 Six Steps of Entrepreneurial Finance and Development, from Idea to Corporation Case of Kuwait

Authors: Andri Ottesen, Sam Toglaw, Mirna Safa

Abstract:

Entrepreneurial companies on their developing path from an idea to a corporation go through a similar six-step process. Each of these six development steps is supported by a distinctive financing path. This paper explores the Kuwait model for Entrepreneurial Finance and Development through in-depth interviews with ten successful Kuwaiti entrepreneurs. This paper offers insight into the development and financing of entrepreneurial companies in this oil-rich, predominantly Islamic country that are in many ways different from the steps. Western entrepreneurial companies go through. This model could be used to understand the commonalities and the difference between entrepreneurial development and financing and could be used to bridge the gap.

Keywords: entrepreneurial-financing, entrepreneurial-developing, Kuwait, Vancouver school

Procedia PDF Downloads 201
1269 Finite Element Modeling and Analysis of Reinforced Concrete Coupled Shear Walls Strengthened with Externally Bonded Carbon Fiber Reinforced Polymer Composites

Authors: Sara Honarparast, Omar Chaallal

Abstract:

Reinforced concrete (RC) coupled shear walls (CSWs) are very effective structural systems in resisting lateral loads due to winds and earthquakes and are particularly used in medium- to high-rise RC buildings. However, most of existing old RC structures were designed for gravity loads or lateral loads well below the loads specified in the current modern seismic international codes. These structures may behave in non-ductile manner due to poorly designed joints, insufficient shear reinforcement and inadequate anchorage length of the reinforcing bars. This has been the main impetus to investigate an appropriate strengthening method to address or attenuate the deficiencies of these structures. The objective of this paper is to twofold: (i) evaluate the seismic performance of existing reinforced concrete coupled shear walls under reversed cyclic loading; and (ii) investigate the seismic performance of RC CSWs strengthened with externally bonded (EB) carbon fiber reinforced polymer (CFRP) sheets. To this end, two CSWs were considered as follows: (a) the first one is representative of old CSWs and therefore was designed according to the 1941 National Building Code of Canada (NBCC, 1941) with conventionally reinforced coupling beams; and (b) the second one, representative of new CSWs, was designed according to modern NBCC 2015 and CSA/A23.3 2014 requirements with diagonally reinforced coupling beam. Both CSWs were simulated using ANSYS software. Nonlinear behavior of concrete is modeled using multilinear isotropic hardening through a multilinear stress strain curve. The elastic-perfectly plastic stress-strain curve is used to simulate the steel material. Bond stress–slip is modeled between concrete and steel reinforcement in conventional coupling beam rather than considering perfect bond to better represent the slip of the steel bars observed in the coupling beams of these CSWs. The old-designed CSW was strengthened using CFRP sheets bonded to the concrete substrate and the interface was modeled using an adhesive layer. The behavior of CFRP material is considered linear elastic up to failure. After simulating the loading and boundary conditions, the specimens are analyzed under reversed cyclic loading. The comparison of results obtained for the two unstrengthened CSWs and the one retrofitted with EB CFRP sheets reveals that the strengthening method improves the seismic performance in terms of strength, ductility, and energy dissipation capacity.

Keywords: carbon fiber reinforced polymer, coupled shear wall, coupling beam, finite element analysis, modern code, old code, strengthening

Procedia PDF Downloads 186
1268 Theoretical Bearing Capacity of Modified Kacapuri Foundation

Authors: Muhammad Afief Maruf

Abstract:

Kacapuri foundation is the traditional shallow foundation of building which has been used since long by traditional communities in Borneo, Indonesia. Kacapuri foundation is a foundation that uses a combination of ironwood (eusideroxylon zwageri) as a column and truss and softwood (Melaleuca leucadendra syn. M. leucadendron) as a raft. In today's modern era, ironwood happened to be a rare item, and it is protected by the Indonesian government. This condition then triggers the idea to maintain the shape of the traditional foundation by modifying the material. The suggestion is replacing the ironwood column with reinforced concrete column. In addition, the number of stem softwood is added to sustain the burden of replacing the column material. Although this modified form of Kacapuri foundation is currently still not been tested in applications in society, some research on the modified Kacapuri foundation has been conducted by some researchers and government unit. This paper will try to give an overview of the theoretical foundation bearing capacity Kacapuri modifications applied to the soft alluvial soil located in Borneo, Indonesia, where the original form of Kacapuri is implemented this whole time. The foundation is modeled buried depth in 2m below the ground surface and also below the ground water level. The calculation of the theoretical bearing capacity and then is calculated based on the bearing capacity equation suggested Skempton, Terzaghi and Ohsuki using the data of soft alluvial soil in Borneo. The result will then compared with the bearing capacity of the Kacapuri foundation original design from some previous research. The results show that the ultimate bearing capacity of the Modified Kacapuri foundation using Skempton equation amounted to 329,26 kN, Terzaghi for 456,804kN, and according Ohsaki amounted to 491,972 kN. The ultimate bearing capacity of the original Kacapuri foundation model based on Skempton equation is 18,23 kN. This result shows that the modification added the ultimate bearing capacity of the foundation, although the replacement of ironwood to reinforced concrete will also add some dead load to the total load itself.

Keywords: bearing capacity, Kacapuri, modified foundation, shallow foundation

Procedia PDF Downloads 348
1267 Evaluation of Robot Application in Hospitality

Authors: Lina Zhong, Sunny Sun, Rob Law

Abstract:

Artificial intelligence has been developing rapidly. Previous studies have evaluated hotel technology either from an employee or consumer perspective. However, impacts, which mainly include the social and economic impacts of hotel robots, are unknown as they are newly introduced. To bridge the aforementioned research gap, this study evaluates hotel robots from contextual, diagnostic, evaluative, and strategic aspects using framework analysis as a basis to assist hotel managers in real-time hotel marketing strategy management, adjustment and revenue achievement. Findings show that, from a consumer perspective, the overall acceptance of hotel robots is low. The main implication is that the cost of hotel robots should be carefully estimated, and the investment should be made based on phases.

Keywords: application, evaluation, framework analysis, hotel robot

Procedia PDF Downloads 159
1266 Single Phase PV Inverter Applying a Dual Boost Technology

Authors: Sudha Bhutada, S. R. Nigam

Abstract:

In this paper, a single-phase PV inverter applying a dual boost converter circuit inverter is proposed for photovoltaic (PV) generation system and PV grid connected system. This system is designed to improve integration of a Single phase inverter with Photovoltaic panel. The DC 24V is converted into to 86V DC and then 86V DC to 312V DC. The 312 V DC is then successfully inverted to AC 220V. Hence, solar energy is powerfully converted into electrical energy for fulfilling the necessities of the home load, or to link with the grid. Matlab Simulation software was used for simulation of the circuit and outcome are presented in this paper.

Keywords: H bridge inverter, dual boost converter, PWM, SPWM

Procedia PDF Downloads 631
1265 Ni-Based Hardfacing Alloy Reinforced with Fused Eutectic Tungsten Carbide Deposited on Infiltrated WC-W-Ni Substrate by Oxyacetylene Welding

Authors: D. Miroud, H. Mokaddem, M. Tata, N. Foucha

Abstract:

The body of PDC (polycrystalline diamond compact) drill bit can be manufactured from two different materials, steel and tungsten carbide matrix. Commonly the steel body is produced by machining, thermal spraying a bonding layer and hardfacing of Ni-based matrix reinforced with fused eutectic tungsten carbide (WC/W2C). The matrix body bit is manufactured by infiltrating tungsten carbide particles, with a Copper binary or ternary alloy. By erosion-corrosion mechanisms, the PDC drill bits matrix undergoes severe damage, occurring particularly around the PDC inserts and near injection nozzles. In this study, we investigated the possibility to repair the damaged matrix regions by hardfacing technic. Ni-based hardfacing alloy reinforced with fused eutectic tungsten carbide is deposited on infiltrated WC-W-Ni substrate by oxyacetylene welding (OAW). The microstructure at the hardfacing / matrix interface is characterized by SEM- EDS, XRD and micro hardness Hv0.1. The hardfacing conditions greatly affect the dilution phenomenon and the distribution of carbides at the interface, without formation of transition zone. During OAW welding deposition, interdiffusion of atoms occurs: Cu and Sn diffuse from infiltrated matrix substrate into hardfacing and simultaneously Cr and Si alloy elements from hardfacing diffuse towards the substrate. The dilution zone consists of a nickel-rich phase with a heterogeneous distribution of eutectic spherical (Ni-based hardfacing alloy) and irregular (matrix) WC/W2C carbides and a secondary phase rich in Cr-W-Si. Hardfacing conditions cause the dissolution of banding around both spherical and irregular carbides. The micro-hardness of interface is significantly improved by the presence of secondary phase in the inter-dendritic structure.

Keywords: dilution, dissolution, hardfacing, infiltrated matrix, PDC drill bits

Procedia PDF Downloads 332
1264 Review on the Role of Sustainability Techniques in Development of Green Building

Authors: Ubaid Ur Rahman, Waqar Younas, Sooraj Kumar Chhabira

Abstract:

Environmentally sustainable building construction has experienced significant growth during the past 10 years at international level. This paper shows that the conceptual framework adopts sustainability techniques in construction to develop environment friendly building called green building. Waste occurs during the different construction phases which causes the environmental problems like, deposition of waste on ground surface creates major problems such as bad smell. It also gives birth to different health diseases and produces toxic waste agent which is specifically responsible for making soil infertile. Old recycled building material is used in the construction of new building. Sustainable construction is economical and saves energy sources. Sustainable construction is the major responsibility of designer and project manager. The designer has to fulfil the client demands while keeping the design environment friendly. Project manager has to deliver and execute sustainable construction according to sustainable design. Steel is the most appropriate sustainable construction material. It is more durable and easily recyclable. Steel occupies less area and has more tensile and compressive strength than concrete, making it a better option for sustainable construction as compared to other building materials. New technology like green roof has made the environment pleasant, and has reduced the construction cost. It minimizes economic, social and environmental issues. This paper presents an overview of research related to the material use of green building and by using this research recommendation are made which can be followed in the construction industry. In this paper, we go through detailed analysis on construction material. By making suitable adjustments to project management practices it is shown that a green building improves the cost efficiency of the project, makes it environmental friendly and also meets future generation demands.

Keywords: sustainable construction, green building, recycled waste material, environment

Procedia PDF Downloads 231
1263 Development of Bilayer Coating System for Mitigating Corrosion of Offshore Wind Turbines

Authors: Adamantini Loukodimou, David Weston, Shiladitya Paul

Abstract:

Offshore structures are subjected to harsh environments. It is documented that carbon steel needs protection from corrosion. The combined effect of UV radiation, seawater splash, and fluctuating temperatures diminish the integrity of these structures. In addition, the possibility of damage caused by floating ice, seaborne debris, and maintenance boats make them even more vulnerable. Their inspection and maintenance when far out in the sea are difficult, risky, and expensive. The most known method of mitigating corrosion of offshore structures is the use of cathodic protection. There are several zones in an offshore wind turbine. In the atmospheric zone, due to the lack of a continuous electrolyte (seawater) layer between the structure and the anode at all times, this method proves inefficient. Thus, the use of protective coatings becomes indispensable. This research focuses on the atmospheric zone. The conversion of commercially available and conventional paint (epoxy) system to an autonomous self-healing paint system via the addition of suitable encapsulated healing agents and catalyst is investigated in this work. These coating systems, which can self-heal when damaged, can provide a cost-effective engineering solution to corrosion and related problems. When the damage of the paint coating occurs, the microcapsules are designed to rupture and release the self-healing liquid (monomer), which then will react in the presence of the catalyst and solidify (polymerization), resulting in healing. The catalyst should be compatible with the system because otherwise, the self-healing process will not occur. The carbon steel substrate will be exposed to a corrosive environment, so the use of a sacrificial layer of Zn is also investigated. More specifically, the first layer of this new coating system will be TSZA (Thermally Sprayed Zn85/Al15) and will be applied on carbon steel samples with dimensions 100 x 150 mm after being blasted with alumina (size F24) as part of the surface preparation. Based on the literature, it corrodes readily, so one additional paint layer enriched with microcapsules will be added. Also, the reaction and the curing time are of high importance in order for this bilayer system of coating to work successfully. For the first experiments, polystyrene microcapsules loaded with 3-octanoyltio-1-propyltriethoxysilane were conducted. Electrochemical experiments such as Electrochemical Impedance Spectroscopy (EIS) confirmed the corrosion inhibiting properties of the silane. The diameter of the microcapsules was about 150-200 microns. Further experiments were conducted with different reagents and methods in order to obtain diameters of about 50 microns, and their self-healing properties were tested in synthetic seawater using electrochemical techniques. The use of combined paint/electrodeposited coatings allows for further novel development of composite coating systems. The potential for the application of these coatings in offshore structures will be discussed.

Keywords: corrosion mitigation, microcapsules, offshore wind turbines, self-healing

Procedia PDF Downloads 104
1262 Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection

Authors: Chao-Ming Su, Pei-Sheng Wu, Yu-Chi Kuo, Yin-Chou Huang, Tan-Yueh Chen, Jefunnie Matahum, Tzong-Rong Ger

Abstract:

Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min.

Keywords: magnetic particles, magnetoresistive sensors, microfluidics, biosensor

Procedia PDF Downloads 389
1261 Investigating Pack Boriding as a Surface Treatment for WC-Co Cold Forming Die Materials

Authors: Afshin Zohdi, Selçuk Özdemir, Mustafa Aksoy

Abstract:

Tungsten carbide-cobalt (WC-Co) is a widely utilized material for cold forming dies, including those employed in fastener production. In this study, we investigated the effectiveness of the pack boriding method in improving the surface properties of WC-Co cold forging dies. The boriding process involved embedding WC-Co samples, along with a steel control sample, within a chamber made of H13 tool steel. A boriding powder mixture was introduced into the chamber, which was then sealed using a paste. Subsequently, the samples were subjected to a temperature of 700°C for 5 hours in a furnace. Microstructural analysis, including cross-sectional examination and scanning electron microscopy (SEM), confirmed successful boron diffusion and its presence on the surface of the borided samples. The microhardness of the borided layer was significantly increased (3980 HV1) compared to the unborided sample (1320 HV3), indicating enhanced hardness. The borided layer exhibited an acceptable thickness of 45 microns, with a diffusion coefficient of 1.125 × 10-7 mm²/s, signifying a moderate diffusion rate. Energy-dispersive X-ray spectroscopy (EDS) mapping revealed an increase in boron content, desirable for the intended purpose, while an undesired increase in oxygen content was observed. Furthermore, the pin-on-disk wear test demonstrated a reduction in friction coefficient, indicating improved mechanical and tribological properties of the surface. The successful implementation of the pack boriding process highlights its potential for enhancing the performance of WC-Co cold forging dies.

Keywords: WC-Co, cold forging dies, pack boriding, surface hardness, wear resistance, microhardness, diffusion coefficient, scanning electron microscopy, energy-dispersive X-ray spectroscopy

Procedia PDF Downloads 56
1260 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology

Authors: Edison A. Bonifaz

Abstract:

In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.

Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler

Procedia PDF Downloads 53
1259 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 88
1258 Load Transfer of Steel Pipe Piles in Warming Permafrost

Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani

Abstract:

As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.

Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost

Procedia PDF Downloads 101
1257 Interlingual Translation of Manipuri Folktales with the Ideas of André Lefevere's Translation

Authors: Thoudam Jomita Devi

Abstract:

This paper is an attempt to analyze the problems of translating Manipuri folktales into English and the strategies deployed. In Manipuri, folktales are known as Fungawari/Phungawari, which is similar to a western bed time story. The work is with the special reference to folktales of Meetei community. Meetei are the majority ethnic group of Manipur, India. For this paper’s purpose, two folktales Shandrembi Cheisra and Pebet will be chosen for analysis and discussion. The translation of folktales can contribute to intercultural communication and bridge the gap between the generations. Translating Manipuri Folktales is problematic on both cultural and linguistic levels. Therefore, the aim of this analysis is to understand, how the idea of André Lefevere (1992) translation could be implicated in translating Manipuri folktales.

Keywords: cultural, folktales, intercultural, interlingual, translation

Procedia PDF Downloads 173
1256 Influence of Microstructure on Deformation Mechanisms and Mechanical Properties of Additively Manufactured Steel

Authors: Etienne Bonnaud, David Lindell

Abstract:

Correlations between microstructure, deformation mechanisms, and mechanical properties in additively manufactured 316L steel components have been investigated. Mechanical properties in the vertical direction (building direction) and in the horizontal direction (in plane directions) are markedly different. Vertically built specimens show lower yield stress but higher elongation than their horizontally built counterparts. Microscopic observations by electron back scattered diffraction (EBSD) for both build orientations reveal a strong [110] fiber texture in the build direction but different grain morphologies. These microstructures are used as input in subsequent crystal plasticity numerical simulations to understand their influence on the deformation mechanisms and the mechanical properties. Mean field simulations using a visco plastic self consistent (VPSC) model were carried out first but did not give results consistent with the tensile test experiments. A more detailed full-field model had to be used based on the Visco Plastic Fast Fourier Transform (VPFTT) method. A more accurate microstructure description was then input to the simulation model, where thin vertical regions of smaller grains were also taken into account. It turned out that these small grain clusters were responsible for the discrepancies in yield stress and hardening. Texture and morphology have a strong effect on mechanical properties. The different mechanical behaviors between vertically and horizontally printed specimens could be explained by means of numerical full-field crystal plasticity simulations, and the presence of thin clusters of smaller grains was shown to play a central role in the deformation mechanisms.

Keywords: additive manufacturing, crystal plasticity, full-field simulations, mean-field simulations, texture

Procedia PDF Downloads 60
1255 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling

Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad

Abstract:

One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.

Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis

Procedia PDF Downloads 399
1254 Threshold (K, P) Quantum Distillation

Authors: Shashank Gupta, Carlos Cid, William John Munro

Abstract:

Quantum distillation is the task of concentrating quantum correlations present in N imperfect copies to M perfect copies (M < N) using free operations by involving all P the parties sharing the quantum correlation. We present a threshold quantum distillation task where the same objective is achieved but using lesser number of parties (K < P). In particular, we give an exact local filtering operations by the participating parties sharing high dimension multipartite entangled state to distill the perfect quantum correlation. Later, we bridge a connection between threshold quantum entanglement distillation and quantum steering distillation and show that threshold distillation might work in the scenario where general distillation protocol like DEJMPS does not work.

Keywords: quantum networks, quantum distillation, quantum key distribution, entanglement distillation

Procedia PDF Downloads 30
1253 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel

Authors: Aqsa Jamil, Tamura Hiroshi, Katsuchi Hiroshi, Wang Jiaqi

Abstract:

The yield point represents the upper limit of forces which can be applied to a specimen without causing any permanent deformation. After yielding, the behavior of the specimen suddenly changes, including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of a thermography camera. The yield point of specimens was estimated with the help of temperature dip, which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing a repeatability analysis. The effects of temperature imperfection and light source have been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of the thermographic technique.

Keywords: signal to noise ratio, thermoelastic effect, thermography, yield point

Procedia PDF Downloads 91