Search results for: forecasting accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4135

Search results for: forecasting accuracy

2935 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine

Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy

Abstract:

Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.

Keywords: land cover, google earth engine, machine learning, remote sensing

Procedia PDF Downloads 113
2934 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings

Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov

Abstract:

At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.

Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity

Procedia PDF Downloads 258
2933 The Direct Deconvolution Model for the Large Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

Large eddy simulation (LES) has been extensively used in the investigation of turbulence. LES calculates the grid-resolved large-scale motions and leaves small scales modeled by sub lfilterscale (SFS) models. Among the existing SFS models, the deconvolution model has been used successfully in the LES of the engineering flows and geophysical flows. Despite the wide application of deconvolution models, the effects of subfilter scale dynamics and filter anisotropy on the accuracy of SFS modeling have not been investigated in depth. The results of LES are highly sensitive to the selection of fi lters and the anisotropy of the grid, which has been overlooked in previous research. In the current study, two critical aspects of LES are investigated. Firstly, we analyze the influence of sub-fi lter scale (SFS) dynamics on the accuracy of direct deconvolution models (DDM) at varying fi lter-to-grid ratios (FGR) in isotropic turbulence. An array of invertible filters are employed, encompassing Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The signi ficance of FGR becomes evident, as it acts as a pivotal factor in error control for precise SFS stress prediction. When FGR is set to 1, the DDM models cannot accurately reconstruct the SFS stress due to the insufficient resolution of SFS dynamics. Notably, prediction capabilities are enhanced at an FGR of 2, resulting in accurate SFS stress reconstruction, except for cases involving Helmholtz I and II fi lters. A remarkable precision close to 100% is achieved at an FGR of 4 for all DDM models. Additionally, the further exploration extends to the fi lter anisotropy to address its impact on the SFS dynamics and LES accuracy. By employing dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with the anisotropic fi lter, aspect ratios (AR) ranging from 1 to 16 in LES fi lters are evaluated. The findings highlight the DDM's pro ficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. High correlation coefficients exceeding 90% are observed in the a priori study for the DDM's reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as lter anisotropy increases. In the a posteriori studies, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, encompassing velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strain-rate tensors, and SFS stress. It is observed that as fi lter anisotropy intensify , the results of DSM and DMM become worse, while the DDM continues to deliver satisfactory results across all fi lter-anisotropy scenarios. The fi ndings emphasize the DDM framework's potential as a valuable tool for advancing the development of sophisticated SFS models for LES of turbulence.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 75
2932 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods

Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo

Abstract:

The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.

Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines

Procedia PDF Downloads 621
2931 A Case Study on Management of Coal Seam Gas by-Product Water

Authors: Mojibul Sajjad, Mohammad G. Rasul, Md. Sharif Imam Ibne Amir

Abstract:

The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland Coal Seam Gas industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully Mine field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects.

Keywords: coal seam gas (CSG), cleat water, hydro-fracking, product water

Procedia PDF Downloads 420
2930 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 157
2929 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method

Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi

Abstract:

This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.

Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure

Procedia PDF Downloads 491
2928 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers' equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile

Procedia PDF Downloads 169
2927 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 203
2926 Impact of Climate on Sugarcane Yield Over Belagavi District, Karnataka Using Statistical Mode

Authors: Girish Chavadappanavar

Abstract:

The impact of climate on agriculture could result in problems with food security and may threaten the livelihood activities upon which much of the population depends. In the present study, the development of a statistical yield forecast model has been carried out for sugarcane production over Belagavi district, Karnataka using weather variables of crop growing season and past observed yield data for the period of 1971 to 2010. The study shows that this type of statistical yield forecast model could efficiently forecast yield 5 weeks and even 10 weeks in advance of the harvest for sugarcane within an acceptable limit of error. The performance of the model in predicting yields at the district level for sugarcane crops is found quite satisfactory for both validation (2007 and 2008) as well as forecasting (2009 and 2010).In addition to the above study, the climate variability of the area has also been studied, and hence, the data series was tested for Mann Kendall Rank Statistical Test. The maximum and minimum temperatures were found to be significant with opposite trends (decreasing trend in maximum and increasing in minimum temperature), while the other three are found in significant with different trends (rainfall and evening time relative humidity with increasing trend and morning time relative humidity with decreasing trend).

Keywords: climate impact, regression analysis, yield and forecast model, sugar models

Procedia PDF Downloads 71
2925 Technologic Information about Photovoltaic Applied in Urban Residences

Authors: Stephanie Fabris Russo, Daiane Costa Guimarães, Jonas Pedro Fabris, Maria Emilia Camargo, Suzana Leitão Russo, José Augusto Andrade Filho

Abstract:

Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban residences. The patent search was based on ESPACENET, associating the keywords photovoltaic and home, where we found 136 patent documents in the period of 1994-2015 in the fields title and abstract. Note that the years 2009, 2010, 2011, 2012, 2013 and 2014 had the highest number of applicants, with respectively, 11, 13, 23, 29, 15 and 21. Regarding the country that deposited about this technology, it is clear that China leads with 67 patent deposits, followed by Japan with 38 patents applications. It is important to note that most depositors, 50% are companies, 44% are individual inventors and only 6% are universities. On the International Patent classification (IPC) codes, we noted that the most present classification in results was H02J3/38, which represents provisions in parallel to feed a single network by two or more generators, converters or transformers. Among all categories, there is the H session, which means Electricity, with 70% of the patents.

Keywords: photovoltaic, urban residences, technology forecasting, prospecting

Procedia PDF Downloads 301
2924 Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome and Effect on Median Ersus Ulnar Comparative Studies

Authors: Emmanuel K. Aziz Saba, Sarah S. El-Tawab

Abstract:

Objectives: Carpal tunnel syndrome (CTS) was found to be associated with high pressure within the Guyon’s canal. The aim of this study was to assess the involvement of sensory and/or motor ulnar nerve fibers in patients with CTS and whether this affects the accuracy of the median versus ulnar sensory and motor comparative tests. Patients and methods: The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done for all patients. The following tests were done for the patients and control: (1) Sensory conduction studies: median nerve, ulnar nerve, dorsal ulnar cutaneous nerve and median versus ulnar digit (D) four sensory comparative study; (2) Motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. Results: There were no statistically significant differences between patients and control group as regards parameters of ulnar motor study and dorsal ulnar cutaneous sensory conduction study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were statistically significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. There were statistically significant positive correlations between median sensory conduction velocity and both ulnar sensory nerve action potential amplitude recording D5 and D4. Conclusions: There is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. The presence of abnormalities in ulnar nerve occurs in moderate and severe degrees of CTS. This does not affect the median versus ulnar sensory and motor comparative tests accuracy and validity for use in electrophysiological diagnosis of CTS.

Keywords: carpal tunnel syndrome, ulnar nerve, median nerve, median versus ulnar comparative study, dorsal ulnar cutaneous nerve

Procedia PDF Downloads 567
2923 Experimental Optimization in Diamond Lapping of Plasma Sprayed Ceramic Coatings

Authors: S. Gowri, K. Narayanasamy, R. Krishnamurthy

Abstract:

Plasma spraying, from the point of value engineering, is considered as a cost-effective technique to deposit high performance ceramic coatings on ferrous substrates for use in the aero,automobile,electronics and semiconductor industries. High-performance ceramics such as Alumina, Zirconia, and titania-based ceramics have become a key part of turbine blades,automotive cylinder liners,microelectronic and semiconductor components due to their ability to insulate and distribute heat. However, as the industries continue to advance, improved methods are needed to increase both the flexibility and speed of ceramic processing in these applications. The ceramics mentioned were individually coated on structural steel substrate with NiCr bond coat of 50-70 micron thickness with the final thickness in the range of 150 to 200 microns. Optimal spray parameters were selected based on bond strength and porosity. The 'optimal' processed specimens were super finished by lapping using diamond and green SiC abrasives. Interesting results could be observed as follows: The green SiC could improve the surface finish of lapped surfaces almost as that by diamond in case of alumina and titania based ceramics but the diamond abrasives could improve the surface finish of PSZ better than that by green SiC. The conventional random scratches could be absent in alumina and titania ceramics but in PS those marks were found to be less. However, the flatness accuracy could be improved unto 60 to 85%. The surface finish and geometrical accuracy were measured and modeled. The abrasives in the midrange of their particle size could improve the surface quality faster and better than the particles of size in low and high ranges. From the experimental investigations after lapping process, the optimal lapping time, abrasive size, lapping pressure etc could be evaluated.

Keywords: atmospheric plasma spraying, ceramics, lapping, surface qulaity, optimization

Procedia PDF Downloads 414
2922 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework

Authors: Ma Cecilia Siva

Abstract:

This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.

Keywords: tokenized, sigmoid activation, transformer, multi category classification

Procedia PDF Downloads 9
2921 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements

Authors: Denis A. Sokolov, Andrey V. Mazurkevich

Abstract:

In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.

Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement

Procedia PDF Downloads 59
2920 Career Path: A Tool to Support Talent Management

Authors: Rashi Mahato

Abstract:

Talent management represents an organization’s effort to attract, develop and retain highly skilled and valuable employees. The goal is to have people with capabilities and commitment needed for current and future organizational success. The organizational talent pool is its managerial talent referred to as leadership pipeline. It is managed through various systems and processes to help the organization source, reward, evaluate, develop and move employees into various functions and roles. The pipeline bends, turns, and sometimes breaks as organizations identify who is 'ready now' and who is 'on track' for larger leadership roles. From this perspective, talent management designs structured approach and a robust mechanism for high potential employees to meet organization’s needs. The paper attempts to provide a roadmap and a structured approach towards building a high performing organization through well-defined career path. Managers want career paths to be defined, so that an adequate number of individuals may be identified and prepared to fill future vacancies. Once career progression patterns are identified, more systematic forecasting of talent requirements is possible. For the development of senior management talent or leadership team, career paths are needed as guidelines for talent management across functional and organizational lines. Career path is one of the important tools for talent management and aligning talent with business strategy. This paper briefly describes the approach for career path and the concept of

Keywords: career path, career path framework, lateral movement, talent management

Procedia PDF Downloads 215
2919 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 447
2918 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 82
2917 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 63
2916 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 43
2915 Static Test Pad for Solid Rocket Motors

Authors: Svanik Garg

Abstract:

Static Test Pads are stationary mechanisms that hold a solid rocket motor, measuring the different parameters of its operation including thrust and temperature to better calibrate it for launch. This paper outlines a specific STP designed to test high powered rocket motors with a thrust upwards of 4000N and limited to 6500N. The design includes a specific portable mechanism with cost an integral part of the design process to make it accessible to small scale rocket developers with limited resources. Using curved surfaces and an ergonomic design, the STP has a delicately engineered façade/case with a focus on stability and axial calibration of thrust. This paper describes the design, operation and working of the STP and its widescale uses given the growing market of aviation enthusiasts. Simulations on the CAD model in Fusion 360 provided promising results with a safety factor of 2 established and stress limited along with the load coefficient A PCB was also designed as part of the test pad design process to help obtain results, with visual output and various virtual terminals to collect data of different parameters. The circuitry was simulated using ‘proteus’ and a special virtual interface with auditory commands was also created for accessibility and wide-scale implementation. Along with this description of the design, the paper also emphasizes the design principle behind the STP including a description of its vertical orientation to maximize thrust accuracy along with a stable base to prevent micromovements. Given the rise of students and professionals alike building high powered rockets, the STP described in this paper is an appropriate option, with limited cost, portability, accuracy, and versatility. There are two types of STP’s vertical or horizontal, the one discussed in this paper is vertical to utilize the axial component of thrust.

Keywords: static test pad, rocket motor, thrust, load, circuit, avionics, drag

Procedia PDF Downloads 381
2914 Vehicle Activity Characterization Approach to Quantify On-Road Mobile Source Emissions

Authors: Hatem Abou-Senna, Essam Radwan

Abstract:

Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. Other methods provided better accuracy utilizing annual average estimates. Travel demand models provided an intermediate level of detail through average daily volumes. Currently, higher accuracy can be established utilizing microscopic analyses by splitting the network links into sub-links and utilizing second-by-second trajectories to calculate emissions. The need to accurately quantify transportation-related emissions from vehicles is essential. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited access highway in Orlando, Florida. First, (at the most basic level), emissions were estimated for the entire 10-mile section 'by hand' using one average traffic volume and average speed. Then, three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NOx, PM2.5, PM10, and CO2. The results demonstrate that obtaining precise and comprehensive operating mode distributions on a second-by-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach.

Keywords: limited access highways, MOVES, operating mode distribution (OPMODE), transportation emissions, vehicle specific power (VSP)

Procedia PDF Downloads 339
2913 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 132
2912 Application of Argumentation for Improving the Classification Accuracy in Inductive Concept Formation

Authors: Vadim Vagin, Marina Fomina, Oleg Morosin

Abstract:

This paper contains the description of argumentation approach for the problem of inductive concept formation. It is proposed to use argumentation, based on defeasible reasoning with justification degrees, to improve the quality of classification models, obtained by generalization algorithms. The experiment’s results on both clear and noisy data are also presented.

Keywords: argumentation, justification degrees, inductive concept formation, noise, generalization

Procedia PDF Downloads 442
2911 Vibro-Tactile Equalizer for Musical Energy-Valence Categorization

Authors: Dhanya Nair, Nicholas Mirchandani

Abstract:

Musical haptic systems can enhance a listener’s musical experience while providing an alternative platform for the hearing impaired to experience music. Current music tactile technologies focus on representing tactile metronomes to synchronize performers or encoding musical notes into distinguishable (albeit distracting) tactile patterns. There is growing interest in the development of musical haptic systems to augment the auditory experience, although the haptic-music relationship is still not well understood. This paper represents a tactile music interface that provides vibrations to multiple fingertips in synchronicity with auditory music. Like an audio equalizer, different frequency bands are filtered out, and the power in each frequency band is computed and converted to a corresponding vibrational strength. These vibrations are felt on different fingertips, each corresponding to a different frequency band. Songs with music from different spectrums, as classified by their energy and valence, were used to test the effectiveness of the system and to understand the relationship between music and tactile sensations. Three participants were trained on one song categorized as sad (low energy and low valence score) and one song categorized as happy (high energy and high valence score). They were trained both with and without auditory feedback (listening to the song while experiencing the tactile music on their fingertips and then experiencing the vibrations alone without the music). The participants were then tested on three songs from both categories, without any auditory feedback, and were asked to classify the tactile vibrations they felt into either category. The participants were blinded to the songs being tested and were not provided any feedback on the accuracy of their classification. These participants were able to classify the music with 100% accuracy. Although the songs tested were on two opposite spectrums (sad/happy), the preliminary results show the potential of utilizing a vibrotactile equalizer, like the one presented, for augmenting musical experience while furthering the current understanding of music tactile relationship.

Keywords: haptic music relationship, tactile equalizer, tactile music, vibrations and mood

Procedia PDF Downloads 181
2910 [Keynote] Implementation of Quality Control Procedures in Radiotherapy CT Simulator

Authors: B. Petrović, L. Rutonjski, M. Baucal, M. Teodorović, O. Čudić, B. Basarić

Abstract:

Purpose/Objective: Radiotherapy treatment planning requires use of CT simulator, in order to acquire CT images. The overall performance of CT simulator determines the quality of radiotherapy treatment plan, and at the end, the outcome of treatment for every single patient. Therefore, it is strongly advised by international recommendations, to set up a quality control procedures for every machine involved in radiotherapy treatment planning process, including the CT scanner/ simulator. The overall process requires number of tests, which are used on daily, weekly, monthly or yearly basis, depending on the feature tested. Materials/Methods: Two phantoms were used: a dedicated phantom CIRS 062QA, and a QA phantom obtained with the CT simulator. The examined CT simulator was Siemens Somatom Definition as Open, dedicated for radiation therapy treatment planning. The CT simulator has a built in software, which enables fast and simple evaluation of CT QA parameters, using the phantom provided with the CT simulator. On the other hand, recommendations contain additional test, which were done with the CIRS phantom. Also, legislation on ionizing radiation protection requires CT testing in defined periods of time. Taking into account the requirements of law, built in tests of a CT simulator, and international recommendations, the intitutional QC programme for CT imulator is defined, and implemented. Results: The CT simulator parameters evaluated through the study were following: CT number accuracy, field uniformity, complete CT to ED conversion curve, spatial and contrast resolution, image noise, slice thickness, and patient table stability.The following limits are established and implemented: CT number accuracy limits are +/- 5 HU of the value at the comissioning. Field uniformity: +/- 10 HU in selected ROIs. Complete CT to ED curve for each tube voltage must comply with the curve obtained at comissioning, with deviations of not more than 5%. Spatial and contrast resultion tests must comply with the tests obtained at comissioning, otherwise machine requires service. Result of image noise test must fall within the limit of 20% difference of the base value. Slice thickness must meet manufacturer specifications, and patient stability with longitudinal transfer of loaded table must not differ of more than 2mm vertical deviation. Conclusion: The implemented QA tests gave overall basic understanding of CT simulator functionality and its clinical effectiveness in radiation treatment planning. The legal requirement to the clinic is to set up it’s own QA programme, with minimum testing, but it remains user’s decision whether additional testing, as recommended by international organizations, will be implemented, so to improve the overall quality of radiation treatment planning procedure, as the CT image quality used for radiation treatment planning, influences the delineation of a tumor and calculation accuracy of treatment planning system, and finally delivery of radiation treatment to a patient.

Keywords: CT simulator, radiotherapy, quality control, QA programme

Procedia PDF Downloads 534
2909 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.

Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM

Procedia PDF Downloads 116
2908 Forecasting Unusual Infection of Patient Used by Irregular Weighted Point Set

Authors: Seema Vaidya

Abstract:

Mining association rule is a key issue in data mining. In any case, the standard models ignore the distinction among the exchanges, and the weighted association rule mining does not transform on databases with just binary attributes. This paper proposes a novel continuous example and executes a tree (FP-tree) structure, which is an increased prefix-tree structure for securing compacted, discriminating data about examples, and makes a fit FP-tree-based mining system, FP enhanced capacity algorithm is used, for mining the complete game plan of examples by illustration incessant development. Here, this paper handles the motivation behind making remarkable and weighted item sets, i.e. rare weighted item set mining issue. The two novel brightness measures are proposed for figuring the infrequent weighted item set mining issue. Also, the algorithm are handled which perform IWI which is more insignificant IWI mining. Moreover we utilized the rare item set for choice based structure. The general issue of the start of reliable definite rules is troublesome for the grounds that hypothetically no inciting technique with no other person can promise the rightness of influenced theories. In this way, this framework expects the disorder with the uncommon signs. Usage study demonstrates that proposed algorithm upgrades the structure which is successful and versatile for mining both long and short diagnostics rules. Structure upgrades aftereffects of foreseeing rare diseases of patient.

Keywords: association rule, data mining, IWI mining, infrequent item set, frequent pattern growth

Procedia PDF Downloads 399
2907 Collaboration During Planning and Reviewing in Writing: Effects on L2 Writing

Authors: Amal Sellami, Ahlem Ammar

Abstract:

Writing is acknowledged to be a cognitively demanding and complex task. Indeed, the writing process is composed of three iterative sub-processes, namely planning, translating (writing), and reviewing. Not only do second or foreign language learners need to write according to this process, but they also need to respect the norms and rules of language and writing in the text to-be-produced. Accordingly, researchers have suggested to approach writing as a collaborative task in order to al leviate its complexity. Consequently, collaboration has been implemented during the whole writing process or only during planning orreviewing. Researchers report that implementing collaboration during the whole process might be demanding in terms of time in comparison to individual writing tasks. Consequently, because of time constraints, teachers may avoid it. For this reason, it might be pedagogically more realistic to limit collaboration to one of the writing sub-processes(i.e., planning or reviewing). However, previous research implementing collaboration in planning or reviewing is limited and fails to explore the effects of the seconditionson the written text. Consequently, the present study examines the effects of collaboration in planning and collaboration in reviewing on the written text. To reach this objective, quantitative as well as qualitative methods are deployed to examine the written texts holistically and in terms of fluency, complexity, and accuracy. Participants of the study include 4 pairs in each group (n=8). They participated in two experimental conditions, which are: (1) collaborative planning followed by individual writing and individual reviewing and (2) individual planning followed by individual writing and collaborative reviewing. The comparative research findings indicate that while collaborative planning resulted in better overall text quality (precisely better content and organization ratings), better fluency, better complexity, and fewer lexical errors, collaborative reviewing produces better accuracy and less syntactical and mechanical errors. The discussion of the findings suggests the need to conduct more comparative research in order to further explore the effects of collaboration in planning or in reviewing. Pedagogical implications of the current study include advising teachers to choose between implementing collaboration in planning or in reviewing depending on their students’ need and what they need to improve.

Keywords: collaboration, writing, collaborative planning, collaborative reviewing

Procedia PDF Downloads 99
2906 The Effects of Scientific Studies on the Future Fashion Trends

Authors: Basak Ozkendirci

Abstract:

The discovery of chemical dyes, the development of regenerated fibers, and warp knitting technology have enormous effects on the fashion world. The trends created by the information obtained in the context of various studies today shape the fashion world. Trend analysts must follow scientific developments as well as sociological events, political developments and artwork to obtain healthy data on trends. Digital printing technologies have changed the dynamics of textile printing production and also the style of printed designs. Fashion designers already have started design 3D printed accessories and garments. The research fields like the internet of things, artificial intelligence, hologram technologies, mechatronics, energy storage systems, nanotechnology are seen as the technologies that will change the social life and economy of the future. It is clear that research carried out in these areas will affect the textiles of the future and whereat the trends of fashion. The article aims to create a future vision for trend researchers and designers by giving clues about the changes to be experienced in the fashion world. In the first part of the article, information about the scientific studies that are thought to shape the future is given, and the forecasting about how the inventions that can be obtained from these studies can be adapted at the textile are presented. In the second part of the article, examples of how the new generation of innovative textiles will affect the daily life experience of the user are given.

Keywords: biotextiles, fashion trends, nanotextiles, new materials, smart textiles, techno textiles

Procedia PDF Downloads 338