Search results for: pressure wear
3325 Factors Related to Oncology Ward Nurses’ Job Stress Adaptation Needs in Southern Taiwan Regional Hospital
Authors: Minhui Chiu
Abstract:
According to relevant studies, clinical nurses have high work pressure and relatively high job adaptation needs. The nurses who work in oncology wards have more adaptation needs when they face repeating hospitalization patients. The aims of this study were to investigate the job stress adaptation and related factors of nurses in oncology wards and to understand the predictors of job stress adaptation needs. Convenience sampling was used in this study. The nurses in the oncology specialist ward of a regional teaching hospital in southern Taiwan were selected as the research objects. A cross-sectional survey was conducted using a structured questionnaire, random sampling, and the questionnaires were filled out by the participating nurses. A total of 68 people were tested, and 65 valid questionnaires (95.6%). One basic data questionnaire and nurses’ job stress adaptation needs questionnaire were used. The data was archived with Microsoft Excel, and statistical analysis was performed with JMP12.0. The results showed that the average age was 28.8 (±6.7) years old, most of them were women, 62 (95.38%), and the average clinical experience in the hospital was 5.7 years (±5.9), and 62 (95.38%) were university graduates. 39 people (60.0%) had no work experience. 39 people (60.0%) liked nursing work very much, and 23 people (35.3%) just “liked”. 47 (72.3%) people were supported to be oncology nurses by their families. The nurses' job stress adaptation needs were 119.75 points (±17.24). The t-test and variance analysis of the impact of nurses' job pressure adaptation needs were carried out. The results showed that the score of college graduates was 121.10 (±16.39), which was significantly higher than that of master graduates 96.67 (±22.81), and the degree of liking for nursing work also reached a Significant difference. These two variables are important predictors of job adaptation needs, and the R Square is 24.15%. Conclusion: Increasing the love of clinical nurses in nursing and encouraging university graduation to have positive effects on job pressure adaptation needs and can be used as a reference for the management of human resources hospitals for oncology nurses.Keywords: oncology nurse, job stress, job stress adaptation needs, manpower
Procedia PDF Downloads 1143324 A Multi-Scale Contact Temperature Model for Dry Sliding Rough Surfaces
Authors: Jamal Choudhry, Roland Larsson, Andreas Almqvist
Abstract:
A multi-scale flash temperature model has been developed and validated against existing work. The core strength of the proposed model is that it can be adapted to predict flash contact temperatures occurring in various types of sliding systems. In this paper, it is used to investigate how different surface roughness parameters affect the flash temperatures. The results show that for decreasing Hurst exponents as well as increasing values of the high-frequency cut-off, the maximum flash temperature increases. It was also shown that the effect of surface roughness does not influence the average interface temperature. The model predictions were validated against data from an experiment conducted in a pin-on-disc machine. This also showed the importance of including a wear model when simulating flash temperature development in a sliding system.Keywords: multiscale, pin-on-disc, finite element method, flash temperature, surface roughness
Procedia PDF Downloads 1183323 Land Degradation Vulnerability Modeling: A Study on Selected Micro Watersheds of West Khasi Hills Meghalaya, India
Authors: Amritee Bora, B. S. Mipun
Abstract:
Land degradation is often used to describe the land environmental phenomena that reduce land’s original productivity both qualitatively and quantitatively. The study of land degradation vulnerability primarily deals with “Environmentally Sensitive Areas” (ESA) and the amount of topsoil loss due to erosion. In many studies, it is observed that the assessment of the existing status of land degradation is used to represent the vulnerability. Moreover, it is also noticed that in most studies, the primary emphasis of land degradation vulnerability is to assess its sensitivity to soil erosion only. However, the concept of land degradation vulnerability can have different objectives depending upon the perspective of the study. It shows the extent to which changes in land use land cover can imprint their effect on the land. In other words, it represents the susceptibility of a piece of land to degrade its productive quality permanently or in the long run. It is also important to mention that the vulnerability of land degradation is not a single factor outcome. It is a probability assessment to evaluate the status of land degradation and needs to consider both biophysical and human induce parameters. To avoid the complexity of the previous models in this regard, the present study has emphasized on to generate a simplified model to assess the land degradation vulnerability in terms of its current human population pressure, land use practices, and existing biophysical conditions. It is a “Mixed-Method” termed as the land degradation vulnerability index (LDVi). It was originally inspired by the MEDALUS model (Mediterranean Desertification and Land Use), 1999, and Farazadeh’s 2007 revised version of it. It has followed the guidelines of Space Application Center, Ahmedabad / Indian Space Research Organization for land degradation vulnerability. The model integrates the climatic index (Ci), vegetation index (Vi), erosion index (Ei), land utilization index (Li), population pressure index (Pi), and cover management index (CMi) by giving equal weightage to each parameter. The final result shows that the very high vulnerable zone primarily indicates three (3) prominent circumstances; land under continuous population pressure, high concentration of human settlement, and high amount of topsoil loss due to surface runoff within the study sites. As all the parameters of the model are amalgamated with equal weightage further with the help of regression analysis, the LDVi model also provides a strong grasp of each parameter and how far they are competent to trigger the land degradation process.Keywords: population pressure, land utilization, soil erosion, land degradation vulnerability
Procedia PDF Downloads 1663322 Optimal Sputtering Conditions for Nickel-Cermet Anodes in Intermediate Temperature Solid Oxide Fuel Cells
Authors: Waqas Hassan Tanveer, Yoon Ho Lee, Taehyun Park, Wonjong Yu, Yaegeun Lee, Yusung Kim, Suk Won Cha
Abstract:
Nickel-Gadolinium Doped Ceria (Ni-GDC) cermet anodic thin films were prepared on Scandia Stabilized Zirconia (ScSZ) electrolyte supports by radio frequency (RF) sputtering, with a range of different sputtering powers (50 – 200W) and background Ar gas pressures (30 – 90mTorr). The effects of varying sputtering power and pressure on the properties of Ni-GDC films were studied using Focused Ion Beam (FIB), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), and Atomic Force Microscopy (AFM) techniques. The Ni content was found to be always higher than the Ce content, at all sputtering conditions. This increased Ni content was attributed to significantly higher energy transfer efficiency of Ni ions as compared to Ce ions with Ar background sputtering gas. The solid oxide fuel cell configuration was completed by using lanthanum strontium manganite (LSM/YSZ) cathodes on the other side of ScSZ supports. Performance comparison of cells was done by Voltage-Current-Power (VIP) curves, while the resistances of various cell components were observed by nyquist plots. Initial results showed that anode films made by higher powered RF sputtering performed better than lower powered ones for a specific Ar pressure. Interestingly, however, anodes made at highest power and pressure, were not the ones that showed the maximum power output at an intermediate solid oxide fuel cell temperature of 800°C. Finally, an optimal sputtering condition was reported for high performance Ni-GDC anodes.Keywords: intermediate temperature solid oxide fuel cells, nickel-cermet anodic thin films, nyquist plots, radio frequency sputtering
Procedia PDF Downloads 2403321 Personal Characteristics Related to Hasty Behaviour in Korea
Authors: Sun Jin Park, Kyung-Ja Cho
Abstract:
This study focused on characteristics related to hasty behaviour. To investigate the relation between personal characteristics and hasty behaviour, 601 data were collected, 335 males and 256 females answered their own 'social avoidance and distress’, ‘anxiety’, ‘sensation seeking', 'hope', and ' hasty behaviour. And then 591 data were used for the analysis. The factor analysis resulted hasty behaviour consisted of 5 factors, time pressure, isolation, uncomfortable situation, boring condition, and expectation of reward. The result showed anxiety, sensation seeking, and hope related to hasty behaviour. Specifically, anxiety was involved in every hasty behaviour. This result means that psychological tension and worry are related to hasty behaviour in common. 'Social avoidance and distress', 'sensation seeking' and 'hope' influenced on hasty behaviour under time pressure, in isolation, in expectation of rewards respectively. This means that each factor of hasty behaviour has anxiety as its basis, expressed through a varied nature.Keywords: hasty behaviour, social avoidance and distress, anxiety, sensation seeking, hope
Procedia PDF Downloads 3283320 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study
Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu
Abstract:
Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm
Procedia PDF Downloads 1373319 Behavior of Clay effect on Electrical Parameter of Reservoir Rock Using Global Hydraulic Elements (GHEs) Approach
Authors: Noreddin Mousa
Abstract:
The main objective of this study is to estimate which type of clay minerals that more effect on saturation exponent using Global Hydraulic Elements (GHEs) approach to estimating the distribution of saturation exponent factor. Two wells and seven core samples have been selected from various (GHEs) for detailed study. There are many factors affecting saturation exponent such as wettability, grain pattern pressure of certain authigenic clays, which may promote oil wet characteristics of history of fluid displacement. The saturation exponent is related to the texture and affected by wettability and clay minerals. Capillary pressure (mercury injection) has been used to confirm GHEs which are selected to define rock types; the porous plate method is used to derive the saturation exponent in the laboratory. The petrography is very important in order to study the mineralogy and texture. In this study the results showing excellent relation between saturation exponent and the type of clay minerals which was observed that the Global Hydraulic Elements GHE-2 and GHE-5 which are containing Chlorite is more affect on saturation exponent comparing with the other GHE’s.Keywords: GHEs, wettability, global hydraulic elements, petrography
Procedia PDF Downloads 3013318 Fundamental Study on Reconstruction of 3D Image Using Camera and Ultrasound
Authors: Takaaki Miyabe, Hideharu Takahashi, Hiroshige Kikura
Abstract:
The Government of Japan and Tokyo Electric Power Company Holdings, Incorporated (TEPCO) are struggling with the decommissioning of Fukushima Daiichi Nuclear Power Plants, especially fuel debris retrieval. In fuel debris retrieval, amount of fuel debris, location, characteristics, and distribution information are important. Recently, a survey was conducted using a robot with a small camera. Progress report in remote robot and camera research has speculated that fuel debris is present both at the bottom of the Pressure Containment Vessel (PCV) and inside the Reactor Pressure Vessel (RPV). The investigation found a 'tie plate' at the bottom of the containment, this is handles on the fuel rod. As a result, it is assumed that a hole large enough to allow the tie plate to fall is opened at the bottom of the reactor pressure vessel. Therefore, exploring the existence of holes that lead to inside the RCV is also an issue. Investigations of the lower part of the RPV are currently underway, but no investigations have been made inside or above the PCV. Therefore, a survey must be conducted for future fuel debris retrieval. The environment inside of the RPV cannot be imagined due to the effect of the melted fuel. To do this, we need a way to accurately check the internal situation. What we propose here is the adaptation of a technology called 'Structure from Motion' that reconstructs a 3D image from multiple photos taken by a single camera. The plan is to mount a monocular camera on the tip of long-arm robot, reach it to the upper part of the PCV, and to taking video. Now, we are making long-arm robot that has long-arm and used at high level radiation environment. However, the environment above the pressure vessel is not known exactly. Also, fog may be generated by the cooling water of fuel debris, and the radiation level in the environment may be high. Since camera alone cannot provide sufficient sensing in these environments, we will further propose using ultrasonic measurement technology in addition to cameras. Ultrasonic sensor can be resistant to environmental changes such as fog, and environments with high radiation dose. these systems can be used for a long time. The purpose is to develop a system adapted to the inside of the containment vessel by combining a camera and an ultrasound. Therefore, in this research, we performed a basic experiment on 3D image reconstruction using a camera and ultrasound. In this report, we select the good and bad condition of each sensing, and propose the reconstruction and detection method. The results revealed the strengths and weaknesses of each approach.Keywords: camera, image processing, reconstruction, ultrasound
Procedia PDF Downloads 1043317 Wearable Music: Generation of Costumes from Music and Generative Art and Wearing Them by 3-Way Projectors
Authors: Noriki Amano
Abstract:
The final goal of this study is to create another way in which people enjoy music through the performance of 'Wearable Music'. Concretely speaking, we generate colorful costumes in real- time from music and to realize their dressing by projecting them to a person. For this purpose, we propose three methods in this study. First, a method of giving color to music in a three-dimensionally way. Second, a method of generating images of costumes from music. Third, a method of wearing the images of music. In particular, this study stands out from other related work in that we generate images of unique costumes from music and realize to wear them. In this study, we use the technique of generative arts to generate images of unique costumes and project the images to the fog generated around a person from 3-way using projectors. From this study, we can get how to enjoy music as 'wearable'. Furthermore, we are also able to have the prospect of unconventional entertainment based on the fusion between music and costumes.Keywords: entertainment computing, costumes, music, generative programming
Procedia PDF Downloads 1733316 Metabolic Syndrome among Some Originates of Mbo Ethnic Group Living in Yaounde-Cameroon
Authors: Mandob Enyegue Damaris, Oko Ndjollo Viviane
Abstract:
The prevalence of Metabolic Syndrome is increasing throughout the world. The etiology of the metabolic syndrome is dependent on different factors such as ethnic group. This study aimed to evaluate the metabolic syndrome among Mbo ethnic group people leaving in Yaounde, Cameroon. The study conducted on the hundred and thirty two people 40 men and 92 women aged between 18-60 years who were referred to the Andre Fouda Medical Fundation in Yaounde. Metabolic syndrome was diagnosed using Adult Treatment Panel-III (A.T.P-III) 2001 guidelines. The mean of age, high fasting blood glucose, triglycerides levels and total cholesterol levels were significantly (P<0.05) higher in women with metabolic syndrome. High blood pressure level (56.80%), high fasting glucose (20.45%) and high waist circumference (10.60%) were respectively the most frequent characteristics in comparison to others metabolic components. The overall prevalence of MetS was (4.55%) and higher in women (3.03%) than in men (1.52%). The prevalence of MetS is low in originates of Mbo ethnic group of Yaounde. High blood pressure is the most common abnormality.Keywords: individual components, metabolic syndrome, Mbo ethnic group, Yaounde-Cameroon
Procedia PDF Downloads 7833315 A Study on Low Stress Mechanical Properties of Denim Fabric for Hand Evaluation
Authors: S. P. Raut, S. K. Soni, A. W. Kolhatkar
Abstract:
Denim is widely used by every age of people all over the world. As the use of denim is increasing progressively, till now the handle properties of denim fabric not reported at significant level. In the present study, five commercial denim fabric samples were used. Denim samples, weighing from 8.5oz/sq yds to 14.5 oz/sq yds, were processed as per standard commercial procedure for denim finishing. These finished denim samples were tested on Kawabata Evaluation System(KES) for low stress mechanical properties. The results of KES values are used for calculation of Total Hand value(THV) using equation for summer suit. The obtained result for THV using equation for summer suit for denim samples is in the range from 1.62 to 3.30. These values of low stress mechanical properties values given by KES, can be used to engineer the denim fabric for bottom wear.Keywords: denim, handle value, Kawabata evaluation system, objective evaluation
Procedia PDF Downloads 2813314 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method
Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay
Abstract:
Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method
Procedia PDF Downloads 4723313 Wind Interference Effects on Various Plan Shape Buildings Under Wind Load
Authors: Ritu Raj, Hrishikesh Dubey
Abstract:
This paper presents the results of the experimental investigations carried out on two intricate plan shaped buildings to evaluate aerodynamic performance of the building. The purpose is to study the associated environment arising due to wind forces in isolated and interference conditions on a model of scale 1:300 with a prototype having 180m height. Experimental tests were carried out at the boundary layer wind tunnel considering isolated conditions with 0° to 180° isolated wind directions and four interference conditions of twin building (separately for both the models). The research has been undertaken in Terrain Category-II, which is the most widely available terrain in India. A comparative assessment of the two models is performed out in an attempt to comprehend the various consequences of diverse conditions that may emerge in real-life situations, as well as the discrepancies amongst them. Experimental results of wind pressure coefficients of Model-1 and Model-2 shows good agreement with various wind incidence conditions with minute difference in the magnitudes of mean Cp. On the basis of wind tunnel studies, it is distinguished that the performance of Model-2 is better than Model-1in both isolated as well as interference conditions for all wind incidences and orientations respectively.Keywords: interference factor, tall buildings, wind direction, mean pressure-coefficients
Procedia PDF Downloads 1283312 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method
Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi
Abstract:
This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure
Procedia PDF Downloads 4913311 Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test
Authors: Han Xiao, Ruan Qi, Zhang Lei, Qi Yan
Abstract:
Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft.Keywords: vacuum vessel, large opening, space environment simulator, structure design
Procedia PDF Downloads 5353310 Interaction between Unsteady Supersonic Jet and Vortex Rings
Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya
Abstract:
The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.Keywords: computational fluid dynamics, shock-wave, unsteady jet, vortex ring
Procedia PDF Downloads 4703309 Oil Recovery Study by Low Temperature Carbon Dioxide Injection in High-Pressure High-Temperature Micromodels
Authors: Zakaria Hamdi, Mariyamni Awang
Abstract:
For the past decades, CO2 flooding has been used as a successful method for enhanced oil recovery (EOR). However, high mobility ratio and fingering effect are considered as important drawbacka of this process. Low temperature injection of CO2 into high temperature reservoirs may improve the oil recovery, but simulating multiphase flow in the non-isothermal medium is difficult, and commercial simulators are very unstable in these conditions. Furthermore, to best of authors’ knowledge, no experimental work was done to verify the results of the simulations and to understand the pore-scale process. In this paper, we present results of investigations on injection of low temperature CO2 into a high-pressure high-temperature micromodel with injection temperature range from 34 to 75 °F. Effect of temperature and saturation changes of different fluids are measured in each case. The results prove the proposed method. The injection of CO2 at low temperatures increased the oil recovery in high temperature reservoirs significantly. Also, CO2 rich phases available in the high temperature system can affect the oil recovery through the better sweep of the oil which is initially caused by penetration of LCO2 inside the system. Furthermore, no unfavorable effect was detected using this method. Low temperature CO2 is proposed to be used as early as secondary recovery.Keywords: enhanced oil recovery, CO₂ flooding, micromodel studies, miscible flooding
Procedia PDF Downloads 3523308 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel
Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler
Abstract:
Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process
Procedia PDF Downloads 1353307 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation
Authors: Marouen Dghim, Mohsen Ferchichi
Abstract:
The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex
Procedia PDF Downloads 4363306 Cost-Effective Indoor-Air Quality (IAQ) Monitoring via Cavity Enhanced Photoacoustic Technology
Authors: Jifang Tao, Fei Gao, Hong Cai, Yuan Jin Zheng, Yuan Dong Gu
Abstract:
Photoacoustic technology is used to measure effect absorption of a light by means of acoustic detection, which provides a high sensitive, low-cross response, cost-effective solution for gas molecular detection. In this paper, we proposed an integrated photoacoustic sensor for Indoor-air quality (IAQ) monitoring. The sensor consists of an acoustically resonant cavity, a high silicon acoustic transducer chip, and a low-cost light source. The light is modulated at the resonant frequency of the cavity to create an enhanced periodic heating and result in an amplified acoustic pressure wave. The pressure is readout by a novel acoustic transducer with low noise. Based on this photoacoustic sensor, typical indoor gases, including CO2, CO, O2, and H2O have been successfully detected, and their concentration are also evaluated with very high accuracy. It has wide potential applications in IAQ monitoring for agriculture, food industry, and ventilation control systems used in public places, such as schools, hospitals and airports.Keywords: indoor-air quality (IAQ) monitoring, photoacoustic gas sensor, cavity enhancement, integrated gas sensor
Procedia PDF Downloads 6583305 Vortices Structure in Internal Laminar and Turbulent Flows
Authors: Farid Gaci, Zoubir Nemouchi
Abstract:
A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent
Procedia PDF Downloads 3363304 A Study of the Relationship among the Hotel Staff's Work Stress, Perceived Organizational Support, and Work Efficacy: A Case Study of Macao
Authors: Zhang Tao, Si Tang, Zhang Yufeng, Jin Jiahua
Abstract:
Work pressure is an emerging research of organizational behavior. Many factors associated with this study also attracted the interest of scholars. Macao is surrounding by open micro-capitalist economy which has a high internationalization level and Mature operation system. And there is no doubt that tourism and hotel service industry is the pillar of the Macao economy with the developing of the mainland individual tourist visa. More and more cities are willing to inclusive culture diversity which lead to the amount of inbound tourists present high-speed up trend cause the hotel industry has a strong customer base and development space. At the same time, the hotel staff is an important role in the service. However, affected by some adverse factors, the hotel staff face a variety of pressures. This study combs the concept and theory of pressures relevant influencing factors and puts forward the purpose of this research. The focus of this study will be organizational supported by work efficiency and work pressure, using qualitative and quantitative research methods. Through questionnaires and interviews, 10 hotels in Macao were selected and 500 questionnaires were distributed to the employees. Statistical analysis software SPSS was used for descriptive statistics. By exploratory factor analysis and confirmatory factor analysis, effect. And the relevant practitioners on behalf of the interview content analysis. The innovation of this research lies in the empirical study of the relationship between the working pressure, organizational support and working efficiency of Macau hotel practitioners, and constructs and validates the structural model of the relationship among them. This model will be helpful for people to use more research methods to study hotel practitioners pressure in the future. At the same time, we can draw the following conclusions: 1. There is a significant negative correlation between salary level and job stress; 2. There is a significant negative correlation between job stress and performance; 3. Different organizational support can interfere the relationship between job stress and performance; 4. Put forward the strategy of relevance adjustment, which provides a reference value for the hotel industry in human resource management. It would be helpful to improve their service standard by training their practitioners more scientifically and rationally.Keywords: Macau, perceived organizational support, work stress, work efficiency
Procedia PDF Downloads 2473303 Numerical Investigation on the Influence of Incoming Flow Conditions on the Rotating Stall in Centrifugal Pump
Authors: Wanru Huang, Fujun Wang, Chaoyue Wang, Yuan Tang, Zhifeng Yao, Ruofu Xiao, Xin Chen
Abstract:
Rotating stall in centrifugal pump is an unsteady flow phenomenon that causes instabilities and high hydraulic losses. It typically occurs at low flow rates due to large flow separation in impeller blade passage. In order to reveal the influence of incoming flow conditions on rotating stall in centrifugal pump, a numerical method for investigating rotating stall was established. This method is based on a modified SST k-ω turbulence model and a fine mesh model was adopted. The calculated flow velocity in impeller by this method was in good agreement with PIV results. The effects of flow rate and sealing-ring leakage on stall characteristics of centrifugal pump were studied by using the proposed numerical approach. The flow structures in impeller under typical flow rates and typical sealing-ring leakages were analyzed. It is found that the stall vortex frequency and circumferential propagation velocity increase as flow rate decreases. With the flow rate decreases from 0.40Qd to 0.30Qd, the stall vortex frequency increases from 1.50Hz to 2.34Hz, the circumferential propagation velocity of the stall vortex increases from 3.14rad/s to 4.90rad/s. Under almost all flow rate conditions where rotating stall is present, there is low frequency of pressure pulsation between 0Hz-5Hz. The corresponding pressure pulsation amplitude increases with flow rate decreases. Taking the measuring point at the leading edge of the blade pressure surface as an example, the flow rate decreases from 0.40Qd to 0.30Qd, the pressure fluctuation amplitude increases by 86.9%. With the increase of leakage, the flow structure in the impeller becomes more complex, and the 8-shaped stall vortex is no longer stable. On the basis of the 8-shaped stall vortex, new vortex nuclei are constantly generated and fused with the original vortex nuclei under large leakage. The upstream and downstream vortex structures of the 8-shaped stall vortex have different degrees of swimming in the flow passage, and the downstream vortex swimming is more obvious. The results show that the proposed numerical approach could capture the detail vortex characteristics, and the incoming flow conditions have significant effects on the stall vortex in centrifugal pumps.Keywords: centrifugal pump, rotating stall, numerical simulation, flow condition, vortex frequency
Procedia PDF Downloads 1373302 Effects of Cuminum cyminum L. Essential Oil Supplementation on Components of Metabolic Syndrome: A Clinical Trial
Authors: Ashti Morovati, Hushyar Azari, Bahram Pourghassem Gargari
Abstract:
Objectives and goals: The prevalence of metabolic syndrome (MetS), as a major health burden for societies, is increasing. This clinical trial was conducted to evaluate the effects of CuEO supplementation on anthropometric indices, systolic and diastolic blood pressure, blood glucose level, insulin resistance and serum lipid level in patients suffering from MetS. Methods: This was a randomized, triple‐blind, placebo‐controlled clinical trial in which 56 patients with MetS aged 18–60 years who fulfilled the eligibility criteria were randomly allocated to an intervention or a control group. Inclusion criteria for the study were comprised of diagnosis of MetS according to the new International Federation of Diabetes. The exclusion criteria were defined as: taking herbal supplements, use of drugs having evident interaction with cumin such as anti‐depressant drugs, vitamin D, omega 3, selenium, zinc, smoking, pregnancy, or breastfeeding, suffering from cancer, having any history of gastrointestinal and hepatic, cardiovascular, thyroid and kidney disorders, and menopause. 75 mg CuEO or placebo soft gels were administered three times daily to the participants for eight weeks. The soft gel consumption was checked by asking the participants to bring the medication containers in the follow‐up visits at the 4th and the 8th weeks of the study. Data pertaining to blood pressure, height, weight, waist circumference, hip circumference and BMI, as well as food consumption were collected at the beginning and end of the study. Fasting blood samples ( glucose, triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol) were obtained and biochemical measurements were assessed at the beginning and end of the study. Results: At eight weeks, a total of 44 patients completed this study. Except for diastolic blood pressure (DBP), the other assessed variables were not significantly different between the two groups. In intra group analysis, placebo and CuEO groups both had insignificant decrements in DBP (mean difference [MD] with 95% CI: −3.31 [−7.11, 0.47] and −1.77 [−5.95, 2.40] mmHg, respectively). However, DBP was significantly lower in CuEO compared with the placebo group at the end of study (81.41 ± 5.88 vs. 84.09 ± 5.54 mmHg, MD with 95% CI: −3.98 [−7.60, −0.35] mmHg, p < .05). Conclusions: The results of this study indicated that CuEO does not have any effect on MetS components, except for DBP in patients with MetS.Keywords: blood pressure, fasting blood glucose, lipid profile, waist circumference
Procedia PDF Downloads 1503301 Propellant Less Propulsion System Using Microwave Thrusters
Authors: D. Pradeep Mitra, Prafulla
Abstract:
Looking to the word propellant-less system it makes us to believe that it is an impossible one, but this paper demonstrates the use of microwaves to create a system which makes impossible to be possible, it means a propellant-less propulsion system using microwaves. In these thrusters, microwaves are radiated into a sealed parabolic cavity through a waveguide, which act on the surface of the cavity and follow the axis of the thrusters to produce thrust. The advantages of these thrusters are: (1) Producing thrust without propellant; without erosion, wear, and thermal stress from the hot exhaust gas; and at the same time increasing quality. (2) If the microwave output power is stable, the performance of thrusters is not affected by its working environment. This paper is demonstrated from general maxwell equations. These equations are used to create the mathematical model of the thrusters. These mathematical model helps us to calculate the Q factor and calculate the approximate thrust which would be generated in the system.Keywords: propellant less, microwaves, parabolic wave guide, propulsion system
Procedia PDF Downloads 3813300 Effect of Microstructure of Graphene Oxide Fabricated through Different Self-Assembly Techniques on Alcohol Dehydration
Authors: Wei-Song Hung
Abstract:
We utilized pressure, vacuum, and evaporation-assisted self-assembly techniques through which graphene oxide (GO) was deposited on modified polyacrylonitrile (mPAN). The fabricated composite GO/mPAN membranes were applied to dehydrate 1-butanol mixtures by pervaporation. Varying driving forces in the self-assembly techniques induced different GO assembly layer microstructures. XRD results indicated that the GO layer d-spacing varied from 8.3 Å to 11.5 Å. The self-assembly technique with evaporation resulted in a heterogeneous GO layer with loop structures; this layer was shown to be hydrophobic, in contrast to the hydrophilic layer formed from the other two techniques. From the pressure-assisted technique, the composite membrane exhibited exceptional pervaporation performance at 30 C: concentration of water at the permeate side = 99.6 wt% and permeation flux = 2.54 kg m-2 h-1. Moreover, the membrane sustained its operating stability at a high temperature of 70 C: a high water concentration of 99.5 wt% was maintained, and a permeation flux as high as 4.34 kg m-2 h-1 was attained. This excellent separation performance stemmed from the dense, highly ordered laminate structure of GO.Keywords: graphene oxide, self-assembly, alcohol dehydration, polyacrylonitrile (mPAN)
Procedia PDF Downloads 2953299 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis
Authors: Liliia N. Butymova, Vladimir Ya Modorskii
Abstract:
To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.Keywords: aeroelasticity, labyrinth packings, oscillation phase shift, vibration
Procedia PDF Downloads 2963298 Numerical Simulation of External Flow Around D-Shaped Cylinders
Authors: Ouldouz Nourani Zonouz, Mehdi Salmanpour
Abstract:
Investigation and analysis of flow behavior around different shapes bluff bodies is one of the reputed topics for several years. The importance of these researches is about the unwanted phenomena called flow separation. The location of separation and the size of the wake region should be considered in different industrial designs. In this research a bluff body with D-shaped cross section has been analyzed. In circular cylinder flow separation point changes with Reynolds number but in D-Shaped cylinder there is fix flow separation point. So there is more wake steadiness in D-Shaped cylinder as compared to Circular cylinder and drag reduction because of wake steadiness. In the present work CFD simulation is carried out for flow past a D-Shaped cylinder to see the wake behavior. The Reynolds number regime currently studied corresponds to low Reynolds number and nominally two-dimensional wake. Also the effect of D-Shaped cylinders on the rate of heat transfer has been considered. Various results such as velocity, pressure and temperature contours and also some dimensionless numbers like drag coefficient, pressure coefficient and Nusselt number calculated for different cases.Keywords: D-shaped, CFD, external flow, low Reynolds number, square cylinder
Procedia PDF Downloads 4603297 Effect of SPS Parameters on the Densification of ZrB2-Based Composites
Authors: Z. Balak, M. Zakeri, M.R.Rahimipur, M. Azizieh
Abstract:
Spark Plasma Sintering is a new technique which was used for ultra high temperature ceramics such as ZrB2-based composites in recent years. Taguchi design was applied to explore effective parameters for achieving the highest hardness. Nine factors including SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure in four levels were considered through the Taguchi technique. In this study, only the effect of SPS conditions on densification and hardness were investigated. ZrB2-based composites were prepared by SPS in different temperatures (1600°C,1700°C, 1800°C, 1900°C), times (4min, 8 min, 12 min, 16min) and pressures (10MPa, 20MPa, 30MPa and 40MPa). The effect of SPS parameters on the densification and hardness were investigated. It was found, by increasing the temperature and time, from level 1 to 4, densification improved continuously. Also, the results shows hardness increases continuously by increasing temperature and time. Finally, it is concluded that temperature and time have more significant effect on densification and harness rather than pressure.Keywords: spark plasma sintering (SPS), ultra high temperature ceramics (UHTCs), densification, hardness
Procedia PDF Downloads 4063296 How Pandemic Changed the Protective Aids for People in Day to Day Life
Authors: Jinali Chaklasiya
Abstract:
The importance of face masks, gloves, sanitizer, face shield Were only Applied for Doctor Amenities, and because of the outbreak of coronavirus, everybody has to wear Personal Protective Equipment (PPE) for health measures. . The main focus of this research paper is in the area of how doctor amenities changed the importance of gloves, face masks, sanitizer, face shield in day to day life of people. For this research, we have collected data from a quantitative survey. A questionnaire survey was conducted to note down the user point of view in doctor amenities and why is it important. The result of the questionnaire survey has helped to design parameters which were used to ideate new protective products. Thus, it is concluded to keep in mind that these protective devices can be used in day-to-day life by people across the globe. In the coming future, the protective device can make a difference and protect us from other common viruses.Keywords: equpiment, coronavirus, products, protective, environment
Procedia PDF Downloads 200